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Abstract

Background: Individuals at ultra-high risk (UHR) for psychosis have self-disturbances and deficits in social cognition

and functioning. Midline default network areas, including the medial prefrontal cortex and posterior cingulate

cortex, are implicated in self-referential and social cognitive tasks. Thus, the neural substrates within the default

mode network (DMN) have the potential to mediate self-referential and social cognitive information processing in

UHR subjects.

Methods: This study utilized functional magnetic resonance imaging (fMRI) to investigate resting-state DMN and

task-related network (TRN) functional connectivity in 19 UHR subjects and 20 matched healthy controls. The

bilateral posterior cingulate cortex was selected as a seed region, and the intrinsic organization for all subjects was

reconstructed on the basis of fMRI time series correlation.

Results: Default mode areas included the posterior/anterior cingulate cortices, the medial prefrontal cortex, the

lateral parietal cortex, and the inferior temporal region. Task-related network areas included the dorsolateral

prefrontal cortex, supplementary motor area, the inferior parietal lobule, and middle temporal cortex. Compared to

healthy controls, UHR subjects exhibit hyperconnectivity within the default network regions and reduced anti-

correlations (or negative correlations nearer to zero) between the posterior cingulate cortex and task-related areas.

Conclusions: These findings suggest that abnormal resting-state network activity may be related with the clinical

features of UHR subjects. Neurodevelopmental and anatomical alterations of cortical midline structure might

underlie altered intrinsic networks in UHR subjects.

Background
The ‘default mode’ is a term first coined by Raichle et al

[1] to describe resting-state brain function and may be

defined as a baseline condition of brain activity. The

default mode network (DMN) refers to a set of func-

tionally and anatomically organized neural regions that

are active during a behavioral resting state and deacti-

vated or suppressed during task performance [1,2]. The

DMN most commonly includes the medial prefrontal

cortex (mPFC) extending to ventral anterior cingulate

cortex (ACC), the posterior cingulate cortex (PCC)

extending to the precuneus (Pcu), and the lateral parie-

tal cortex (LPC) [1]. Midline structures within the DMN

have been implicated in self-referential cognitive and

emotional tasks [3,4] as well as spontaneous thought

processes known as mind wandering [5]. Self-referential

processing mediated by the so-called cortical midline

structures (CMS) is assumed to be the core of what is

referred to as ‘the self’ [6,7]. In contrast, lateral neocorti-

cal networks such as the dorsolateral prefrontal cortex

(DLPFC) are active during tasks that demand attention

and working memory [8,9]. Thus, these networks may

be referred to, respectively, as ‘task-negative’ and ‘task-

positive’ networks, which are negatively correlated or

anti-correlated [8].

The ability to understand another individual’s mental

state, called mentalizing or social cognition [10], is also

an important aspect of resting-state brain function

[11,12]. Human beings have a predisposition to engage

in self-referential thought or social cognition, and the

inclination to engage in such activity at rest (when not

performing a task) may be mediated by the default
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system of the brain; the DMN [13]. Certain regions

within the medial frontal lobe, including the ACC and

the lateral parietal lobule, have been shown to be related

to social cognition [14,15]. Functional imaging studies

consistently identify increases in medial prefrontal corti-

cal activity during social cognition tasks and have sug-

gested that among such regions, the mPFC plays a

predominant role in social cognition [16,17].

The social brain hypothesis [18,19] postulates that

schizophrenia is a disorder of functional and structural

connectivity within areas thought to regulate social cog-

nition, such as the fronto-temporal and fronto-parietal

cortical networks. Functional disintegration of these net-

works in patients with schizophrenia has been observed

during performance of several types of cognitive tasks

[20-22]. In addition, patients with schizophrenia consis-

tently show evidence of abnormal resting-state func-

tional connectivity [23-26], task-induced deactivation of

CMS, and anti-correlation between DMN and task-

related network (TRN) areas [25-27] when compared

with healthy controls.

Over the last decade, the pre-onset, or prodromal,

phase of schizophrenia has attracted considerable atten-

tion among researchers. Youths who are considered to

be putatively prodromal have been identified using

established criteria [28,29], and research on the charac-

teristics of individuals at ultra-high risk (UHR) for psy-

chosis has been conducted by several high-risk clinics.

