
Altered Resting State Brain Networks in Parkinson’s
Disease
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Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder affecting dopaminergic neurons in the substantia nigra leading to
dysfunctional cortico-striato-thalamic-cortical loops. In addition to the characteristic motor symptoms, PD patients often
show cognitive impairments, affective changes and other non-motor symptoms, suggesting system-wide effects on brain
function. Here, we used functional magnetic resonance imaging and graph-theory based analysis methods to investigate
altered whole-brain intrinsic functional connectivity in PD patients (n = 37) compared to healthy controls (n = 20). Global
network properties indicated less efficient processing in PD. Analysis of brain network modules pointed to increased
connectivity within the sensorimotor network, but decreased interaction of the visual network with other brain modules.
We found lower connectivity mainly between the cuneus and the ventral caudate, medial orbitofrontal cortex and the
temporal lobe. To identify regions of altered connectivity, we mapped the degree of intrinsic functional connectivity both
on ROI- and on voxel-level across the brain. Compared to healthy controls, PD patients showed lower connectedness in the
medial and middle orbitofrontal cortex. The degree of connectivity was also decreased in the occipital lobe (cuneus and
calcarine), but increased in the superior parietal cortex, posterior cingulate gyrus, supramarginal gyrus and supplementary
motor area. Our results on global network and module properties indicated that PD manifests as a disconnection syndrome.
This was most apparent in the visual network module. The higher connectedness within the sensorimotor module in PD
patients may be related to compensation mechanism in order to overcome the functional deficit of the striato-cortical
motor loops or to loss of mutual inhibition between brain networks. Abnormal connectivity in the visual network may be
related to adaptation and compensation processes as a consequence of altered motor function. Our analysis approach
proved sensitive for detecting disease-related localized effects as well as changes in network functions on intermediate and
global scale.
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Copyright: � 2013 Göttlich et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: TFM has received support from the Deutsche Forschungsgemeinschaft and the Bundesministerium für Bildung und Forschung. MK has received
support from the Deutsche Forschungsgemeinschaft (KA 3179/2-1). This work was supported through intramural funding of the University of Lübeck. The funders
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Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder caused

mainly by a progressive loss of dopaminergic neurons in the

substantia nigra pars compacta projecting to the striatum. The

dysfunction of cortico-striatal-thalamic-cortical loops is believed to

lead to the hallmark motor features of PD including tremor,

akinesia and rigor [1]. Apart from these motor symptoms, a wide

range of non-motor deficits can be observed in PD patients. The

spectrum of non-motor symptoms in PD includes autonomic

dysfunction such as orthostatic symptoms, incontinence, and

constipation, hyposmia, REM sleep behavioral disorder and

cognitive dysfunction reflecting the multisystem nature of the

disorder [2]. Neurocognitive symptoms include working memory

deficits, problems in planning and set-shifting as well as affective

changes [3,4,5,6].

As PD affects projections to the striatum, it seems obvious to

take a network perspective to characterize disease-specific changes

in brain functions. Indeed, several studies have analyzed altered

connectivity patterns in PD, mainly based on task-related fMRI

data [7,8]. Apart from task-related network changes underlying

specific cognitive or motor dysfunctions, the study of resting-state

networks allows identifying altered intrinsic BOLD fluctuations as

possible disease marker.

A few studies have examined resting-state network changes in

PD patients. Helmich et al. [9] assessed functional connectivity

within specific cortico-striatal loops based on resting-state data.

They found decreased coupling of the posterior putamen and

inferior parietal cortex (IPC) in PD patients, but increased

coupling between IPC and the anterior putamen. They related

this to striatal dopamine depletion in the posterior putamen

particularly and took this as evidence for remapping of cortico-

striatal loops in PD patients.

Using the graph theoretical measure of a node’s degree, Wu and

co-authors [10] studied connectivity changes within the motor

network in 22 PD patients. The degree reflects the number of

significant functional connections of a node. The authors reported

significantly increased or decreased degree values of a number of
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nodes, which also depended on the current medication status of

the patients. Hacker and colleagues [11] investigated resting state

functional connectivity of the striatum in Parkinson’s disease. They

found markedly lower striatal connectivity with thalamus, mid-

brain, pons and cerebellum in the PD group compared to healthy

controls. In addition they reported a loss of striatal-cortical

connectivity to sensorimotor and visual regions in the PD group.

One advantage of graph theory based network analysis is that it

provides measures for both global and local connectivity and can

thereby be used to assess whole brain networks. A graph can be

conceived as a mathematical representation of a network,

comprising nodes, i.e. brain regions in our case, and edges, i.e.

the connectivity between brain regions [12]. An interesting feature

of global connectivity in a number of biological, technological as

well as social networks that can be described with graph theory is

small-worldness [13]. A small-world network is characterized by a

low mean shortest path length, comparable to a random network,

together with a higher clustering than found in random networks.

The path length refers to the number of steps it takes to get from

one node to any other node in the network. The clustering

coefficient reflects the density of connections between a node’s

neighbors [12]. Numerous studies demonstrated that small-world

properties are exhibited in brain networks. First observations came

from empirical studies on the nervous system of C. elegans, cortical

networks in the cat and the macaque [14,15,16] and then in

humans [17,18]. Recently, small-world properties of brain

networks were found using different methods to derive the

connectivity between brain regions including functional connec-

tivity [19,20], cortical thickness [21] and tractography using fiber

tracking or diffusion tensor imaging [22,23].

As many neurological and psychiatric diseases can be consid-

ered disconnection syndromes, it is to be expected to find altered

brain network metrics as disease markers. Indeed, a number of

studies have demonstrated specific changes in global and local

connectivity in patients with Alzheimer’s disease (AD), schizo-

phrenia or after focal brain lesions [24,25,26]. For instance, AD

patients presented reduced global clustering and local clustering in

the hippocampi in a resting-state fMRI study [24]. Based on global

clustering measures, it was possible to discriminate AD patients

from controls [24].

To our knowledge, only one whole-brain resting-state fMRI

study in PD patients analyzed graph-based connectivity metrics so

far [27]. In their connectivity study based on wavelet correlation,

Skidmore and colleagues [27] observed reduced global and nodal

efficiency in PD patients, a measure that is inversely related to the

mean shortest path length. The nodal efficiency of controls was

higher in the supplementary motor cortex, pre-central regions,

calcarine cortex and secondary visual areas. This study included

only a relatively small number of patients (n = 14), though, and

used the brain parcellation scheme of the Automatic Anatomical

labeling (AAL) atlas as nodes for their network analysis. This is a

quite common approach [24,27], as it allows parcellating the

whole brain including subcortical and cerebellar structures into a

still feasible number of regions (n = 116). However, the approach

has also been criticized as some of the AAL regions are quite large

and heterogeneous and as some known and well-studied networks

as the default mode network cannot be replicated with this coarse

parcellation [28].

