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Abstract: Recent evidence suggests that problems in information processing within neural networks
may underlie depressive disease. In this study, we investigated whether sleep functional brain net-
works are abnormally organized during a major depressive episode (MDE). We characterized spatial
patterns of functional connectivity by computing the ‘‘synchronization likelihood’’ (SL) of 19 sleep EEG
channels in 11 acutely depressed patients [42 (20–51) years] and 14 healthy controls [32.9 (27–42) years].
To test whether disrupting an optimal pattern [‘‘small-world network’’ (SWN)] of functional brain con-
nectivity underlies MDE, graph theoretical measures were then applied to the resulting synchroniza-
tion matrices, and a clustering coefficient (C, measure of local connectedness) and a shortest path
length (L, measure of overall network integration) were determined. In the depressed group, the mean
SL was lower in the delta, theta and sigma frequency bands. Acutely depressed patients showed a sig-
nificantly lower path length in the theta and delta frequency bands, whereas the cluster coefficient
showed no significant changes. The present study provides further support that sleep functional brain
networks exhibit ‘‘small-world’’ properties. Sleep neuronal functional networks in depressed patients
are characterized by a functional reorganization with a lower mean level of global synchronization and
loss of SWN characteristics. These results argue for considering an MDE as a problem of neuronal
network organization and a problem of information processing. Hum Brain Mapp 30:2207–2219,
2009. VVC 2008 Wiley-Liss, Inc.
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INTRODUCTION

Neurons form a dense network of connectivity spanning
the entire thalamocortical system in the cerebral cortex
[Sporns, 2002]. These brain networks are not random, but
form highly specific pattern [Sporns, 2002]. A predominant
feature of brain networks is that neurons tend to connect
with other neurons in local groups. Because of the close
relationship between neural connectivity and neural activ-
ity throughout the brain, it is important to consider struc-
tural connection patterns within the context of the specific
patterns of dynamic (‘‘functional’’) interactions that they
support [Sporns, 2002]. Recent breakthroughs in modern
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Bruxelles (U.L.B.), Route de Lennik, 808, 1070 Brussels, Belgium.
E-mail: samuel.leistedt@ulb.ac.be

Received for publication 1 May 2008; Revised 3 July 2008;
Accepted 30 July 2008

DOI: 10.1002/hbm.20662
Published online 20 October 2008 in Wiley InterScience (www.
interscience.wiley.com).

VVC 2008 Wiley-Liss, Inc.

r Human Brain Mapping 30:2207–2219 (2009) r



network theory now allow a better characterization and
understanding of complex networks that is also relevant
for understanding brain networks.
An important concept is that of a ‘‘small-world network’’

(SWN), which is a type of mathematical graph in which
most nodes are not neighbors of one another (the network
is sparsely connected), but most nodes can be reached
from every other node by a small number of steps [Watts
and Strogatz, 1998]. Social networks, spatial games, excita-
ble media, the connectivity of Internet connectivity, and
gene networks exhibit SWN characteristics [Watts and
Strogatz, 1998].
There are empirical and theoretical a priori reasons why

SWNs present an attractive model for brain network connec-
tivity [Watts and Strogatz, 1998]: (i) The brain is a complex
network on multiple spatial and time scales [Watts and Stro-
gatz, 1998]; (ii) The brain supports both segregated and dis-
tributed information processing; and (iii) The brain likely
evolved to maximize efficiency and/or minimize the costs of
information processing. Network architecture is regarded as
a key substrate for sensorimotor and cognitive processing,
which may be localized discretely in specialized regions or
represented by coherent oscillations in large-scale distributed
systems. Small-world topology comprises both high cluster-
ing (compatible with segregated or modular processing) and
short path length (compatible with distributed or integrated
processing), and is associated with high global and local effi-
ciency of parallel information processing, sparse connectivity
between nodes, and low wiring costs. SWNs can operate
dynamically in a critical state, facilitating rapid adaptive
reconfiguration of neuronal assemblies in support of chang-
ing cognitive states [Watts and Strogatz, 1998].
In this study, our goal is to use computational models to

explore how depressive disease behaviors relate to the
general synchronization and connectivity of the underlying
neuronal network during sleep. We propose to determine
the patterns of neuronal functional connectivity during

sleep using two methods that allow for the study of neuro-
nal network behavior: the synchronization likelihood (SL)
and the graph theory analysis. We hypothesized that acute
depressive status will interfere with the optimal architec-
ture of brain functional networks and could show func-
tional connectivity reorganization as a ‘‘disconnection
state’’ of the neural network. In this way, we want to con-
firm the fact that depression can be primarily viewed as
an information processing problem in the brain.

MATERIALS AND METHODS

Participants: Patient and Control Selection

The present study included 25 subjects matched on age
and education level: 14 healthy controls and 11 unmedicated
inpatients with acute major depression according to DSM-
IV-TR criteria [Amercian Psychiatric Association, 2000]. De-
scriptive clinical features of the acutely depressed patients
and healthy control subjects are presented in Table I.
Healthy controls were recruited from the community by

advertisements. On the basis of an extensive clinical inter-
view, they were determined to be free of DSM-IV-TR axis I
or evident axis II diagnoses and they had no family history
of major psychiatric disorders. They reported a regular
sleep–wake schedule and no current or past sleep disorders.
Patients were recruited from both the Sleep Laboratory

and an inpatient psychiatry ward at the Erasme Academic
Hospital, where they were hospitalized for both MDD and
sleep disturbances. Disturbances included difficulty falling
asleep, difficulty staying asleep, and early morning awak-
ening. Sleep self-reports were obtained by the Pittsburgh
Sleep Quality Index (PSQI). The PSQI (range 0–21, higher
values indicating greater sleep disturbances) is a self-rated
questionnaire that assesses sleep quality and disturbances
during the previous 1-month time interval [Buysse et al.,
1989]. The 19 self-rated questions assess a wide variety of