Neuroimaging studies have revealed that prior to the

onset of psychosis, UHR youths already have brain

abnormalities similar to those present in patients with

schizophrenia [30-35]. These UHR youths also exhibit

wide-ranging neuropsychological deficits comparable to

those in patients with schizophrenia, although to a lesser

degree [36,37]. These deficits include impaired social

functioning and related problems with social skills

[38-40], which are significant predictors of psychosis

[41]. Recent studies from our group found that UHR

individuals perform significantly worse during theory of

mind (ToM) tasks, which measure the ability to concep-

tualize the mental state, beliefs, and intentions of other

individuals [42]. Another fundamental feature of the

prodromal phase of schizophrenia is self-disturbance

[43,44], which is considered to be a psychopathological

marker of psychotic vulnerability [45].

Therefore, the functionality of the DMN in UHR sub-

jects is of primary interest, as it holds the potential to

reveal any abnormalities in the activity of neural sub-

strates regulating self-referential and social cognitive

processing. It is possible that alterations in DMN func-

tion contribute to social cognitive deficits, such as

diminished ToM capabilities, and to social dysfunction,

such as social withdrawal and impairment of life-role

functioning. However, whether UHR subjects exhibit

normal connectivity in the default network remains

unknown. Thus, this study investigated DMN function

in two carefully matched groups of UHR subjects and

healthy controls. Because UHR subjects show impair-

ments in social cognition and self-referential processing

regulated by the DMN as well as in neurocognitive abil-

ities moderated by the TRN, it is hypothesized that

DMN and/or TRN functional connectivity is altered in

UHR subjects compared with healthy controls.

Methods
Participants

A total of 23 subjects at UHR for psychosis and 39

healthy volunteers underwent a resting-state functional

magnetic resonance imaging (fMRI) scan. Four UHR

subjects were excluded after MRI scanning; one with-

drew consent, another was assessed as having transi-

tioned to psychosis prior to scanning, the third was

scanned in an open-eye state, and the fourth showed

excessive head motion. The remaining 19 UHR subjects

fulfilled the following diagnostic criteria for at least one

of three UHR groups according to the Comprehensive

Assessment of At-Risk Mental States (CAARMS) instru-

ment [29]: (1) attenuated psychosis group (n = 17), (2)

brief limited intermittent psychotic symptoms (n = 0),

(3) vulnerability group (n = 5). Three subjects fulfilled

the criteria for groups (1) and (3) concurrently. From

among the 38 healthy volunteers (one was excluded as

scanned in an open-eye state), 20 age-and gender-

matched subjects were selected for between-group

comparisons.

UHR subjects were recruited from the Seoul Youth

Clinic (for detailed recruitment procedure and clinical

assessments, see Chung et al [42] and Shin et al [35]).

Seven subjects reported a family history of psychotic

disorders; three had one first-degree relative with schi-

zophrenia. Five UHR subjects were taking one or two

psychotropic medications at the time of scanning,

including anxiolytics (n = 4) and atypical antipsychotics

(n = 3). The mean prodromal period for the 19 UHR

subjects was 2.0 years (± 1.9), and three subjects have

since converted to psychosis during follow-up monitor-

ing with a mean of 83.7 days (± 53.9) after fMRI scan-

ning. The healthy controls were recruited from an

internet advertisement and screened using the Struc-

tured Clinical Interview for DSM-IV, non-patient edition

[46]. All reported no personal or familial (i.e., first-to

third-degree biological relatives) history of psychiatric

disorders.

Participants were excluded if they had any lifetime

diagnosis of substance abuse or dependence, neurologi-

cal disease or brain injury, evidence of significant medi-

cal illness, or IQ less than 70. Several subjects had

participated in previous studies from our group (one
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UHR subject and one control participated in Chung

et al [42], two UHR subjects and five controls in Shin

et al [35]). All participants provided written informed

consent, including parental consent for those younger

than 18 years of age. This study was approved by the

Institutional Review Board at Seoul National University

Hospital, and all procedures were performed in accor-

dance with the current version of the Declaration of

Helsinki.