Here, we assessed whole-brain functional connectivity changes

in resting-state networks in a large group of PD patients using

graph theory metrics. Nodes were derived by further parcellating

the AAL regions into modules yielding 343 cortical and subcortical

nodes in total (see Zalesky, Fornito et al. [28] for a similar

approach). We validate this approach by demonstrating that we

can detect the default-mode network using this parcellation

method. Moreover, we extend this by calculating the degree as

measure of local connectivity also on a voxel-level which provides

higher sensitivity to detect small, localized group effects. Whereas

previous resting-state fMRI studies in PD mainly used region of

interest (ROI) analyses which are very investigator-dependent, we

chose a data driven approach. Interestingly, the voxel degree

turned out to be a very sensitive marker for altered connectivity.

Moreover, the ROI level analysis complements the voxel level

analysis in terms of statistical sensitivity, as less statistical

comparisons and thereby less rigorous correction for multiple

comparisons are needed. We show that brain networks in PD are

affected on a larger scale, i.e. scale of brain network modules, and

on global scale.

Materials and Methods

1 Ethics Statement
All procedures have been cleared by the ethical committee of

the University of Lübeck and all subjects gave their written

informed consent prior to participation. The study was performed

in agreement with the Declaration of Helsinki.

2 Participants
Data was acquired at the University of Lübeck. A total number

of 40 PD patients were recruited for the study. In all cases,

idiopathic Parkinson’s disease was diagnosed by an experienced

neurologist and the severity of clinical symptoms was assessed

according to the Unified Parkinson’s Disease Rating Scale

(UPDRS). Three patients were excluded due to extensive head

motion. The present analysis includes 37 Parkinson’s disease

patients (22 male; age: 65610 years; disease duration 6.563.9

years) with advanced disease as indicated by a mean UPDRS score

of 22.267.7 (part III; clinician-scored motor evaluation). All

patients were on medication (L-DOPA, agonists). In total, 21 age-

matched control participants were recruited. One control subject

was excluded due to extensive head motion. The remaining 20

control subjects (10 male; age: 6369 years) showed no Parkinso-

nian signs or any other neurological deficits according to a

neurological exam. All subjects included in the study had normal

structural images showing no signs of atrophy of the cerebral

cortex and subcortical structures. The relevant demographic and

clinical information is summarized in Table 1.

3 Experimental Design
The functional MRI data was acquired during a so-called

resting-state block. Subjects were instructed to neither engage in

any particular cognitive nor motor activity and to keep their eyes

closed. The functional run took 6 minutes to complete.

Table 1. Demographic data on patients and healthy controls.

Healthy controls Parkinson’s disease

n=20 n=37

Gender men/women 10/10 22/15

Age in years (s.d.) 63 (9) 65 (10)

UPDRS part III (motor) n/a 22.3 (7.7)

Disease duration (yr) n/a 6.5 (3.9)

Notes: UPDRS =Unified Parkinson’s Disease Rating Scale.
doi:10.1371/journal.pone.0077336.t001
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4 Image Acquisition
Structural and functional MRI images were recorded on a

Philips Achieva 1.5-T scanner (Philips Healthcare, the Nether-

lands). A total of N=178 functional images were acquired using a

single-shot gradient-echo echo-planar imaging (EPI) sequence

sensitive to blood oxygen level dependent (BOLD) contrast

(volume TR=2000 ms, TE=50 ms, spatial resolution

36364 mm3, 2 mm interslice gap, image matrix 64664621,

standard 8-channel head coil). High resolution structural images

were obtained applying a T1-weighted 3D turbo gradient echo

sequence with SENSE (image matrix 25662336170, 1 mm

isovoxel).

5 Preprocessing
Preprocessing was performed using the SPM8 software package

(http://www.fil.ion.ucl.ac.uk/spm/). The first 10 images of each

dataset were discarded to allow for magnetization equilibrium and

for the subjects to adjust to the environment.

The preprocessing included the following steps: (i) Correction

for differences in the image acquisition time between slices; (ii) a

six parameter rigid body spatial transformation to correct for head

motion during data acquisition; (iii) co-registration of the structural

image to the mean functional image; (iv) grey and white matter

segmentation, bias correction and spatial normalization of the

structural image to a standard template (Montreal Neurological

Institute); (v) In order to reduce the influence of motion and

unspecific physiological effects, a regression of nuisance variables

from the data was performed. Nuisance variables included white

matter and ventricular signals and the six motion parameters

determined in the realignment procedure. (vi) spatial normaliza-

tion of the functional images using the normalization parameters

estimated in the previous preprocessing step and resampling to

2 mm62 mm62 mm; (vii) spatial smoothing with a 6 mm full

width half maximum Gaussian kernel. (viii) A temporal bandpass

filter was applied to all voxel time series (0.01 Hz,f ,0.08 Hz).

Subjects with strong head motion were excluded from the

analysis. The six realignment parameters, i.e. three displacements

and three elementary rotations with respect to the first image in

the EPI series, were used as an estimator for the head motion. The

displacements were required to be smaller than 3.0 mm (minimum

to maximum) and the individual rotations smaller than 3.0

degrees. Subject showing any displacement or rotation greater

than these cut-offs was excluded. Instantaneous motion has a

confounding effect on the measurement of functional connectivity

[29,30]. As an indicator for instantaneous motion, we used the

framewise displacement as described by Power and colleagues

(2012):

FD(i)~
X6
j~1

Ddj(i{1){dj(i)D

dj(i) are the six motion parameters determined for each scan where

i indexes the frame. The rotation parameters were converted from

degrees into millimeters by calculating the evoked displacement on

the surface of a sphere with a radius of 50 mm. The chosen radius

of 50 mm corresponds in good approximation to the mean

distance of the cerebral cortex to the center of the head. Subjects

with a framewise displacement of more than 2.5 mm were

excluded from the analysis since instantaneous motion of this

magnitude can affect the connectivity matrix considerably. Three

patients and one control were excluded because of these

requirements, leaving 37 patients and 20 controls for the analyses.

6 Voxel Degree Maps
Voxel degree maps were calculated by correlating the temporal

BOLD signal fluctuation of each voxel with all other voxels in the

brain and counting the number of connections above a certain

threshold. As a measure for the temporal correlation, we

computed the zero-lag Pearson’s linear correlation coefficient r.