TABLE I. Clinical and demographic measures

Healthy controls Depressed patients
(n 5 14) (n 5 11) P value

Demographic measures
Sex, F/M 4/14n 2/11n 0.17
Age, y* 32.9 (27–42) 42 (20–51) 0.20
Marital status, No (%)

Married 4 (28.57) 4 (36.36) NA
Single-never married 1 (7.14) 1 (9.09) NA
Divorced 5 (35.71) 4 (36.36) NA
Cohabiting 4 (28.57) 2 (18.18) NA

Employment status, No (%)
Manager 7 (50) 4 (36.36) NA
Employed 4 (28.57) 4 (36.36) NA
Workman 3 (21.43) 3 (27.27) NA

Clinical measures*
24-Item Hamilton Depression score 0 (0–2) 27 (17–56) <0.0001
Pittsburgh Sleep Quality Index 1.5 (1–8) 11 (1–20) <0.0001

NA means ‘‘Non Applicable.’’
*Values are indicated as median with maximum and minimum range.
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factors relating to sleep quality, including estimates of
sleep duration and latency, and the frequency and severity
of specific sleep-related problems. A global PSQI score of
�5 was found to correctly discriminate between ‘‘good’’
and ‘‘poor’’ sleepers [Buysse et al., 1989]. Patients were ini-
tially evaluated for a MDD by a psychiatrist using DSM-
IV-TR criteria. Depressive symptom severity was assessed
with the 24-item Hamilton Rating Scale for Depression
(HAM-D). Patients were included in the present study if
they fulfilled the following five criteria: (1) they suffered
from major depression (unipolar without psychotic fea-
tures); (2) they were free of all prescription and nonpre-
scription psychotropic medications; (3) they had a HAM-D
score of 20 or greater [Hamilton, 1960]; (4) they had a
PSQI of five or greater; and (5) they did not suffer from
untreated or poorly controlled conditions that may have
confounded the sleep EEG results (e.g., Cushing’s disease),
or require treatment with agents that may affect results (i.e.,
b-blockers or corticosteroids). Both controls and patients
were medically screened by way of physical examination
(performed by an internist), chest X-ray, electrocardiogra-
phy, electroencephalography, and laboratory tests such as
liver and kidney function tests, hematology profile, thyroid
function tests, and urinalysis. They did not show cardiovas-
cular or endocrine abnormalities, or other systemic illness.
Subjects with a BMI greater than 29 were excluded. We also
excluded controls or patients who showed primary sleep
disorders such as apnea–hypopnea syndrome, periodic leg
movement syndrome, or parasomnia.
Before signing an informed consent, each subject received

a detailed description and demonstration of the procedure
involved in the study, and was deemed capable.
The study protocol was approved by the local ethics

committee of the Erasme Academic Hospital-Free Univer-
sity of Brussels.

EEG Recordings and Experimental Conditions

EEG sleep studies were performed in the Sleep Labora-
tory of the Erasme Academic Hospital. In the patient
group, sleep studies were conducted after a psychotropic
medication-free evaluation period of at least 2 weeks. Poly-
somnographic recordings were obtained during three con-
secutive nights, of which only the latter two were exam-
ined because of the well-recognized ‘‘first night effect’’ on
sleep measures [Agnew et al., 1966]. For the purposes of
this analysis, one ‘‘artifact-free night’’ was chosen from the
latter two nights. If both nights showed low levels of arti-
fact, then one was randomly selected. Artifacts were
detected by visual observation using the software Endy-
mion (Endymion 1993–2008, Sleep laboratory, Erasme Hos-
pital), which was developed in our laboratory for data
analysis.
Patients and controls were instructed not to drink alco-

hol or coffee or use over-the-counter sleep aids during the
same time frame. Subjects went to bed and got up at their
usual times. During bedtime hours, controls and patients

were supine with lights off. They awoke spontaneously in
the morning, and daytime naps were strictly prohibited.
Both controls and patients had a minimum of seven con-
secutive hours of recorded time in bed. Polysomnography
was recorded with a 19-channel digital polygraph (Ali-
ce5TM, Respironics, Murrysville, PA). The 19 electroence-
phalograms were recorded, according to the international
10–20 standard system, with a contralateral reference to
the A1 or A2 mastoid derivation. Simultaneously, two elec-
trooculograms (EOG), one submental electromyogram
(EMG), and electrocardiographic activity (ECG) were
recorded. Oxyhemoglobin saturation was measured using
pulse-oximetry (Masimo MS-7, Irvine CA), oro-nasal air-
flow was detected with thermistors (InfinityTM, Sleepmate
Technologies, Midlothian, VA), thoracic and abdominal re-
spiratory movements were recorded with piezoelectric sen-
sors (Resp-EZTM, Sleepmate Technologies), and leg move-
ments were detected with ankle piezoelectric movement
strain gauges (Moving ImagesTM, Sleepmate Technologies).
All channels were sampled at 2,000 Hz—16 bits. For subse-
quent analyses, the EEG was stored at 200 Hz, the EOG at
100 Hz, the EMG at 100 Hz, and the ECG at 500 Hz. The
Alice 5 device included adequate analog filters to eliminate
low frequency artifacts, drifts, offsets, and aliasing. Also,
adequate antialiasing filters were applied before down
sampling. For example, a Bessel filter (Order 3) is applied
to the EEG before digital sampling, with a bandpass from
0.32 to 106 Hz (23 dB). To reduce the frequency to 200
Hz, two filters are applied: a least-squared FIR (Order 20)
low-pass filter at 160 Hz followed by a Kaiser Window
FIR (Order 88) low-pass filter at 95 Hz. The last step
involves a 50-Hz notch filter (Order 30) with stop band at
43 and 57 Hz. The data were exported to the EDF format
using Alice Sleepware (Respironics). All subsequent analy-
ses, such as stage determination and spectrum calculation,
were carried out on the sampled data, avoiding synchroni-
zation problems between the stages and the other calcula-
tions. Using the Endymion program, each 20-s epoch
was visually scored according to standard criteria
[Rechtschaffen and Kales, 1968].