Image acquisition

Functional images were acquired using a 1.5 T MAG-

NETOM Avanto scanner (Siemens, Erlangen, Germany).

Whole brain functional scans during a behavioral resting

state were acquired in 25 contiguous axial slices

approximately parallel to the anterior-posterior commis-

sure plane with interleaved multi-slice echo-planar ima-

ging according to the following parameters: TR = 2.34 s,

TE = 52 ms, field of view = 22 cm, flip angle = 90°,

voxel size = 3.44 × 3.44 × 5 mm, slice thickness = 5

mm, no inter-slice gap. For each participant, a total of

120 volumes during 4.68 min were acquired. fMRI scan-

ning was carried out in darkness, and the participants

were explicitly instructed to keep their eyes closed,

relax, and move as little as possible. T1-weighted high-

resolution structural images using a magnetization-pre-

pared rapid acquisition gradient echo (MPRAGE)

sequence were acquired in 176 contiguous axial slices

for co-registration and normalization of the echo-planar

images to the Montreal Neurologic Institute (MNI) tem-

plate. Imaging parameters for the structural images were

as follows: TR = 1.16 s, TE = 4.76 ms, field of view 23

cm, flip angle 15°, voxel size = 0.45 × 0.45 × 0.90 mm,

slice thickness = 0.9 mm, no inter-slice gap.

An average gap of 8.7 days (± 10.0) occurred between

clinical evaluation and fMRI scanning for all participants.

fMRI preprocessing

Functional imaging analysis was performed using SPM5

software (Wellcome Dept. of Imaging Neuroscience,

London, UK: http://www.fil.ion.ucl.ac.uk/spm) and in-

house software running under the MATLAB environ-

ment (Mathworks, Inc.). For each subject, the first four

images were discarded to eliminate the non-equilibrium

effects of magnetization. The remaining functional

images were corrected for differences in slice acquisition

timing, which was followed by realignment to the mid-

dle image in the initial scan to correct for inter-scan

movement and to remove signals correlated with head

motion. Spatial normalization into the standard MNI

template was performed and then smoothed using a

Gaussian kernel of 6 mm full-width half-maximum to

account for residual inter-subject differences.

fMRI analysis

First-order analysis

The intrinsic organization (i.e., functional connectivity

map) was separately reconstructed in the UHR subjects

and healthy controls using the PCC as a seed region [8]

and then analyzing the functional connectivity pattern

during rest. As a major research interest with regard to

resting-state fMRI is in slow-changing temporal activa-

tion, the fMRI data were temporally band-pass filtered

(0.01-0.08Hz) [25,47] using finite impulse response filter

to control for low-frequency drift and high-frequency

noise. Generally, fMRI time series suffer from spurious

correlations induced by partial volume effects of white

matter, cerebrospinal fluid, and whole-brain functional

activations. To account for this, multiple nuisance regres-

sors [48] were generated from the segmentation results of

T1 MPRAGE image using SPM5 software. A threshold

value of 0.8 was applied for these segmentation maps,

and “pure” white matter and cerebrospinal fluid masks

that were less contaminated by other kinds of tissue were

then extracted. For the generation of a whole-brain mask,

a skull-stripping module called Brain Extraction tool in

MRIcro software http://www.sph.sc.edu/comd/rorden/

mricro.html was used. Movement nuisance regressors

were also estimated using the realignment parameters

provided by SPM5 software. Subsequently, the nuisance

regressors were fitted using the least squares method for

the fMRI time series in each voxel and were then

regressed out using equation 1.
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Here, y is the observed time series of fMRI, H is the

estimated nuisance regressors (y_csf, y_wm, and y_wb

denote the average fMRI time series of CSF, skeletal

white matter, and whole brain, respectively. tx, ty, tz

and rx, ry, rz are translational and rotational movement

regressors, respectively), μ is the mixture (coefficients)

matrix of the nuisance regressors, and ε is the residual

time series that was extracted as the true fMRI activa-

tion free from nuisance confounds. Assuming normality

of the residual signal, a least square estimator ̂ of μ

was used in order to estimate ̂ , the estimator of true

fMRI activation ε that has no nuisance confounds.