The individual correlation coefficients were entered into an N6N

adjacency matrix where N is the number of voxels. The voxel

network matrix was thresholded by rw0:25 suppressing random

correlations. This results in a binary undirected network matrix dij .

The voxel degree Di was derived from the network matrix as

follows:

Di~
XN
j~1

dij

The degree maps were z-transformed to allow for averaging and

between subject comparisons:

zi~
Di{�DD

sD
(i~1:::N)

Here, �DD denotes the mean degree and sD the standard

deviation. No distinction is made between local and long-range

connectedness. Brain regions showing high z-scores are interpreted

as hub regions, i.e. regions which are highly connected and thus

play a key role for the network integration. In a previous study the

posterior cingulate, lateral temporal, lateral parietal, and medial/

lateral prefrontal cortex were identified as prominent hubs [31].

These are regions related to the default mode network.

7 Graph Formation
A graph consists of a set of nodes which are connected by edges.

In this section we introduce our approach to define the nodes and

edges describing the brain network. Nodes represent brain regions,

i.e. a collection of voxels which are spatially and functionally

connected.

7.1 Nodes. A regional parcellation of each hemisphere of the

brain into 45 regions was performed according to the Automatic

Anatomical labeling template as described by Tzourio-Mazoyer

and colleagues [32]. This template is based on an anatomical

parcellation according to major sulci and gyri using a spatially

normalized single subject high resolution T1 volume provided by

the Montreal Neurological Institute (MNI) [33]. The AAL regions

(or AAL regions of interest, AAL ROIs) were further parcellated

yielding 343 cortical and subcortical nodes in total (Figure S1). For

each AAL region and each subject we obtained a connectivity

matrix by correlating the temporal voxel BOLD signal fluctua-

tions. As a measure for the connectivity between the voxels we

used the Pearson correlation coefficient. The Pearson correlation

coefficients were Fisher z-transformed and the mean correlation

matrix was calculated by averaging all connectivity matrices within

the control group. The connectivity matrix was thresholded in

order to suppress spurious correlations keeping 30% of strongest

weights (proportional threshold of S= 0.3). Structures within the

AAL regions were identified using Newman’s spectral algorithm

[34] applied to the mean correlation matrices. This algorithm

subdivides a network matrix into non-overlapping groups of nodes,

i.e. modules, in a way that maximizes the number of edges falling

Altered Brain Networks in Parkinson’s Disease
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within modules minus the expected number in an equivalent

network with edges placed at random.

These modules served as nodes for the brain network analysis.

In the following we refer to the new regions as sub-AAL regions.
7.2 Edges. The functional connectivity between brain regions

was established by correlating the regional mean time courses. As

a measure for the temporal correlation, we computed the zero-lag

Pearson’s linear correlation coefficient. The correlation coefficients

were inverse hyperbolic tangent transformed (Fisher z-trans-

formed) and entered into the correlation matrix as basis for the

network analysis.

8 Graph Analysis
A graph theoretical approach was used to investigate both local

and global properties of the brain network. A network can be

represented by a set of nodes, here brain regions, which are

connected by edges. Edges reflect interactions between brain

regions which are defined in this case by the correlation as

described above. The symmetric correlation matrices represent

undirected weighted graphs. In this work we used binary in

contrast to weighted graphs. The conversion from a weighted

graph to a binary graph was performed by thresholding at a

specific sparsity value with sparsity reflecting the number of edges

relative to all possible edges. The choice of the sparsity threshold

has a major effect on the network topology. Instead of arbitrarily

choosing one single sparsity value, we present network metrics

which are based on binary graphs as a function of the sparsity S.

We considered sparsity values between Smin = 0.1 and Smax = 0.35.

The lower limit is given by the requirement that all graphs are

connected, i.e. there are no nodes which are isolated from the rest

of the network. The upper limit was chosen such that the

contribution of spurious correlations is strongly suppressed and the

resulting graphs exhibit small-world properties. For most graph

theoretic quantities there are alternative algorithms which work on

weighted adjacency matrices. We decided to use binary versions of

the algorithms consistently throughout the study. One reason

being their simplicity and the other being that also weighted

matrices have to be thresholded to remove negative weights and to

suppress spurious correlations. This threshold is also to some

degree arbitrary and has to be justified and varied to show that the

results do not depend on the choice of the threshold.
8.1 Degree, clustering coefficient and characteristic path

length. Once a graph is created, numerous measures describing

its topological properties can be computed [35]. The node degree

Di is defined as the number of connections to other nodes in the

network given a sparsity threshold S. Network hubs are usually

characterized by a high degree in comparison to other nodes in the

network. The node degree is z-transformed according to the

following formula:

zi~
Di{�DD

sD

�DD and sD are the mean and the standard deviation of the

degree distribution, respectively.

The clustering coefficient characterizes the brain network on a

local level, whereas the mean clustering coefficient and the

characteristic path length are used to characterize the brain

network on a global level. The clustering coefficient Ci of a node i

is a measure of the local network connectivity. It is defined as the

fraction of a node’s neighbors which are neighbors of each other.

We compute the clustering coefficient by applying an algorithm

which operates on binary graphs [13]. The characteristic path

length L is defined as the average shortest path length in the

network, where the path length dij between two nodes i and j is

given by the number of nodes which have to be passed to transfer

information from node i to node j. While the mean clustering

coefficient is a measure for the segregation of the network, the

characteristic path length is a measure for the global integration

and thus the efficiency of the network.

8.2 Network topology. The mean clustering coefficient and

the characteristic path length indicate whether the nodes of a

complex network are connected in a random or small-world order.

A small-world network in comparison to a random network is

characterized by a considerably higher mean clustering

c~Cmeas=Crandw1 and a comparably short characteristic path

length l~Lmeas=Lrand&1 [13]. Therefore, small-world networks

are both globally and locally efficient in transferring information

[36]. In order to calculate the network metrics c and l, we

constructed random reference networks applying an algorithm

which randomly rewires the measured networks while preserving

the degree distribution [37].

8.3 Community structure and participation. Community

structures can be considered an intermediate level of network

organization. A graph community structure is a subdivision of a

network into non-overlapping groups of nodes (modules) which are

densely connected with each other but less so with other nodes in

the network [12]. Here, we used Newman’s spectral algorithm to

identify brain network modules [34]. Given a previously deter-

mined community structure, the participation coefficient is a

measure of the diversity of inter-community connections of

individual nodes. A node with a high participation coefficient is

strongly connected to nodes in other communities working as a

hub which connects different communities. The modular structure

of the brain network was derived from the control group by

averaging the individual network matrices. The mean network

matrix was then thresholded at different sparsity values and a

community structure was identified applying Newman’s spectral

algorithm [34]. The community structure was applied to the

network matrices on an individual subject level and the groups’

mean clustering coefficient and participation coefficient were

calculated for each module. In addition we investigated group

differences in the participation coefficient for individual nodes.