The Synchronization Likelihood: Theory

and Computation

The SL, introduced by Stam and van Dijk [2002], is a
measure of the statistical interdependencies between a
time series (such as an EEG channel) and one or more
other time series within a dynamical system. This measure
has already been used in several clinical neurosciences
studies [Stam, 2005; Stam and Reijneveld, 2007]. For a
detailed technical description of the method and its prop-
erties, we refer to Stam and van Dijk [2002]. Here we
explain the general principles.
The SL is sensitive to linear as well as nonlinear interde-

pendencies and can be computed for each time sample,
making it suitable for tracking time-dependent changes in
the synchronization level. Hence, more accurate informa-
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tion is given about functional interactions in a dynamical
system [Stam, 2005; Stam and van Dijk, 2002]. The SL basic
principle is that each time series is divided into a series of
‘‘patterns,’’ which are searched for recurring patterns.
Here, a pattern can be thought of as a brief part of the
time series that contains at least one cycle of the character-
istic frequency. More technically, the brief patterns are vec-
tors constructed by time-delay embedding, using parame-
ter settings [as described in Montez et al., 2006]. The SL is
the chance that pattern recurrence in time series X coin-
cides with pattern recurrence in time series Y. The SL
takes on values between P ref (a parameter that was taken
as P ref 5 0.01 as in other SL studies), in the case of inde-
pendent time series and one in the case of fully synchron-
ized time series. The end result after computing SL for all
pairwise channels combinations, is a square N 3 N matrix
of size 19 (19 is the number of the EEG channels used in
this study), where each entry Nij contains the value of the
SL for channels i and j. We computed the average synchro-
nization by taking the mean of these values.

Structure of the Network and Connectivity:

Computing the Clustering Coefficient (C) and the

Characteristic Path Length (L)

An interesting approach to study the topographical char-
acteristics of both local and long distance functional con-
nectivity in complex networks is to apply a measure
derived from graph theory [Sporns, 2002; Strogatz, 2001;
Watts and Strogatz, 1998].
A graph is a basic representation of a network that is

essentially reduced to nodes (vertices) and connections
(edges) (see Fig. 1). Graphs are characterized by a cluster-
ing coefficient (C) and a characteristic path length (L),
among other measures. C is a measure of the local inter-
connectedness of the graph, whereas L is an indicator of
its overall connectedness. Watts and Strogatz have shown
that graphs with many local connections and a few ran-
dom long distance connections are characterized by a high
C and a short L. Such near-optimal networks are desig-
nated as ‘‘small-world’’ networks [Watts and Strogatz,
1998]. Since then, many types of real networks have been
shown to have small-world features [Strogatz, 2001]. Pat-
terns of anatomical connectivity in neuronal networks are
particularly characterized by high C and a small L [Watts
and Strogatz, 1998]. It has also been suggested that small
world-like network architecture may be optimal for syn-
chronizing neural activity between different brain regions
[Masuda and Aihara, 2004].
C and L were calculated following the methodology

described in the studies of Newman [2003], Bartolomei
et al. [2006], and Ponten et al. [2007]. The first step in
applying graph theoretical analysis to synchronization
matrices is to convert the N 3 N synchronization matrix
into a binary graph (N is the number of EEG channels). A
binary graph is a network that consists of elements (also
called ‘‘vertices’’) and undirected connections between ele-

ments (also called ‘‘edges’’). Edges between vertices either
exist or do not exist; they do not have graded values. The
synchronization matrix can be converted into a graph by
considering a threshold (T). If the SL between a pair of
channels i and j exceeds T, an edge is said to exist between
i and j, otherwise, no edge exists between i and j.
Once the synchronization matrix has been converted to

a binary, unweighted graph, the next step is to character-
ize the graph in terms of its C and L. A schematic explana-
tion of graphs, C, and L is given in Figure 1.

Figure 1.

Schematic explanation of a graph and graph theoretical mea-

sures. This figure is based upon Stam et al. [2007]. A graph con-

sists of elements or vertices, denoted by black dots. If two verti-

ces are connected a line is drawn between them. Such a connec-

tion is called an edge. The size of a graph is equal to the total

number of vertices. The degree K of a graph is the average num-

ber of edge per vertex. In a graph all vertices need to be con-

nected. The distance between two vertices is expressed by the

number of edges that have to be traveled to get from the Vertex

1 to another. As an example, the shortest path from vertex A

to vertex F has a length of three edges. The characteristic path

length of a graph is the mean of all shortest paths connecting all

pairs of vertices. L is a measure of how well connected a graph

is. The cluster coefficient C is a measure of the existence of local

densely connected clusters within a network. For example, to

compute the cluster coefficient for vertex A, we first determine

the other vertices to which it is directly connected. These neigh-

bors are vertices B, C, and D. Then we determine how many

edges exist in the set of neighbors. In this case, only B and C

are connected. Next, we determine how many edges could have

existed between the neighbors. In our example, this is three (B-

C, C-D, and B-D). The cluster coefficient of A is the ratio of

these two numbers: 1/3. The cluster coefficient can be deter-

mined for all vertices. This result is an average cluster coefficient

for the entire graph. Optimal networks are characterized by a

high C and a low L. Such networks are designated small-world

networks [Watt and Strogatz, 1998].
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To compute the C of a certain vertex, we first determine
to which other vertices it is directly connected; these other
vertices are called ‘‘neighbors.’’ The C is the ratio of all
existing edges between the neighbors and the maximum
possible number of edges between the neighbors. It ranges
between 0 and 1. This C is computed for all vertices of the
graph and then averaged, and it measures for the tendency
of network elements to form local clusters.
The characteristic L is the average shortest path that con-