The PCC, utilized as a seed region, was labeled using

a Brodmann area (BA) atlas available in MRIcro soft-

ware, which refers to the bilateral posterior cingulate as

BA 23. The blood oxygen level-dependent (BOLD) time

series of the voxels within this seed region were aver-

aged to generate the reference time series. A correlation
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map was produced by computing the correlation coeffi-

cients between the reference time series and the time

series from all other brain voxels. The resulting

rho-maps were converted to z-values using a Fisher’s

rho-to-z transform to improve normality. Statistical

maps of the intrinsic networks for UHR subjects and

healthy controls were created by entering the single-sub-

ject intrinsic network component into a voxel-wise one-

sample t-test using a criterion of p < 0.001 (uncorrected

for multiple comparisons) for each group. All results

were depicted on the surface, which was extracted by

FreeSurfer software using a canonical brain provided by

MRIcro software. An image-processing technique

termed maximum intensity projection was used to

visualize the most significant voxel at each location

between two brain surfaces (i.e., the white and pial sur-

faces, which are the boundaries between the white and

gray matter and between the gray matter and cerebrosp-

inal fluid, respectively).

Second-order analysis

The intrinsic networks for each subject from the first-

level analysis were entered into a second-level random

effects analysis using two-sample t-tests. Between-group

comparisons of two intrinsic networks were restricted to

the regions belonging to the intrinsic networks of con-

trol group with a threshold at p < 0.001 (uncorrected)

and a cluster size greater than 50 voxels.

Results
Demographic and clinical characteristics

Demographic and clinical characteristics for each group are

provided in Table 1. All participants were right-handed,

and the two groups were statistically similar in terms of

parental socioeconomic status and IQ. However, compared

to UHR subjects, healthy controls had a significantly higher

number of educational years (U = 84.00, p = 0.002**) and

scored significantly higher in the Global Assessment of

Functioning scale (GAF; U = 12.50, p < 0.001**) and the

Social Functioning Scale (SFS; t = -4.80, p < 0.001**).

Functional connectivity of the DMN and TRN

Default mode activity was observed in brain regions pre-

viously defined as within the DMN (Figures 1 and 2) for

both groups including the ACC, mPFC, Pcu, LPC, and

the inferior temporal region. Although the default mode

spatial maps look similar for UHR subjects and healthy

controls, significant differences were observed in specific

subregions of these areas (Figure 3). A two-sample t-test

revealed that UHR subjects had significantly greater

positive connectivity than did controls between the PCC

seed region and other areas in the bilateral ACC, mPFC,

Pcu, and LPC (cluster-level p < 0.001) (see Figure 4 for

details). Healthy controls did not show greater positive

connectivity than UHR subjects in any brain area.

Task-related or anti-correlated networks (Figures 1

and 2) and between-group differences (Figure 3) are also

reported. The TRN areas are similar to previous reports

[23,25] and include the DLPFC, supplementary motor

area, the inferior parietal lobule, and middle temporal

cortex. For the between-group comparison, the bilateral

DLPFC, the inferior parietal lobule, middle temporal

cortex, and left supplementary motor area are signifi-

cantly more (i.e., farther from zero) anti-correlated with

the PCC in controls than in UHR subjects (cluster-level

p < 0.001) (see Figure 5 for details). Healthy controls

did not exhibit a significantly reduced anti-correlation

compared to UHR subjects.

Discussion
To our knowledge, this is the first study directly investi-

gating resting-state functional connectivity of UHR sub-

jects versus healthy controls. During a resting state,

UHR subjects exhibited hyperconnectivity within DMN

regions as well as reduced anti-correlations between the

Table 1 Demographic and clinical characteristics of

subjects

Variables UHR subjects
(n = 19)

Healthy
controls
(n = 20)