The network metrics and the reference networks were

calculated using the Brain Connectivity Toolbox (BCT, http://

www.brain-connectivity-toolbox.net/). The networks were visual-

ized with the BrainNet Viewer (http://www.nitrc.org/projects/

bnv/).

9 Statistical Analysis
Differences in the voxel degree between healthy controls and

PD patients were investigated by a random effects analysis

applying a two-sample t-test. Statistic images were assessed for

cluster-wise significance using a cluster-defining threshold of

p = 0.005; the 0.05 FDR-corrected critical cluster size was

k = 184 [38,39]. The analysis was performed using SPM8

(http://www.fil.ion.ucl.ac.uk/spm/).

Statistical tests for significant between-group differences in

graph theoretical quantities, i.e. degree, clustering coefficient and

characteristic path length, were carried out by nonparametric

permutation tests [40]. When testing for group effects in node

properties, 0.05 FDR-corrected results are presented [41,42].

Results

The main focus of our study was on altered whole brain network

organization in PD. As we chose a new parcellation approach for

Altered Brain Networks in Parkinson’s Disease
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our study, we first investigated the validity of our parcellation

approach by contrasting results for voxel and sub-AAL ROI level

analyses. We then compared patients and controls regarding

global network measures and investigated changes in brain

network organization at an intermediate scale, i.e. the level of

network modules. We also examined the relation between

observed connectivity changes on module level and patients’

clinical status (UPDRS; part III). To validate group differences in

network modules, we additionally examined group differences in

node degree on voxel-level. Finally, to exclude spurious group

differences, we thoroughly investigated the influence of head

motion.

1 Validation of Methodological Approach
The average number of modules identified in the AAL regions

was four (range 3 to 5). Figure 1A shows the mean voxel

correlation (ROI homogeneity) within each region for the AAL

parcellation compared to the new approach. Correlation coeffi-

cients are Fisher transformed. We observed a higher ROI

homogeneity for the sub-AAL regions. The mean ROI homoge-

neity for the AAL parcellation was 0.42 compared to 0.67 for the

sub-AAL regions. In Figure 1B we depict the number of voxels

within each region. The sub-AAL regions are less heterogeneous

in terms of size than the AAL regions. These improvements are

reflected in the connectivity patterns derived from the brain

network matrices as demonstrated in Figures 1C and 1D. Shown

are the regions connected to the left posterior cingulate cortex

(proportional threshold of S= 0.1) for the AAL and the sub-AAL

parcellation, respectively. Only for the new parcellation approach,

we obtain a connectivity pattern which includes the complete

default mode network including posterior cingulate, lateral

temporal, lateral parietal and medial prefrontal regions.

We identified hub regions in controls based on voxel level

analyses and sub-AAL ROI level analyses to qualitatively assess

the comparability of these two approaches. Figure 2 shows an

overlap of voxels and sub-AAL regions with a high z-degree (one-

sample t-test; tw2:6). A very good agreement between the two

approaches can be observed, i.e. similar hub regions are identified:

lateral frontal, parietal, lateral temporal cortex and thalamus.

Table S1 summarizes the results on voxel-level. Whereas hubs

identified on the ROI level span generally larger regions, smaller

hub regions in, for instance, lateral prefrontal cortex are detected

using voxel level analyses only. Our results are in accord with

findings of hub regions reported by other groups [19,31].

2 Global Network Properties
Figures 3A and 3B show the mean clustering coefficient and the

characteristic path length as a function of the sparsity for the

control and the patient group. The network metrics are calculated

for each of the individual functional connectivity graphs. Shown

are the groups’ mean values and the standard errors. A

nonparametric permutation test was applied to test the statistical

significance of between-group differences (a=0.05). A significantly

higher clustering and characteristic path length is observed in the

patient group for low sparsity values (Sv0:2). The increased

characteristic path length indicates a less efficient organization of

the brain network for patients suffering from Parkinson’s disease.

Figures 3C and 3D depict the normalized clustering coefficient c
and characteristic path length l, respectively. The higher

clustering and the similar characteristic path length compared to

reference random networks suggest a small-world organization of

the functional brain networks both in controls and in PD patients.

3 Community Structure and Participation
In addition to the global differences in path length and

clustering, we investigated differences on the intermediate level

of brain network organization by comparing properties of ROI

communities. The community structure of the brain network was

derived from the mean network matrix obtained from the control

Figure 1. Comparison of the two parcellation approaches. A) The mean voxel correlation (Fisher transformed) within the ROIs for the
parcellation according to the AAL atlas and the parcellation derived from the modular structure within the AAL regions (sub-AAL). B) The number of
voxels per ROI for AAL and sub-AAL parcellation is plotted. C) ROIs significantly correlated to the left posterior cingulate cortex (PCC) ROI for the AAL
parcellation. D) ROIs significantly correlated to the seed ROI in the left PCC for the sub-AAL ROIs.
doi:10.1371/journal.pone.0077336.g001

Figure 2. Brain regions with high degree centrality in controls.
Shown are the results from voxel-level (red to white scale) and ROI-level
(blue) analyses.
doi:10.1371/journal.pone.0077336.g002

Altered Brain Networks in Parkinson’s Disease

PLOS ONE | www.plosone.org 5 October 2013 | Volume 8 | Issue 10 | e77336



group by averaging the connectivity for each edge. A proportional

threshold of S= 0.2 was applied to the mean correlation matrix.

This analysis yielded seven communities as depicted in Figure 4A.

The individual modules can be related to known resting state

networks (default mode, visual, sensorimotor, attention, sub-

cortical) [43]. The default mode (module 2; brown) and visual

(module 4; purple) networks were clearly identified. We also

observed communities related mainly to the sensorimotor network

(module 6, yellow) and executive/attention networks (modules 3

and 5; blue and orange). Module 1 (light blue) comprised

subcortical structures only (thalamus and striatum ROIs). For

each module we investigated group differences in the mean degree

and participation. We found a significantly higher degree in the

visual network for controls compared to PD patients (Figure 4B).