nects any two vertices of the graph. The length of a path is
indicated by the number of edges it contains. The L is an
emergent property of the graph that indicates how well its
elements are integrated/interconnected.
Because C and L are computed as a function of T, the

results may be influenced by differences in the mean level
of synchronization between the two groups. The SL is
expected to be significantly lower for acutely depressed
patients than for controls. Therefore, depressed patient’s
graphs will have fewer edges than control subject’s graphs
for a given T value and this will influence the differences
in C and L between the two groups. To control for this
effect, we used an individual-adapted T such that we get a
number of connections per vertex K (which is the average
number of edges per vertex) for each individual graph
with the same K for all subjects and filter settings. In this
way, graphs studied in both groups are guaranteed to
have the same number of edges, so any remaining differ-
ences in C and L between the groups reflect only differen-
ces in graph organization.
The choice of K is somewhat arbitrary. We followed the

suggestion of Watts and Strogatz for the minimal K value
necessary for a network with size N (here 19 channels),
such that a random network generated from it will still be
guaranteed to be fully connected: N [dmt] K [dmt] Ln (N)
[Watts and Strogatz, 1998]. Here, K number greater than 3
fulfils these conditions. In our study we used K 5 5, with
which we obtained the most striking findings. K is fixed in
order to compare the topological structure of the networks
without any bias from differences in the mean SL [Ferri
et al., 2007]. By fixing K, all of the graphs have the same
number of vertices and edges; the only differences are in
the spatial arrangement (which are reflected by C and L)
[Bartolomei et al., 2006].
To avoid the problem of the disconnected graph, we

used an alternative approach based on the global efficiency
[Latora and Marchiori, 2001], where L is calculated as the
reciprocal of the average of the reciprocals. Infinite values
of L (when two edges are not connected) contribute noth-
ing to the sum [Newman, 2003]. For the clustering coeffi-
cient C of the graph, disconnected points are assigned a
value of 0.
Then, the values of C and L were compared to theoreti-

cal values of random networks generated following the
procedure described by Sporns and Zwi, which preserves
the degree distribution exactly [Sporns and Zwi, 2004]. For
a K value of 5, for each EEG, 50 random networks were
generated, and the mean C-s and L-s of all of these net-

works were calculated as a reference value for C and L.
The ratios C/C-s and L/L-s were considered. SWNs are
characterized by the simultaneous presence of values of
C/C-s values significantly greater than 1.5 and values of
L/L-s values around the value one [Micheloyannis et al.,
2006; Stam et al., 2007; Watts and Strogatz, 1998]. In the
randomization procedure, the degree distributions of the
original networks were preserved. The mean L/L-s ratio in
the different epochs was above 1, whereas the mean C/C-s
ratio was greater than 1.5.

EEG Signal Analysis

All EEG channels were down sampled to 200 Hz. Using
the Endymion program, all 20-s windows were visually
scored according to standard criteria [Rechtschaffen and
Kales, 1968]. For each of the three sleep stages [Stage 2,
SWS (Stages 3 and 4), and REM sleep], we randomly
selected 25 artifact-free (no eye blinks, slow eye move-
ments, excess muscle activity, electrocardiogram artifacts,
etc.) 20,48-s epochs. The number of epochs (25) was arbi-
trarily chosen to obtain a common quantum in order to
carry out our study despite the great disparity in the num-
ber of epochs during the different sleep stages.
EEG epochs were converted to ASCII files, resulting in

times series of 4,096 samples for further analysis. Digital,
zero-phase shift filtering of the EEG in three frequency
bands (delta: 1–4 Hz, theta: 4–8 Hz, and sigma: 12–16 Hz),
SL computation and the two graph theoretical measures
[cluster coefficient (C) and characteristic path length (L)]
were done off-line with the DIGEEGXP software written
by one of the authors [C.J. Stam]. Graph theoretical analy-
sis was based on the full 19 3 19 matrix of all possible
pairwise combinations of electrodes.

Statistical Analysis

Mann–Whitney nonparametric U-tests were used to
examine group (controls vs. depressed) differences in clini-
cal, demographic, and sleep measures as well as in SL val-
ues and graph parameters (C, L, C/C-s, and L/L-s) within
the different frequency bands (delta, theta, and sigma).
This test was deemed most appropriate because of the
sample size and data distribution. Qualitative data were
compared by means of the Fisher Exact test, because
expected frequencies were less than 5. Correlations were
studied with the Spearman’s rank correlation coefficient.
All analyses were performed with a (Type I error) set at

0.05 using the statistical software program SPSS for Win-
dows, version 14.0.