Analysis

Mean SD Mean SD T/U/X 2 p

Male/Females 11/8 11/9 0.03a 0.86

Age (yrs) 20.8 4.1 21.7 2.1 -0.77b 0.45

Handedness (R/L)e 19/0 20/0

Parental SES 3.0 1.2 3.2 1.2 165.00c 0.63

Educational years 12.2 2.0 13.9 1.3 84.00c 0.002**

IQf 109.2 17.7 106.4 12.7 176.50c 0.70

GAF 52.3 11.6 89.8 2.0 12.50c < 0.001**

SFSg 100.39 10.21 115.09 6.76 -4.80d < 0.001**

PANSS 57.4 14.6

BPRS 43.5 8.6

SAPS 11.6 8.4

SANS 28.4 16.5

CAARMSh 46.5 18.8

aPearson’s chi-square test; bWelch’s t test; cMann-Whitney U test; dStudent’s t

test.
eAssessed using Annett hand preference questionnaire [62].
fEstimated by Korean-Wechsler Adult Intelligence Scale-Revised (K-WAIS-R)

[63].
gAverage scores of the seven subscales, each of which was standardized and

normalized with a mean of 100 and a SD of 15.
hScored by adding the intensity rating scores.

Data were not available for some participants in parental SES (control n = 1)

and SFS (control n = 5).

**p < 0.01

UHR: ultra-high risk; SES: Hollingshead socioeconomic status (highest = 1,

lowest = 5); IQ: intelligence quotient; GAF: Global Assessment of Functioning

[64]; SFS: Social Functioning Scale [65]; PANSS: Positive and Negative

Syndrome Scale [66]; BPRS: Brief Psychiatric Rating Scale (modified 24-item

version, rating items 1-7) [67]; SAPS: Scale for the Assessment of Positive

Symptoms [68]; SANS: Scale for the Assessment of Negative Symptoms [69];

CAARMS: Comprehensive Assessment of At-Risk Mental States.
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PCC and TRN regions compared with healthy

volunteers.

Despite inconsistent findings with respect to func-

tional connectivity in resting-state networks of patients

with schizophrenia, the current results agree with those

of Whitfield-Gabrieli et al [26] and Zhou et al [25]. In

these studies, the majority of participants were also in

their early twenties and in the early phase of schizophre-

nia with acute psychotic symptoms. Chronic schizophre-

nia subjects with mild psychotic symptoms (mean

duration ~10 years) exhibited reduced connectivity

between areas of the default network [23]. Together,

these results demonstrate that the DMN is hypercon-

nective during the prodromal and early psychotic stages

of the disease, in which subjective discomfort and psy-

chotic symptoms manifest and prevail, and that the

DMN areas become progressively less synchronized, as

aging and illness is progressing. A recent fMRI study

utilizing the n-back task found that patients with

chronic schizophrenia show reduced activation in the

right DLPFC and other frontal areas, but greater activa-

tion in the ACC and mPFC compared with controls

[49]. This finding demonstrates a failure to effectively

deactivate the ACC and mPFC, and implies that those

with schizophrenia are inefficient in their resource allo-

cation when moving away from internal mentation to

perform difficult tasks in the external world [49,50].

However, greater task-induced deactivation in the mPFC

in schizophrenia subjects was also reported, and the

magnitude of this change was associated with task per-

formance [24,27]. Thus, the hyperconnectivity of the

DMN and the reduced anti-correlation between the

DMN and TRN may be involved in the impaired neuro-

cognitive function of UHR subjects [36,37]. An inability to

Figure 1 Default mode and task-related maps for ultra-high risk subjects. On a green background, the default mode network is

highlighted in warm colors (red and yellow) and the task-related network is highlighted in cold colors (blue and light blue) depending on the

p-value of one sample t-test.
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synchronize the modulation between two anti-correlated

areas may also mediate these impairments.

In social phobia patients, a significantly lower deacti-

vation in the posterior cingulate regions and Pcu was

found during a face perception task compared with the

resting condition [51]. This suggests that the failure of

social phobia patients to deactivate the DMN plays an

important role in their persistent fear of social situations

and their self-focused attention. Social cognitive deficits,

social anxiety (heighted sensitivity to interpersonal

cues), and other social impairments are also common in

UHR individuals. However, the present study focused

solely on functional connectivity in midline default

areas, and functional activation during ToM tasks was

not measured. Future fMRI studies may be considered

combining the resting-state and ToM tasks to investi-

gate the relationship between altered midline default

mode connectivity and impaired social cognition in

UHR subjects.