This can be explained mainly by stronger long-range connectivity

to other modules as indicated by a significantly higher participa-

tion coefficient of controls observed in that module (Figure 4C). By

contrast, the sensorimotor network exhibits a significantly larger

degree for the PD group. This is mainly a consequence of stronger

local connections within the module itself since we observe no

difference in the participation for module 6 (Figure 4C). It should

be stressed that the observed between-group effects were

independent of the choice of the sparsity bin when applying the

same modular structure to the brain network.

4 Group Differences in Node Degree and Edges
We tested each node (sub-AAL ROI) for significant between-

group effects in z-degree (0.05 FDR-corrected). Two nodes, one in

the calcarine and one in the cuneus, showed a significantly lower

degree for PD patients. One node in the posterior cingulate cortex

exhibited a higher degree for PD patients with respect to healthy

controls. The nodes are depicted in Figure 5 and the results are

summarized in Table 2 (sparsity S= 0.2), where we listed ROI

center of mass coordinates, mean degree and adjusted p-values. It

should be stressed that these findings are independent of the choice

of the sparsity as shown in Figure S2 where we investigated the

mean degree for PD patients and healthy controls as a function of

the sparsity.

The modular structure of the brain networks and observed

group differences in modules 4 and 6 rely on the parcellation in

ROIs. To validate this approach and verify group differences in

node degree, we additionally ran a random effects analysis to

investigate group differences in the voxel-degree. Statistics t-

images were assessed for cluster-wise significance using a cluster-

defining threshold of p = 0.005; the 0.05 FDR-corrected critical

cluster size was 184. The results are depicted in Figure 5 and

summarized in Table 3 which lists the cluster size, cluster-level p-

value (0.05 FDR-corrected), peak t-value as well as the peak

location in MNI coordinates. In Figure 5, group differences in

voxel-level degree maps are shown together with ROI-level results

to allow direct comparison of the two approaches. On voxel level,

Figure 3. Global network properties for Parkinson’s disease patients (PD, full circles) and healthy controls (squares) as a function of
the sparsity. A) mean clustering coefficient B) characteristic path length C) clustering coefficient normalized to a reference random network D)
characteristic path length normalized to a reference random network. The asterisks indicate significant between-group differences (permutation test,
a= 0.05).
doi:10.1371/journal.pone.0077336.g003
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we observed an increased z-degree in controls relative to patients

in the occipital cortex. In addition, voxel-level analyses showed

reduced degree scores in patients in medial orbitofrontal areas,

important target regions of dopaminergic projections

[44,45,46,47,48]. By contrast, a higher degree for PD patients

relative to controls was found in the pre-central, post-central and

parietal cortex as well as in the supplementary motor area.

To allow for better comparability between the voxel- and ROI-

based analyses we also report uncorrected results on both voxel-

and ROI-level in the supplementary materials (Figure S3; Tables

S2 and S3). We find a satisfactory agreement between the two

approaches. Note, that in Figure S3 we only tested ROIs

comprising the modules 4 and 6.

Note, that the absolute threshold of r = 0.25 applied in the

voxel-level analysis is not equivalent to the proportional threshold

of S= 0.2 in the ROI-analysis. We showed that our results did not

depend on the choice of the threshold (Figure S2). It is thus valid to

compare the results of the two approaches qualitatively.

Controls showed a significantly higher degree in module 4

(visual network) and a significantly higher participation coefficient

in this module, which indicated a stronger connectivity to nodes in

other modules. To further examine which connections are

contributing to this finding, we show the ten edges from nodes

in the visual module to other nodes in the network which differed

most between groups (established through one-tailed t-test). We

found significantly stronger connectivity of the visual network to

subcortical, temporal and medial frontal brain regions (Figure 6A;

Table 4). We then applied the same strategy to better understand

the altered connectivity of the calcarine and cuneus nodes where

we observed significant between group effects in the degree.

Figure 6B (Table 5) shows the ten edges where we observed the

strongest effects. None of these connections involved the calcarine.

We found stronger connectivity of the cuneus node to medial

orbitofrontal and to ventral caudate nodes. The anatomical

location of the two caudate nodes is depicted in Figure 6C. In

Tables 4 and 5 we summarized the results and listed the mean

connectivity for each group and the corresponding p-values

according to a two-sample t-test.

The stronger connectivity of occipital to medial frontal brain

regions might contribute to the higher voxel degree in medial

frontal cortex as depicted in Figure 5.

5 Influence of Head Motion
Head motion influences the measurement of the intrinsic

functional connectivity. Several recent studies report decreased

long range connectivity and increased local connectivity due to

motion [29,30]. Since we observed weakened long-range connec-

tivity in case of the PD group, we studied extensively if our results

were confounded by head motion. In order to verify that the

observed group differences were not caused by differences in

motion, we tested whether the extent of motion was correlated

with the functional connectivity between brain regions. We used

four different parameters to quantify the extent of motion:

1) The maximum head displacement Dmax derived from the six

parameters of the rigid body transformation during the

realignment procedure dj. The parameters describing the

rotations are multiplied by R=50 mm.

Figure 4. Modular structure of the brain network. A) Overview of the different network modules. B) mean z-degree of nodes comprising
module C) mean participation nodes comprising module for patients (red squares) and controls (blue circles).
doi:10.1371/journal.pone.0077336.g004
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2) The root mean square of the head motion DRMS:

DRMS~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i~1

X6
j~1

d2
j (i)

vuut

Here, i indexes the N frames and is the displacement of frame i

for the realignment parameter j.

1) The maximum framewise displacement FDmax.

2) The root mean square of the framewise displacement FDRMS:

FDRMS~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i~1

FD2
i

vuut

In Table 6 the group mean and standard deviations are given

for the four different parameters quantifying the extent of head

motion. According to a one-tailed two-sample t-test no signifi-

cantly stronger head motion was found in the PD group (a=0.05),

although a trend was found in three of the parameters.

Any effect in graph properties found in this study ultimately

depends on the validity of the network matrices. In order to test if

differences in the network matrices between controls and PD

patients are confounded by head motion we tested if the

connectivity strength is correlated to any of the four parameters

used to quantify the extent of head motion. First, we selected edges

showing a significant group effect according to a two-sample t-test

and found 370 edges at a significance level of a=0.001. In a

second step, we correlated each of the four head motion

parameters to the connectivity strength of the selected edges.Figure 5. Between group effects in z-degree. Voxel-level (assessed
for cluster-wise significance using a cluster defining threshold of
p = 0.005; 0.05 FDR-corrected) and ROI-level data (blue areas; 0.05 FDR
corrected; sparsity S = 0.2) are presented. A) Regions with a larger
degree in healthy controls compared to patients. B) Regions with a
larger degree for PD patients compared to controls.
doi:10.1371/journal.pone.0077336.g005

Table 2. Nodes showing the strongest between group effects
in degree centrality.