RESULTS

Clinical and Demographic Measures

Depressed and healthy groups did not differ on age or
sex (Table I). As expected, the depressed subjects showed
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significant elevations in depressive symptoms, as meas-
ured by the total score on the HDRS [Hamilton, 1960].
According to the insomnia questions on the HRSD [Ham-
ilton, 1960], sleep disturbances were moderately severe
and distributed evenly throughout the night (initial, mid-
dle, and delayed). Sleep disturbance, as measured by the
PSQI, was significantly higher in the depressed patients
who reported difficulty falling asleep, early waking, and
many awakenings. Seven depressed patients had recurrent
major depression [average age at onset 29 6 6 years (mean

6 SD)], while four had single-episode major depression
[average age at onset 28 6 6 years (mean 6 SD)].

Conventional Sleep Characteristics

A Mann–Whitney U-test revealed a significant decrease
in total sleep time as well as in REM latency onset among
the patients group (Table II).
The depressed patient group also showed several of the

well-known pathognomonic sleep changes, such as

TABLE II. Electroencephalographic sleep measures

Healthy controls Depressed patients
(n 5 14) (n 5 11) P value

Sleep continuity
Total sleep time (min)** 479.5 (439–541) 375.5 (204–485) 0.001
Sleep latency (min) 31.5 (5–51) 25.7 (5–186) 0.58
Sleep efficiency (%) 84.7 (78.2–94.1) 72.4 (35.8–89.3) 0.08
No. of awakenings 62 (38–90) 73 (25–115) 0.76
Awake (min) 62.7 (20–90) 89.3 (18.3–180.7) 0.35
Awake (% SPT) 11.8 (3.8–15.9) 18.5 (3.7–47) 0.17

Non rapid eye movement (NREM)
% Stage 1 7.2 (3.5–11) 10.4 (2.9–22.3) 0.71
% Stage 2* 59.5 (50.6–73.1) 54.5 (34.8–65.8) 0.049
% Slow wave sleep 15.15 (1.5–23.7) 12.1 (2.3–21) 0.55

Rapid eye movement (REM)
% REM 22 (15.3–27.3) 22.7 (9.5–32.1) 0.91
REM latency** 71.8 (50–131) 48 (5–98) 0.003
REM density (unit/min) 1.68 (1.1–3.2) 1.74 (0.6–7.9) 0.68

Values are expressed as median with minimum–maximum range.
*P-value < .05
**P-value < .01

Figure 2.

Mean synchronization matrices for healthy controls (n 5 14)

and acutely depressed patients (n 5 11) in the delta frequency

band. The synchronization matrix is a 19 3 19 square matrix,

where X axis and the Y axis correspond with the channels num-

bers, and where the entries indicate the mean strength of the SL

between specific pairs of channels. The strength of the SL is indi-

cated with a black-grey scale, from black (SL 5 0) to light gray

(SL ? 1). The diagonal running from the upper left to the lower

right is intentionally left dark gray. The names of the corre-

sponding electrodes according to the 10–20 electrode placement

system have been indicated respectively on the X and Y axis.
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decreased sleep efficiency and decreased Stage 2 percent-
age. We also observed increased sleep onset latency, Stage
1 percentage, awakenings throughout the night (in terms
of number and percentage), REM sleep percentage, and
REM density. We also observed a decreased percentage of
SWS. However, the above-mentioned parameters did not
differ significantly between the two groups in our sample,
but were significantly different in a large number of previ-
ous reports [Kerkhofs et al., 1991; Kupfer, 1995].

Synchronization Likelihood Per Frequency Band

As seen in the delta frequency band (see Fig. 2), the syn-
chronization matrices of both groups show a complex but,
nonetheless, rather similar pattern, with various regions of
high (light grey: SL ? 1) and low (black) level of synchro-
nization. These graphs revealed global SL that occurred at
all channels. Our results show that the mean SL (averaged
over all pairwise combinations of channels and time
points) was significantly lower in the depressed group in
all of the frequency bands that we have investigated (see
Fig. 3): delta (NREM sleep—slow wave sleep), theta (REM
sleep), and sigma (NREM—Stage 2).
To render the differences between groups more clearly,

we also computed SL over all channels, comparing each
channel with all others for the three frequency bands of in-
terest (see Fig. 4). The loss of synchronization observed in
the depressed group is global in the theta band, whereas it
localized more specifically in the frontal, parietal, and tem-
poral areas of the delta and sigma frequency bands.

Small-World Network Parameters

The synchronization N 3 N matrices were converted to
graphs using an individual-adapted threshold which
resulted in a value of K 5 5 for all graphs. As an example,
Figure 5 shows the graphs that correspond to the mean

synchronization matrices of Figure 2, in both groups and
for delta frequency band. As shown in Figure 5, the orga-
nization of the neuronal network differed between the
acutely depressed patients and healthy controls. Compared
with the depressed group, the control group graph shows
a large number of edges between the central, temporal, pa-
rietal, and frontal regions of the delta band (see Fig. 5).
The most striking SWN parameter values in the delta

(NREM sleep—SWS), theta (REM sleep), and sigma

Figure 3.

Mean synchronization likelihood (error bar denote standard

deviations) of healthy controls and depressed patients for the

different frequency bands. * indicates P < 0.05. ** indicates P <
0.001.

Figure 4.

Mean synchronization likelihood in the different channels in

sigma (a), theta (b), and delta (c) frequency bands. * indicates P

< 0.05. ** indicates P < 0.001.
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Figure 5.

Mean synchronization matrices of Figure 2 converted to graphs

using individual thresholds for controls and depressed patients.

Schematic image of the head seen from above, with the posi-

tions of the electrodes indicated by small circles and numbered

according to the 10–20 electrode placement electrode (a).

Graph of the control subjects in the delta frequency band (b).

