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Abstract 

Temporal lobe epilepsy (TLE) is a brain network disorder characterized by alterations at both the 

structural and the functional level. It remains unclear how structure and function are related and 

whether this has any clinical relevance. In the present work, we adopted a novel methodological 

approach investigating how network structural features influence the large-scale dynamics. The 

functional network was defined by the spatio-temporal spreading of aperiodic bursts of activations 

(neuronal avalanches), as observed utilizing high-density electroencephalography (hdEEG) in TLE 

patients. The structural network was modeled as the region-based thickness covariance. Loosely 

speaking, we quantified the similarity of the cortical thickness of any two brain regions, both across 

groups, and at the individual level, the latter utilizing a novel approach to define the personalized 

covariance network (pCN). In order to compare the structural and functional networks (at the nodal 

level), we studied the correlation between the probability that a wave of activity would propagate 

from a source to a target region, and the similarity of the source region thickness as compared to 

other target brain regions. Building on the recent evidence that large-waves of activities 

pathologically spread through the epileptogenic network in TLE, also during resting state, we 

hypothesize that the structural cortical organization might influence such altered spatio-temporal 

dynamics. We observed a stable cluster of structure-function correlation in the bilateral limbic areas 

across subjects, highlighting group specific features for left, right and bilateral TLE. The 

involvement of contralateral areas was observed in unilateral TLE.  We showed that in temporal 

lobe epilepsy alterations of structural and functional networks pair in the regions where seizures 

propagate and are linked to disease severity. In this study we leveraged on a well-defined model of 

neurological disease and pushed forward personalization approaches potentially useful in clinical 

practice. Finally, the methods developed here could be exploited to investigate the relationship 

between structure-function networks at subject level in other neurological conditions.  
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1. INTRODUCTION 

The human brain is organized along multiple nested layers that span from the microscale (e.g. the 

molecular level), to the mesoscale (e.g. the cytoarchitectonics), all the way up to whole-brain 

structures (e.g. the white-matter bundles and the brain geometry) (Hilgetag & Goulas, 2020). Such 

hierarchical structure induces resonances resulting in spontaneous collective bursts of activity that 

spread across the brain (Deco et al., 2013). Alterations of large-scale brain dynamics have been 

detected in multiple neurological diseases (Li et al., 2021; Sorrentino, Rucco, et al., 2021). 

This is of particular relevance in epilepsy, which has come to be considered a network disorder 

affecting not only the local node (i.e., the epileptogenic zone; EZ) but also the whole-brain network 

functioning (Bartolomei et al., 2017; Gotman, 2008). From the structural standpoint, MRI studies 

have demonstrated that patients with epilepsy display cortical atrophy not only in the EZ but also 

more diffusely, supporting the concept of epileptogenic network (Caciagli et al., 2017; Labate et al., 

2011). A recent study from the ENIGMA-epilepsy study group has evidenced diffused alteration of 

the cytoarchitectonic and morphological cortical organization in patients with temporal lobe (TLE) 

and idiopathic generalized epilepsy (IGE) (Larivière et al., 2022). In line with these results, 

neuroimaging and electrophysiological studies have shown patterns of altered functional 

connectivity impacting the whole-brain, both during ictal and interictal activity (Courtiol et al., 

2020; Duma et al., 2021; Wirsich et al., 2016). A recent work from our group used resting state 

electroencephalography (rs-EEG) to investigate the propagation of bursts of activities on the large-

scale in patients with TLE (Duma et al., 2023). We showed that, even in the inter-ictal period, in the 

absence of epileptiform abnormalities, alteration of the propagation of waves of activities on the 

large-scale clustered onto key brain areas with respect to seizure onset and propagation. However, it 

is important to understand how functional networks are constrained by structural properties (Van 

Diessen et al., 2013; Voets et al., 2012). 