Anatomical region ROI center degree p-value

(x y z) [mm] CTR PD (adjusted)

CTR . PD

Calcarine R 3 14 262 12 1.4 0.6 0.022

Cuneus L 1 27 276 29 1.3 0.7 0.042

PD . CTR

Cingulate Cortex Post L 3 28 243 15 21.0 20.2 0.042

Notes: Network nodes showing the strongest between group effects
(permutation test; a= 0.05 FDR-corrected). The anatomical region, the center of
mass MNI coordinates of the ROIs, the node degree for controls (CTR) and
patients (PD) and the adjusted p-values are listed.
doi:10.1371/journal.pone.0077336.t002

Table 3. Between-group differences in voxel degree.

Anatomical region p (adj.) k local maxima T

(cluster) (x y z) [mm] (peak)

CTR . PD

Calcarine; Cuneus R 0.000 1015 22 260 12 4.63

Frontal Inf Orb R 0.006 321 30 38 210 4.35

Frontal Med Orb L 0.007 293 28 48 210 4.19

Occipital Inf R 0.047 184 34 272 28 4.14

PD . CTR

Parietal Sup L 0.000 738 218 252 62 4.94

SupraMarginal L 0.045 212 266 222 34 4.93

Supp Motor Area L 0.005 346 212 28 52 4.18

Notes: Clusters where differences in the voxel degree between patients and
controls are observed (cluster defining threshold p,0.005; the 0.05 FDR-
corrected critical cluster size was 184). Anatomical region, cluster level
probability (0.05 FDR-corrected), number of voxels per cluster (k), local maxima
in MNI coordinates and peak T-scores are listed.
doi:10.1371/journal.pone.0077336.t003

Altered Brain Networks in Parkinson’s Disease

PLOS ONE | www.plosone.org 8 October 2013 | Volume 8 | Issue 10 | e77336



Table 6 lists the number of significant correlations (a=0.01; four

expected under null-hypothesis). Only one negative correlation

was observed between maximum motion and connectivity

between cuneus and medial orbitofrontal cortex. This is well

compatible with the number of false discoveries expected under

the null-hypothesis. None of the other connectivity values

correlated with motion parameters, which is evidence that

measured functional connectivity differences cannot be explained

by head motion. Critically, we did not find any hint for long-range

connections to be negatively correlated to one of the four measures

of head motion.

Furthermore, the z-degree in the nodes where we found

significant group effects (Table 2) did not correlate to any of the

four parameters used to quantify the extent of head motion.

Discussion

We investigated whole-brain resting-state network changes in

PD patients using several graph-theory based measures. First, we

investigated global network properties as the characteristic path

length and the mean clustering coefficient, which indicated less

efficient brain network topology in PD. Changes in the brain

network organization on an intermediate scale were quantified by

examining communities of ROIs derived from the modular

structure of the brain network. PD patients exhibited a signifi-

cantly lower module degree in the visual network (module 4;

Beckmann et al [43]) and a significantly higher degree in a

sensorimotor network (module 6; [43]). The visual network

module also showed a reduced participation coefficient in PD

patients, resulting from reduced frontal-occipital and frontal-

subcortical (ventral caudate) connectivity. We were able to validate

these results with an alternative methodological approach by

studying the node degree on voxel level. PD patients showed

decreased connectivity in orbitofrontal and occipital regions as

well as in the caudate and increased connectivity of sensorimotor

and parietal brain regions. The voxel level analyses controlled for

potential analysis biases introduced by choosing large ROIs as

network nodes. The good agreement between the two analysis

approaches strengthens the confidence in the results of the

network analysis. In the following, we first discuss methodological

issues pertaining to our parcellation approach and to the influence

of head motion, before we discuss the main results of altered brain

networks in PD.

1 Validation of the Parcellation Approach
We used the brain regions defined in the anatomical labeling

template [32] as a starting point for our whole-brain parcellation.

The AAL regions were subdivided according to their community

structure yielding 343 regions. This parcellation approach resulted

in an increased ROI homogeneity as well as a more similar ROI

size when compared to the AAL template (Figure 1). Previous

resting-state fMRI brain network analyses were mainly based on a

parcellation according to the AAL template as reviewed by

Zalesky and colleagues [28]. Zalesky et al. [28] investigated how

various network organizational parameters depend on the spatial

scale of the brain parcellation. In contrast to our approach they

applied a random parcellation of AAL regions. We argue that our

approach of clustering voxels that are correlated leads to higher

functional homogeneity at a given spatial scale.

We validated our approach by showing that the default-mode

network can be replicated much better compared to a parcellation

according to AAL ROIs. Furthermore, the typical resting-state

networks that have been identified previously by independent

component analyses [43,49] were revealed through the analysis of

the community structure of the group mean network matrix.

Another independent validation was performed by comparing the

voxel-based degree map to the ROI-based degree map. We found

a very good agreement between the two approaches. This justifies

using this parcellation approach to study the connectivity between

brain regions and to investigate more complex network properties

which are computationally extensive, e.g. the characteristic path

length or the clustering coefficient. Furthermore, the problem of

multiple testing is enormously reduced due the much smaller

number of network nodes.

On the other hand, we expect losing sensitivity for effects in

regions which are small compared to the ROI size and for effects

in regions outside the AAL template such as the midbrain. This

was also observable in the present study in which small, localized

group differences such as in caudate head and orbitofrontal cortex

were detectable in voxel level analyses only. To examine brain

network changes in neurological and psychiatric disorders, we

therefore suggest using a combined analysis scheme employing

voxel-based and sub-AAL ROI-based analyses to capture both

Table 4. Altered connectivity of nodes within module 4 to
nodes outside module 4.

ROI 1 ROI 2 CTR PD p

Calcarine L 4 Cingulate Cortex
Ant L 4

0.28 20.01 0.00002

Calcarine R 1 Frontal Sup Orb R 4 0.33 0.07 0.00003

Amygdala L 3 Occipital Inf R 1 0.51 0.14 0.00001

Cuneus L 2 Rolandic Oper R 1 0.45 0.14 0.00001

Cuneus L 3 Rolandic Oper R 1 0.31 0.01 0.00006

Cuneus R 4 Rolandic Oper R 1 0.44 0.15 0.00002

Amygdala L 3 Temporal Sup R 3 0.53 0.14 0.00020

Frontal Med Orb L 3 Temporal Sup R 3 0.53 0.15 0.00001

Frontal Med Orb R 2 Temporal Sup R 3 0.48 0.12 0.00001

ParaHippocampal L 4 Temporal Sup R 3 0.42 0.15 0.00010

Notes: Listed are the two nodes defining an edge. Mean connectivity in control
group (CTR) and patients (PD) and corresponding p-values are listed.
doi:10.1371/journal.pone.0077336.t004

Table 5. Altered connectivity of left cuneus node with
significant between-group effects.