Graph of the acutely depressed patients in the delta frequency

band (c). Differences between the two groups in the delta fre-

quency band (d): Co–De: edges only present in control group

(solid lines); De–Co: edges only present in depressed group

(dotted line).
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(NREM sleep—Stage 2) frequency bands are presented in
Table III.
There were no significant clustering coefficient differen-

ces between the depressed patients and the healthy con-
trols in the frequency bands that were investigated. How-
ever, the C tends to show a greater value in controls than
in the patient group in the theta band. In contrast, the
characteristic L is significantly lower in the depressed
group in the theta and delta frequency bands.
The C and L values were compared with the values for

random graphs, using the procedure described by Sporns
and Zwi [2004]. In the randomization procedure, the
degree distributions of the original networks were pre-
served. As expected in SWN organization, the mean L/L-s
ratio was slightly above 1 in the different frequency bands,
whereas the mean C/C-s ratio was significantly greater
than 1 (Table III). In the different frequency bands that
were investigated, there were no statistically significant C/
C-s differences. In the delta, especially, theta bands, L/L-s
was significantly lower in the depressed group.
As a summary, the most obvious changes occurred in

the depressed group, in which a decrease of both the L
and L/L-s ratio were observed during delta and theta
bands. Thus, alterations in graph architecture were found
to only affect L (except in sigma band).

Mean SL, Small-World Network Parameters and

the Severity of Depression

We also tested whether the mean level of SL, C, and L
were related to the severity of depression. Linear correla-
tions were observed between the global SL, C, L, and the
HDRS as: the more depressed the patient, less are the
global level of SL, C, and L in theta and delta frequency
bands. These correlations were significant for SL in the

sigma and delta frequency bands and for L in the delta and
theta frequency bands. Then, in these frequency bands
and with the specific parameters (SL or L), the more de-
pressed are the patients, the less are the values of SL and L.
This observation was contrasted by an inverse relation

(without statistical significance) in the sigma frequency
band for L (Table IV).

DISCUSSION

The principal findings of the present study are twofold.
First, we demonstrated that the acute state of depressive
disease is characterized by a decrease in the global mean
levels of the sleep EEG synchronization. Second, we
showed that a major depressive episode (MDE) displays a
significant reorganization of the neuronal brain networks.

Sleep Brain Rhythms and Cortical Synchronization

Studying the functional connectivity of the different fre-
quency bands is important, because it has been postulated
that synchronous oscillations between the different cortical
areas play a role in various aspects of brain function, spe-
cifically cognitive functioning [Klimesch, 1999]. Moreover,
because sleep is not simply a suspension of waking activ-
ities, there must be a good reason why complex brains
have developed an elaborate dynamic choreography dur-
ing sleep [Buzsáki, 2006].
To the best of our knowledge, with the exception of a

few studies performed specifically on the slow-wave EEG
and cycling alternating pattern synchronization [Ferri
et al., 2005, 2006; Stam, 2004], this is the first study that
shows a global decreased level of cerebral synchronization
in the sigma, theta, and delta frequency bands during
sleep in depressed patients. In the sigma and delta bands,
this loss of synchronization is more specifically localized
in the frontal, temporal, and parietal areas. A generally
agreed upon view among the scientific community is that
depression may be a disorder that shows disturbed large-
scale cortical (and subcortical) systems that include a num-
ber of functionally connected cortical regions, such as the
temporal, frontal, and parietal lobes [Davidson, 2004].

TABLE III. Small-world network parameters

Healthy controls Depressed patients
(n 5 10) (n 5 11) P value

C
Delta 0.48 (0.45–0.52) 0.48 (0.43–0.49) 0.33
Theta 0.55 (0.49–0.58) 0.52 (0.46–0.56) 0.1
Sigma 0.54 (0.50–0.58) 0.54 (0.50–0.58) 0.29

L
Delta* 2.1 (2.03–2.16) 2.06 (2.03–2.14) 0.03
Theta* 2.12 (2.04–2.22) 2.08 (2.05–2.12) 0.01
Sigma 2.09 (2.05–2.15) 2.09 (2.05–2.15) 0.89

C/C-s
Delta 2.17 (1.97–2.31) 2.13 (1.94–2.22) 0.27
Theta 2.41 (2.18–2.53) 2.3 (2.03–2.55) 0.19
Sigma 2.43 (2.2–2.6) 2.37 (2.17–2.57) 0.17

L/L-s
Delta* 1.24 (1.19–1.26) 1.21 (1.19–1.25) 0.03
Theta** 1.26 (1.19–1.3) 1.21 (1.2–1.24) 0.005
Sigma 1.21 (1.2–1.26) 1.22 (1.2–1.25) 0.95

Values are expressed as median with minimum–maximum range.
*P-value < .05
**P-value < .01.

TABLE IV. Correlation values between the score in the

Hamilton Depression Rating Scale, the global level of SL

and the small-world measures

Global synchronization C L

Theta Rs 20.305 20.216 20.414
P value 0.138 0.3 0.04

Sigma Rs 20.5 20.286 0.191
P value 0.011 0.166 0.36

Delta Rs 20.662 20.119 20.42
P value 0.001 0.572 0.036

Rs, Spearman’s rank correlation coefficient.
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Moreover, a malfunction of limbic-cortical networks is cur-
rently the leading systems-level candidate for mediating
major depression, based on an extensive literature on
blood flow, metabolism, EEG dynamics, and histological
findings [Drevets, 2000; Linkenkaer-Hansen et al., 2005].
The frontal cortex is also clearly a significant component of
the disturbed system related to major depression [Drevets
et al., 1997]. Thus, the topographic synchronization abnor-
malities found in this article (in both the delta and sigma
frequency bands) in terms of loss of synchronization are in
agreement with the current literature [Drevets, 2000; Dre-
vets et al., 1997; Linkenkaer-Hansen et al., 2005].
Slow-wave activity synchronization during sleep may be