Recent studies suggest that including regional heterogeneity, for example with respect to 

morphological, cytoarchitectonics and neuromodulatory information, is fundamental to understand 

and to model the role of structural organization in constraining the spatio-temporal dynamics 

(Suarez et al., 2020). The addition of brain morphology in the investigation of the structure-function 

relationship is particularly relevant in epilepsy since brain structural organization is affected by the 

pathology, for instance as cortical thinning in the context of focal epilepsy (Galovic et al., 2019). In 

this study, we hypothesized that cortical thickness distribution in the brain may be linked to the 

altered spreading of the large-scale perturbations in relation to epilepsy. To test this hypothesis, we 

used a multimodal dataset made of source-reconstructed high-density electroencephalography 
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(hdEEG) and structural MRI from 59 patients with TLE. The model of TLE is of particular interest 

because it represents a rather well-defined group of electroclinical conditions with lower clinical 

heterogeneity compared to other epilepsy forms. Previous studies investigating structural and 

functional anomalies in epilepsy have intensively relied on this model (Larivière et al., 2020; Song 

et al., 2022; Xie et al., 2023). Leveraging on our previous work on altered avalanche spreading in 

TLE (Duma et al., 2023), we expect to identify a relationship between the organization of the 

cortical morphology and the propagation of the activity bursts, and specifically so in the 

epileptogenic network. Moreover, in the light of the relationship between thickness and disease 

duration (Galovic et al., 2019), as well as the exposure to antiseizure medications (Bittigau et al., 

2002; Kim et al., 2007), we explored the dependence of structure-function link in relation to the age 

of onset, the epilepsy duration and the number of antiseizure medications (ASMs). 

To characterize the fast bursts of activities at the whole-brain level, we deployed the avalanche 

transition matrix (ATM), a recently developed analytical tool that captures the probability of any 

two regions being successively recruited by spontaneous neuronal avalanches (Rucco et al., 2020; 

Sorrentino, Rucco, et al., 2021; Sorrentino et al., 2022). The ATM provides a measure of 

relationship across regions, resulting in a functional network. In order to better characterize the link 

between functional and morphological brain configurations, we adopted a network-level method 

also for the thickness distribution. To this end we analyzed the structural covariance network 

(SCN), a measure adopted in the workflow of the ENIGMA (Larivière et al., 2022). The SCN 

describes the existence of correlated anatomical measurements, such as cortical thickness, between 

pairs of brain regions, proving a network measure of the cortical thickness organization (Wright, 

1999). By providing information on the morphology heterogeneity of the cortex, the SCN can be 

used to elucidate the relationship between the structural and functional connectome. However, as 

the SCN has been designed as a group metric, it is not trivial to extract individual information.  

In this work, by generalizing the co-fluctuation framework (Sorrentino et al., 2023; Esfahlani et al., 

2020) we have been able to obtain a subject-wise measure for the SCN (see Method sections) 

allowing the investigation of the structure-function relationship in an individualized fashion. The 

individual level SCN will be from here on referred to as personalized covariance network (pCN).  

We studied the structural-functional relationship by comparing structural and functional matrices, 

first at the group level, and then in a subject-specific fashion. In fact, utilizing the subject-wise 

investigation, we aimed at capturing fluctuations that may be related with pathology-related 

variables, which is relevant for the clinical translation of our approach. This is in line with the 

application of individual network-level measurements together with clinical variables in the 

framework of personalized diagnosis (Jirsa et al., 2017). 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.05.547809doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.05.547809
http://creativecommons.org/licenses/by-nd/4.0/


 

2. METHOD 

2.1 Participants 

We retrospectively enrolled 70 patients with temporal lobe epilepsy, who underwent high density 

electroencephalography (hdEEG) for clinical evaluation in 2018-2021 at the Epilepsy and Clinical 

Neurophysiology Unit, IRCCS Eugenio Medea cited in Conegliano (Italy). The diagnosis workflow 

included clinical history and examination, neuropsychological assessment, long term surface Video 

EEG (32 channels) monitoring, hdEEG resting state recording, 3T brain magnetic resonance 

imaging, and positron emission tomography (PET) as an adjunctive investigation in selected cases. 

The diagnosis of temporal lobe epilepsy was established according to the ILAE guidelines. Eleven 

subjects were excluded due to the poor quality of the MR images resulting in a sample of 59 

patients with TLE (29 left-TLE, 17 right-TLE, 13 bitemporal TLE). A description of patients’ 

demographic and clinical characteristics is provided in Table 1. The study protocol was conducted 

according to the Declaration of Helsinki and approved by the local ethical committee. 