ROI 1 ROI 2 CTR PD p

Caudate L 3 Cuneus L 1 0.44 0.23 0.0001

Caudate R 5 Cuneus L 1 0.32 0.13 0.0005

Cingulate Cortex
Ant L 4

Cuneus L 1 0.34 0.13 0.0019

Cuneus L 1 Frontal Med Orb L 2 0.37 0.13 0.0003

Cuneus L 1 Frontal Med Orb L 3 0.49 0.25 0.0011

Cuneus L 1 Frontal Mid L 3 0.55 0.34 0.0017

Cuneus L 1 Heschl R 1 0.54 0.27 0.0016

Cuneus L 1 Heschl R 3 0.46 0.21 0.0005

Cuneus L 1 Rolandic Oper R 1 0.43 0.20 0.0003

Cuneus L 1 Temporal Mid R 2 0.91 0.66 0.0006

Notes: Listed are the two nodes defining an edge. Mean connectivity in control
group (CTR) and patients (PD) and corresponding p-values are listed.
doi:10.1371/journal.pone.0077336.t005
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small, localized effects and more complex network properties on

an intermediate and global network level.

2 Effects of Head Motion
As PD is a movement disorder and connectivity measures have

been shown to be particularly susceptible to movement artifacts,

we thoroughly investigated the influence of head motion on the

measurement of functional connectivity. Results indicated that the

connectivity measures did not depend on any of four different

measures of head motion. We also found no indication for an

effect of head motion on the degree in any of the nodes where we

found significant between-group effects. Moreover, Power and

colleagues [30] quantified the changes in the correlation coeffi-

cients between different brain regions which can be explained by

motion and gave a conservative upper limit of about r&0:1. The
large differences in functional connectivity (r&0:3) found in this

study are thus not likely to be caused by motion. Furthermore, we

observed mainly altered connectivity between frontal-occipital and

subcortical-occipital regions but no differences in the connectivity

between left and right temporal regions. We neither observed

short-range connections to be consistently stronger for the PD

patients, which would be expected if the connectivity measure-

ment was affected by head motion. If the measurement of the

functional connectivity was biased by head motion we would

expect to find an altered node degree, node participation and a

higher local clustering in all brain regions but in contrast we find

effects to be localized in certain brain regions (Figure 5). Together,

this speaks against differences in head motion as reason for group

differences in network measures.

3 Network Topology
Global network measures, i.e. the normalized mean clustering

coefficient and characteristic path length, indicated a small-world

organization of the brain network in controls as well as in PD

patients. However, the larger characteristic path length observed

in the PD group compared to controls points to an altered

organization of the brain network leading to lower network

efficiency. We were thus able to verify the observation of lower

network efficiency for PD patients as reported by Skidmore and

colleagues [27]. Note that the characteristic path length is

inversely related to the global efficiency [35] allowing for a direct

comparison of the two studies concerning the network efficiency.

Similar observations have also been made in studies on other

neurological diseases, e.g. Alzheimer’s disease [50]. The analysis of

network modules allowed us to obtain deeper insights into the

global network changes as will be discussed in the following.

To investigate altered brain network organization in PD on an

intermediate scale of network organization we explored properties

of ROI communities. The communities which we identified in the

data resembled to a large extent well-known resting state networks

or combinations of them (RSN) [43]. The manifestation of PD as a

disconnection syndrome became apparent in the visual RSN

where we observed a significantly higher degree and network

participation for healthy controls in comparison to the PD group.

It should be stressed that in the context of this study we refer to

functional disconnection in contrast to structural disconnection.

Visual deficits in Parkinson’s disease [51,52] range from problems

in basic perceptual and semantic visual processing at an early stage

of cognitive deterioration [53], deficits in orientation and motion

Figure 6. Altered connectivity of the visual network. A) Altered connectivity of nodes in module 4 (visual network). We observe stronger
occipital-frontal and occipital-temporal connectivity for healthy controls. B) Altered connectivity of the cuneus node CunL1. C) Coronal view showing
the anatomical location of the two caudate nodes CauL3 and CauR5. Abbreviations: Amy: Amygdala; Cal: Calcarine; Cau: Caudate; Cun: Cuneus; CCA:
anterior cingulate cortex; FMO: medial orbitofrontal cortex; Hes: Heschl gyrus; OI: inferior occipital cortex; Par: parahippocampus; RO: rolandic
operculum; TM: medial temporal gyrus; TS: superior temporal gyrus.
doi:10.1371/journal.pone.0077336.g006

Table 6. Head motion parameters.

Quantity CTR PD p-value Significant

Max motion [mm] 0.81 (0.61) 1.08 (0.56) 0.06 2 (1 negative)

RMS motion [mm] 0.60 (0.55) 0.82 (0.60) 0.09 0 (0 negative)

Max FD [mm] 0.88 (0.59) 1.13 (0.61) 0.07 1 (0 negative)

RMS FD [mm] 0.28 (0.15) 0.28 (0.15) 0.47 1 (0 negative)

Notes: Maximal motion, root mean square (RMS) motion, maximal framewise
displacement (FD) and root-mean square framewise displacement (RMS FD) for
controls (CTR) and patients (PD). Quoted are the mean values and their
standard deviations. We performed a two-sample t-test to test for between-
group effects. The p-values are quoted. We also listed the number of edges
which significantly correlated to each of the motion parameters.
doi:10.1371/journal.pone.0077336.t006
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discrimination [54,55] to visual hallucinations [56,57]. We

speculate that our finding of a reduced functional connection of

the visual network to subcortical, temporal and frontal areas is

related to visual deficits frequently reported in PD [51]. In the case

of altered motor function, the visual system also needs to adapt

and compensate which might additionally contribute to altered

network connectivity. Targeted studies are necessary to shed light

on the relation of our observations to specific visual deficits or

compensatory mechanisms.

We interpret our finding of a higher degree within the module

related to the sensorimotor RSN (module 6) as a compensation

mechanism in order to overcome the functional deficit of the

striato-cortical motor loops [58,59,60,61]. This is in line with

higher local connectivity in sensorimotor and premotor areas

reported by Wu et al. [62] investigating the regional homogeneity

in PD. Similarly, Sabatini et al. [63] reported a cortical motor

reorganization in PD expressed by a hyperactivation in the

posterior SMA, the anterior cingulate cortex and the primary

sensorimotor cortices during a complex sequential motor task.