one factor that plays a role in the recently hypothesized
importance of EEG slow-waves during sleep for cognitive
processing [Huber et al., 2004]. The roles of sleep slow-
wave activity and synchronization in memory consolida-
tion, and learning processes are the subject of different ani-
mal and human studies [Steriade, 2006]. Presumably, net-
works that are activated during the learning of a new task
are reactivated during sleep, which improves performance
on the same task the next day [Huber et al., 2004]. More-
over, the surface-positive half-waves of sleep slow-waves
have been reported to be associated with distinctly
enhanced coherence after learning in the slow-oscillatory,
delta, sigma, and gamma bands [Mölle et al., 2004]. The
loss of delta mean synchronization activity observed in
this study could have a part in the cognitive dysfunctions
that are classically found in patients suffering from depres-
sion [Porter et al., 2003].
Sleep spindles are initiated by a deep brain structure,

the thalamic reticular nucleus, in connection with principal
thalamic nuclei and are synchronized by corticortical, cor-
ticothalamic, and thalamocortical loops [Steriade, 2006].
Both intrinsic thalamic conductances and reticulo-
thalamic/cortico-thalamo-cortical loops are involved in
spindle generation, amplification, and synchronization of
spindles [Steriade, 2006]. Of importance, abnormalities in
these thalamocortical structures have been implicated in
the neurobiology of schizophrenia [Andreasen et al., 1994].
Neuromodulatory systems that affect the function of these
thalamocortical circuits and the generation of these sleep
rhythms (such as norepinephrine, serotonin, acetylcholine,
and g-aminobutyric acid) are altered in schizophrenia as
well, but also and mostly in major depression [Belmaker
and Agam, 2008]. A few previous works have studied the
sleep spindle activity in patients suffering from major
depression with different and contradictory results [de
Maertelaer et al., 1987; Ferrarelli et al., 2007]. Because our
study clearly shows a defect in the mean synchronization
of the sigma frequency bands in depressed patients, we
can argue that thalamocortical system abnormalities may
play a role in MDE.
Theta rhythm, which is one of several electroencephalo-

graphic waveforms associated with various sleep (REM
sleep) and wakefulness states, is one of the main rhythms
in the hippocampus, and has been associated with cogni-

tive processes and memory [Buzsáki, 2006]. The hippocam-
pus and associated structures are organized in multiple
loops and are part of all the allocortex, with reciprocal
connections to the neocortex [Buzsáki, 2006]. Synchronous
activity in the theta band over the frontal area increases
strongly during tasks that are demanding for working
memory [Stam et al., 2002]. Moreover, Tesche and Karhu
succeeded in measuring, with MEG, theta activity in the
hippocampus during performance of a working memory
task. They showed that the working memory task stimuli
induced brief bursts of theta band activity in the hippo-
campus [Tesche and Karhu, 2000]. These disturbances in
the global mean synchronization of the theta band could
probably be explained by seize and function modifications
of the hippocampus, which is one of the ‘‘target struc-
tures’’ of depression.

Loss of the Small-World Networks Properties As

‘‘A Randomization Process’’

There are indications that SWNs represent an optimal
organization in terms of low ‘‘wiring costs,’’ local inde-
pendence, global integration, and resilience to error. Mod-
eling studies have shown that neural networks with small-
world configuration facilitate synchronization between dis-
tant neurons and efficient information processing [Masuda
and Aihara, 2004]. In a study dealing with MEG record-
ings from healthy subjects, graph analysis of synchroniza-
tion matrices revealed small-world patterns in both low-
and high-frequency bands [Stam, 2004]. When C and L are
expressed as ratios of C and L on random graphs, the
results of the present study are quite compatible with
those of several previous studies [Hilgetag et al., 2000;
Stam, 2004]. Particularly, another study that extracted cere-
bral networks from these EEG data using a method
described previously by Stam [2004], showed that net-
works demonstrated more small-world characteristics dur-
ing all sleep stages as compared to the awake state, and
that these features were even more pronounced during
cyclic alternating pattern sleep phase A1 than B [Ferri
et al., 2007].
The results of this study confirm that the functional con-

nectivity of the sleep EEG activity has a tendency to show
an organization similar to a SWN during sleep (with the
values of C/C-s clearly higher than 1.5 and the values of
L/L-s close to 1) [Ferri et al., 2007; Micheloyannis et al.,
2006; Stam and Reijneveld, 2007]. The values found during
sleep are clearly different from those characterizing ran-
dom networks (both values around 1) and ordered net-
works (both values significantly higher than 1).
Our analyses showed that depressed patients still had a

significantly shorter L in the theta and delta bands com-
pared with controls, with no difference in C. These results
reflect the fact that healthy controls exhibit neuronal net-
works closer to the ordered part of the rewiring scale. On
the other hand, patients have brain networks closer to the
random part of the scale.
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These results are in line with those observed in another
neuropsychiatric disease that has already been studied in
several previous works: schizophrenia. The ‘‘disconnection
hypothesis’’ proposed by Breakspear in 2003, has been
confirmed by several studies, in which we also observed
disturbed connectivity between different brain regions,
especially the frontal area, and particularly in the left
hemisphere [Breakspear et al., 2003; Micheloyannis et al.,
2006; Rubinov et al., in press]. The general pattern that
emerges from our study and those on Alzheimer’s disease
and schizophrenia is that networks of patients with dis-
turbed cognition functions are more ‘‘random.’’ As a con-
sequence, it seems that this ‘‘disconnection hypothesis’’ of
schizophrenia is not specific, but also founded during
MDEs. This ‘‘randomization process’’ of the neuronal net-
works could be viewed as a general pattern of neuro-
psychiatric diseases.