Patients with TLE Mean ± Standard deviation 

Age 39.61 ± 17.66 

Age of onset 23.36 ± 19.28 

Duration of Epilepsy (years)  18.78 ± 19.17 

Number of Antiseizure Medications   1.83  ±  1.00 

Antiseizure Medications Number 

ACT 1 

AZM 1 

BLB 1 

BRV 6 

CBZ 15 

CLB 5 

CZP 2 

ESL 12 

LCM 15 

LEV 8 

LTG 5 

OXC 4 

PB 2 
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PER 9 

VPA 10 

ZNS 1 

NO-ASMs 2 

 MRI 

 

Mesial Number 

              HS 11 

              DNET 1 

              UKN 8 

     Amygdala enlargement  6 

Anterior (temporal pole)  

              FCD 13 

             Encephalocele 2 

             Gliosis 2 

 Anterior + mesial  

              FCD+ HS 5 

              Developmental Venous Anomaly 1 

Negative MRI 10 

 

Tab.1 The table describes the demographic and clinical characteristics of the patients with temporal 

lobe epilepsy, along with the scores of the neuropsychological tests. MRI abnormalities are reported 

by sublobar localization. The continuous variables are reported as mean ± standard deviation. 

Antiseizure Medication abbreviations: ACT= acetazolamide, AZM = acetazolamide; BRV = 

brivaracetam, CBZ = carbamazepine, CLB = clobazam, CZP = clonazepam, ESL= eslicarbazepine, 

LCM = lacosamide, LEV = levetiracetam, LTG = lamotrigine, OXC = oxcarbazepine; PB = 

phenobarbital, PER = perampanel, VPA= valproic acid,  ZNS = zonisamide, NO-ASMs = no 

pharmacological treatment.  Abbreviation of the identified anomalies on the magnetic resonance 

imaging: FCD= focal cortical dysplasia, HS=hippocampal sclerosis, DNET = dysembryoplastic 

neuroepithelial tumors, UKN = unknown. 

 

2.2 Morphological measures and covariance networks 

We used the individual MRI anatomy in order to generate individualized head models for the 

patients with TLE. The anatomical MRI for source imaging consisted of a T1w 1 mm isotropic 3D 
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acquisition. The MRI was segmented in skin, skull and gray matter using the segmentation pipeline 

of the Computational Anatomy Toolbox (CAT12; Gaser et al., 2022). Successively, we computed 

the cortical thickness using CAT12, which yields a morphological value for each vertex of the brain 

mesh. We used the Desikan-Killiany parcellation (Desikan et al., 2006) and then by averaging 

across all the vertices within each region of the atlas, we obtained the morphological index value 

�����  for each region � of the atlas and for each subject �. The structural covariance matrix (SCN) 

of a group of subjects is computed by estimating the inter-regional Pearson’s correlation across 

subjects of the cortical index between all possible pairs of regions (Romero-Garcia et al., 208). Each 

element of the SCN matrix in defined as 

                            ��	�
 � � ������  �������������/�������� . ��
���  ������������/���
���� �           (1) 

where ��i(s)  denotes the mean cortical index of region � across all subjects, and �������� denotes its 

variance. The formula above defines Pearson's correlation i.e., the product of z-scored cortical 

indices, averaged across all subjects. Thus, the construction of the SCN relies on the identification 

of spatial patterns of morphometric similarities between brain regions within a group of subjects. 

The SCN matrix can be expressed at the single-subject level by defining the personalized 

covariance network (pCN) as 

                           ��	�
��� �  ������  �������������/�������� . ��
���  ������������/���
����                   (2) 

This way the SCN is the result of averaging across individual SCN(s) i.e., 

                          ��	�� � � ��	����� �� .          (3) 

Hence, the pCN can be understood as the contribution of each subject to the group-level correlation. 

The above deconstruction of the pCN was inspired by a recently introduced edge-centric approach 

to functional connectivity (Esfahlani et al. 2020, Sorrentino et al., 2023). In doing so, the 

morphological information was structured as a 3-D matrix 68 (ROIs) � 68 (ROIs) � 60 (subjects), 

representing all individual pCN(s). This derivation of the pCN allowed to investigate the 

relationship of the cortical network with the functional organization derived from the avalanche 

transition matrix (ATM), which had the same 3D structure (see section 2.7) both at the group and 

individual level. 