The presence of structural abnormalities in the mPFC

and ACC are well established in schizophrenia [52]. Simi-

larly, UHR individuals also exhibit neurodevelopmental

anomalies in midline brain structures such as the ACC

and cavum septi pellucid [30,31]. In addition, compared

to healthy controls, these subjects exhibit significant cor-

tical thinning in the prefrontal cortex, ACC, and LPC

[53] as well as reduced gray-matter volume of the PCC

and Pcu [32]. These structural and functional abnormal-

ities of the default mode-related areas may be significant

in the altered functional connectivity of the default mode

in UHR subjects in the current study.

Basic self-disturbances, or anomalies of self-experience,

are a prominent feature during the prodromal stage of

psychosis, and it is suspected this is the core disturbance

Figure 2 Default mode and task-related maps for healthy controls. The color codes for default mode and task-related networks are the

same as for Figure 1.
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in the emergence of schizophrenia-spectrum disorders

[44,54,55]. In addition, reality distortion, or the impair-

ment of socioemotional information processing, was

associated with medial prefrontal cortical hyperactivity

during viewing of aversive pictures in schizophrenia or

schizoaffective patients [56]. From this perspective,

hyperconnectivity of midline default areas in UHR sub-

jects seems to be related to the so-called prodromal self-

disturbance. However, further studies are necessary to

apply a cognitive paradigm to subjective self-disturbance

in UHR subjects to validate our assumption.

This study had several limitations. First, the interpre-

tation of observed anti-correlations in resting state

BOLD data is not straightforward [8]. Removal of spon-

taneous BOLD fluctuations common to the whole brain

(the so-called global signal) mathematically mandates

negative correlations, raising questions regarding the

appropriateness of global signal regression and the inter-

pretation of emerged anti-correlated networks [57].

However, anti-correlated networks were reported to be

observed in the resting state without global regression

[58], so cannot be fully explained as an artifact of global

signal regression [57]. Although removal of the global

signal facilitates the observation of true physiological

relationships, great caution is required when comparing

differences in anti-correlations between different clinical

populations. Second, various conditions of internal men-

tation can influence resting-state brain activity, but the

thoughts and feelings of subjects during the fMRI scan-

ning period were not evaluated. Third, task paradigms

including social cognition, self-reference, and subjective

scales were not applied, limiting the analysis of the

Figure 3 Differences between UHR subjects and healthy controls in the resting state functional networks. Default mode areas with

increased connectivity in UHR subjects versus controls are shown in warm colors, and task-related areas with reduced anti-correlation in UHR

subjects versus controls are shown in cold colors at the threshold of p < 0.001 (uncorrected) and cluster size greater than 50 voxels. UHR: ultra-

high risk.
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findings. Fourth, the reported conversion-to-psychosis

rate (16%) is much lower than that of UHR cohorts

(over 40%) tested in initial studies [59]. UHR status is

not equivalent to being in the prodromal stage of schi-

zophrenia or psychosis, so caution is needed in interpre-

tation of these results. Finally, it is possible that

medication could have influenced resting-state connec-

tivity. However, 15 of 20 UHR subjects were drug-free,

and the majority of previous studies investigating rest-

ing-state networks were conducted on medicated

patients.

Several recent neuroimaging studies comparing UHR

subjects who converted to psychosis (converters) with

those who did not (non-converters) found that conver-

ters had less regional gray matter at baseline and greater

gray matter reduction in longitudinal follow-ups than

non-converters had [32,60,61]. Baseline ACC morpholo-

gic differences between converters and non-converters

also predicted time-to-psychosis onset independent of

symptomatology [33]. Similar to these comparison

studies, longitudinal follow-up investigations of the cur-

rent resting-state fMRI results may reveal differences

within resting-state networks between converters and

non-converters. This may provide valuable information

about the properties of resting-state networks in terms

of illness progression.

Conclusions
The current findings demonstrate significant alterations

(i.e., functional pathology) of resting-state networks in

UHR subjects and suggest that hyperconnectivity of the

DMN and reduced anti-correlation between the DMN

and TRN may play an important role in the clinical fea-

tures of these subjects. Regions previously identified to

be abnormal in UHR subjects also showed clear

abnormalities in the DMN. Further resting-state fMRI

studies that include social cognition tasks and subjective

rating scales are necessary to further validate the inter-

pretation of the present results.
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