Possible Functional and Clinical Consequences

of Decreased Brain Functional Connectivity

During MDE

Growing evidence indicates that sleep is important in
learning and memory processing [Stickgold, 2005]. Over
the last decade, a multitude of molecular, cellular, integra-
tive systems and behavioral findings have demonstrated
the need for sleep after learning to consolidate of memo-
ries [Walker and Stickgold, 2004, 2006]. Moreover, learning
and memory depend on brain plasticity processes, and
sleep-dependent learning and memory consolidation must
be mediated by such processes [Walker and Stickgold,
2004, 2006]. Significant cognitive impairments are usually
found in young and elderly people suffering from MDE
[Castaneda et al., 2008]. Despite different study results,
cognitive impairments during depression include executive
dysfunctions, attention deficits, short-term and working
memory impairments in both verbal and visual tasks, psy-
chomotor skill deficits, verbal memory deficits, and learn-
ing functions impairments [Castaneda et al., 2008]. In rela-
tion to our results, authors argue, as a randomization pro-
cess, that these modifications in the functional brain
connectivity during sleep could have a part in these cogni-
tive dysfunctions that are classically observed in acutely
depressed patients.

Neuronal Networks and the Depressive Disease:

Implications of the Network Hypothesis

of Depression

The view of mood disorders as a problem of neuronal
networks and information processing in the brain has sev-
eral important implications [Castrén, 2005]. Neuronal net-
works develop through interactions with the environment,
and neurotransmission in these networks are constantly
being refined through activity-dependent synaptic plastic-
ity to optimal process and store relevant information [Katz
and Shatz, 1996]. Like other brain diseases, depression

may represent disturbances in the activity-dependent in-
formation processing of the brain rather than the chemical
balance of signaling molecules [Castrén, 2005; Fingelkurts
et al., 2007]. Perhaps, the most important evidence for this
hypothesis is the recent observation that antidepressants
increase the production of new neurons in the rodent hip-
pocampus [Malberg et al., 2000]. Newly generated neurons
differentiate over time and are only mature enough to par-
ticipate in information processing several weeks after birth
[van Praag et al., 2002]. The fact that this time course cor-
relates with the delayed onset of the clinical effects of anti-
depressants has created a lot of excitement among neuro-
pharmacologists [Castrén, 2005]. Antidepressants may
facilitate optimization of cerebral connectivity by (i)
increasing the choice of neurons available for selection
through activity-dependent mechanisms [Castrén, 2005],
(ii) stimulating the turnover of axonal branches and synap-
tic contact (thereby providing more material for activity-
dependent selection), and (iii) activating the neurotrophin
signaling as a brain-derived neurotrophic factor [Castrén,
2004]. Analogously, psychological therapies (psycho-
therapy, cognitive behavioral therapy, etc.), electroconvul-
sive shock treatment could also have therapeutic effects on
mood disorders through use-dependent neuronal plasticity
[Castrén, 2005]. In this scenario, a combination of drug
treatment and psychological rehabilitation would be
expected to be more beneficial than either treatment alone
[TADS, 2004]. As the network hypothesis emphasizes the
importance of environmental information in the process of
activity-dependent selection of neurons and synapses, it
predicts that full recovery would not even be possible
with drug treatment alone, but that external stimuli, such
as social communication, would be required to provide
environmental input for the selection of the appropriate
network connections [Castrén, 2005].
Through the different data that are summarized above,

it is clear that there is some evidence that antidepressants
activate plasticity processes, which are thought to gradu-
ally improve information processing in the neural net-
works that are involved in different brain functions such
as sleep and mood regulation.
Through functional brain network models, our study

argues for considering MDE as a problem of neuronal net-
works and a problem of information processing as well.

CONCLUDING REMARKS AND PERSPECTIVES

Limitations of this study are primarily related to meth-
odology. First, major depression is a heterogeneous syn-
drome, and other sources of variance may exist within
patients (e.g., severity, atypicality, seasonality, number of
previous episode, etc.). Second, by excluding patients with
more serious forms of psychiatric comorbidity, our conclu-
sions should be interpreted with care. Third, the sample
size and the psychopathological assessment of the subjects
did not allow for stratifying the patient sample by depres-
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sive subtypes. Replicating our study in a larger group is
clearly required in order to further examine the neuro-
physiological aspects that were revealed in this study.
Finally, confirming our findings will have to await a more
complete understanding of the neural network dynamics
in healthy subjects and patients suffering from several
neuropsychiatric diseases.
In summary, this study provides further support for the

presence of small-world features in functional networks in
the brain during sleep stages. Patients suffering from acute
depression have significantly shorter path lengths in their
EEG graphs, even after correcting for differences in the
mean level of synchronization. This suggests a disruption
in effective interactions between and across cortical
regions, and provides further support for the concept of
depression as a disconnection disease.
Recent reports show that many (but not all) functional

abnormalities found during a depressive episode recover
after pharmacological or psychotherapeutic treatment
[Austin et al., 2001; Castrén, 2005]. Future studies should
establish whether the functional connectivity of the sleep
EEG increases with recovery after a depressive episode or
whether impaired functional brain connectivity represents
trait abnormalities.
Finally, understanding how more complicated neuronal

network topologies influence both human behaviors and
also mental disorders represents one particularly impor-
tant challenge that needs to be tackled as the mathematical
study of neuronal networks advances.
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penaers, Stéphanie Braun, Boris Leistedt, and Bernard Jac-
ques for technical assistance. They also acknowledge the
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