4 Local Network Changes in PD
Regions with high degree centrality are believed to act as hubs

integrating the functionality of different brain regions in healthy

individuals. We identified the following hub regions: lateral

frontal, parietal, lateral temporal cortex and thalamus. These

results are in agreement with findings reported by other groups

[19,31].

When comparing healthy controls to the PD group on voxel

level, we found a lower connectivity for patients in brain regions

involved in dopaminergic pathways, i.e. caudate head, hippocam-

pus and the orbitofrontal cortex [44,45,46,47,48,64] but also in

the occipital lobe. Group differences of the degree in the calcarine

and the cuneus were seen both in voxel-based and ROI-based

analyses. The agreement between voxel- and ROI-based analyses

became more evident when we applied less stringent p-value

thresholds. PD-related differences in connectivity degree were

associated with weaker network edges between orbitofrontal and

occipital cortex as well as between subcortical structures (ventral

caudate) and the occipital cortex. Several of these regions

including the calcarine cortex were also reported by Skidmore

et al. [27] to show decreased efficiency in PD patients compared to

controls. Yet, it is difficult to directly compare these findings with

the present results, as efficiency is an inverse measure of the

shortest path length which does not speak to the number of

connections for a particular node. The observed connectivity

differences, in particular in the frontal and occipital cortex, might

be related to non-motor symptoms typical for PD patients such as

executive dysfunction, attention problems [65,66,67,68] or lower

performance in visuo-spatial tasks [69,70,71]. The results nicely

dovetail and extend findings from an fMRI-study of Cardoso and

colleagues [52]. They used a flickering checkerboard task and a

facial perception paradigm to investigate the visual system in PD

patients. They reported decreased activity in primary visual cortex

bilaterally in PD patients as compared to healthy volunteers

during the checkerboard task and increased activity in the fusiform

gyrus in the facial perception task. The authors of that study

concluded that PD patients show significant changes in the visual

system even before visual symptoms become clinically evident.

Future studies might examine how network differences change

depending on medication status and type of medication or relate

fMRI connectivity findings to PET measurements of dopamine

levels.

On the other hand, patients had a higher degree of connectivity

in the pre-central cortex, superior parietal cortex, precuneus,

cingulate gyrus, supplementary motor area and inferior temporal

regions. Higher connectivity in PD patients in cortical areas of the

motor network might reflect compensatory mechanisms, which is

indicated by many previous studies investigating motor control in

PD patients [58,59,60,61]. Mallol and colleagues [59], for

instance, reported an increased participation of parietal-lateral

premotor circuits in the execution of sequential motor tasks

expressed by a hyperactivation in these areas compared to healthy

controls.

5 Limitations and Conclusions
Our main motivation for further parcellating the AAL template

ROIs [32] was the observation that these ROIs are very

inhomogeneous which can be assessed from Figure 1. Using

subdivisions of these ROIs led to increased homogeneity. At the

same time we did not deviate strongly from the parcellation

scheme which was used in many previous analyses on various

neurological and psychiatric disorders [28], as each AAL ROI was

sub-divided into only four sub-ROIs on average. Increasing the

number of sub-ROIs improves the ROI homogeneity but on the

other hand also increases the complexity of the data and the

number of statistical tests to be performed when investigating

between group effects. The parcellation of the brain into 343

regions was thus a compromise. The larger ROI homogeneity

revealed the resting-state networks which were not observed with

the coarser parcellation (Figure 1 and 4). Still, the number of ROIs

was feasible when calculating complex network properties,

displaying the network or performing corrections for multiple

testing. The fMRI data of the present study was acquired with a

gap of 2 mm which is certainly not optimal for deriving a brain

parcellation. Although a somewhat lower ROI homogeneity can

be expected with finer spatial resolution, we do not expect any bias

being introduced for our statistical analyses and between-group

comparisons.

Unfortunately, no data on cognitive or affective functions were

available in the current set of PD patients. In light of the first

papers that explored how specific graph-theory based network

measures relate to cognitive or affective processes [72,73,74] this

seems a fruitful avenue for further research. Our data does not

allow us to study the role of medication and we are not able to rule

out that some of the observed effects are medication related.

Future work should investigate how network changes depend on

disease stage and/or medication type (for instance, L-Dopa vs. DA

agonists).

To summarize, we provide evidence for altered resting-state

networks on a global, intermediate and local level in PD patients.

Whereas previous studies on functional connectivity in PD focused

on specific resting-state networks [10], a few network nodes [11] or

only single connectivity measures such as nodal and global

efficiency [27] here we explored whole-brain intrinsic connectivity

employing various graph-theory based measures in a large patient

sample. The results demonstrate the usefulness of our methodo-

logical approach to bring out local and global group differences

with satisfying statistical and spatial sensitivity. We are convinced

that the ROI and voxel level analyses complement each other as

changes in functional connectivity on a smaller scale than the

ROI-size are only apparent in the voxel level analysis but not on

ROI-level. The voxel level analysis also might be used to help to

study potential biases introduced by the choice of ROIs. The

network parameters used in the present study might be interesting

biomarkers to track disease state and characterize subtypes of PD

patients related to cognitive dysfunctions or other non-motor

symptoms.
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Supporting Information

Figure S1 Representation of the brain parcellation conducted in

the present analysis. A) Parcellation of the whole brain into 343

ROIs. B) Parcellation of the right caudate.

(TIF)

Figure S2 The z-degree in the cuneus, calcarine and posterior

cingulate cortex as a function of the sparsity for ROIs where we

observed significant group effects comparing controls (blue circles)

and PD patients (red squares). Critically, the reported effect does

not depend on the sparsity.

(TIF)

Figure S3 Between group effects in degree centrality. Voxel-

level (cluster defining threshold p= 0.005; cluster size threshold

k.65; cluster wise significance p= 0.05 uncorrected) and ROI-

level data (blue areas; considering only nodes in modules 4 and 6)

are presented. A) Regions with a larger degree in healthy controls

compared to patients. B) Regions with a larger degree for PD

patients compared to controls.

(TIF)

Table S1 Brain regions showing a high degree centrality (control

group; t.6.0). MNI-coordinates, t-scores and anatomical regions

of local maxima.

(DOCX)

Table S2 Nodes in the visual (module 4) and sensorimotor

network (module 6) showing the strongest between group effects in

degree centrality.

(DOCX)

Table S3 Group differences in degree centrality (voxel degree

analysis; uncorrected).

(DOCX)
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