2.3 Resting State EEG recording 

The hdEEG recordings were obtained using a 128-channel Micromed system referenced to the 

vertex.  Data was sampled at 1,024 Hz and the impedance was kept below 5kΩ for each sensor. For 

each participant, we recorded 10 minutes of closed-eyes resting state while comfortably sitting on a 

chair in a silent room. 
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2.4 EEG pre-processing 

Signal preprocessing was performed via EEGLAB 14.1.2b (Delorme & Makeig, 2004). The 

continuous EEG signal was first downsampled at 250 Hz and then bandpass-filtered (0.1 to 45 Hz) 

using a Hamming windowed sinc finite impulse response filter (filter order = 8250). The signal was 

visually inspected to identify interictal epileptiform discharges (IEDs) by GMD, AD and PB and 

then segmented into 1-sec long epochs. Epochs containing IEDs activity were removed. Epoched 

data underwent an automated bad-channel and artifact detection algorithm using the TBT plugin 

implemented in EEGLAB. This algorithm identified the channels that exceeded a differential 

average amplitude of 250μV and marked those channels for rejection. Channels that were marked 

as bad in more than 30% of all epochs were excluded. Additionally, epochs having more than 10 

bad channels were excluded. We automatically detected possible flat channels with the Trimoutlier 

EEGLAB plug in within the lower bound of 1μV. We rejected an average of 17.34 ± 11.22 (SD) 

epochs due to spikes and 5.54 ± 3.82 (SD) due to artifacts. The preprocessing analysis pipeline has 

been applied by our group in previous studies investigating both task-related and resting state EEG 

activity (Duma, Di Bono, Mento, 2021; Duma et al., 2023). Data cleaning was performed with 

independent component analysis (Stone, 2002), using the Infomax algorithm (Bell & Sejnowski, 

1995) implemented in EEGLAB. The resulting 40 independent components were visually inspected 

and those related to eye blinks, eye movements, muscle and cardiac artifacts were discarded. The 

remaining components were then projected back to the electrode space. Finally, bad channels were 

reconstructed with the spherical spline interpolation method (Perrin et al., 1989). The data were 

then re-referenced to the average of all electrodes. At the end of the data preprocessing, each subject 

had at least 8 minutes of artifact-free signal. 

 

2.5 Cortical Source modeling 

The resulting individual surfaces from CAT12 were then imported in Brainstorm (Tadel et al., 

2011), where three individual surfaces adapted for Boundary Element Models (BEM) were 

reconstructed (inner skull, outer skull and head) and the cortical mesh was downsampled at 15,002 

vertices. The co-registration of the EEG electrodes was performed using Brainstorm, by projecting 

the EEG sensor positions on the head surface with respect to the fiducial points of the individual 

MRI. We applied manual correction of the EEG cap on the individual anatomy whenever needed, 

prior to projecting the electrodes on the individual head surface via Brainstorm. We then derived an 

EEG forward model using 3-shell BEM model (conductivity: 0.33, 0.165, 0.33 S/m; ratio: 1/20) 
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(Goncalves et al., 2003) estimated using OpenMEEG method implemented in Brainstorm (Gramfort 

et al., 2010). Finally, we used the weighted minimum norm imaging (Hämäläinen & Ilmoniemi, 

1994) as the inverse model, with the Brainstorm’s default parameters setting. 

 

2.6 Avalanche estimation 

Similarly to our previous work using neuronal avalanches (Duma et al., 2023), we extracted the 

activity of a total of 68 regions of interest (ROIs) from the Desikan-Killiany atlas (Desikan et al., 

2006). The ROIs time series were obtained by averaging the activity across the vertices composing 

each ROI. To study the dynamics of brain activity, we estimated “neuronal avalanches” from the 

source-reconstructed ROI time series. Firstly, the time series of each ROI was discretized, by 

calculating the z-score over time and then setting positive and negative excursions beyond a 

threshold as 1, and the rest of the signal as 0. A neuronal avalanche begins when, in a sequence of 

contiguous time bins, at least one ROI is active (i.e., above threshold), and ends when all ROIs are 

inactive  (Beggs & Plenz, 2003; Shriki et al., 2013; Sorrentino, Seguin, et al., 2021). The total 

number of active ROIs in an avalanche corresponds to its size. These analyses require the time 

series to be binarized. This is done to ensure that one is capturing critical dynamics, if present. To 

estimate the suitable time bin length, for each subject, each neuronal avalanches, and each time bin 

duration, the branching parameter � was estimated (Haldeman & Beggs, 2005). In fact, systems 

operating at criticality typically display a branching ratio ~1. The branching ratio is calculated as 

the geometrically averaged (over all the time bins) ratio of the number of events (activations) 

between the subsequent time bin (descendants) and that in the current time bin (ancestors), and then 

averaging it over all the avalanches  (Bak et al., 1987). More specifically: 

 

                                                    �� �  ∏ �������� �����

������� ���
�

�

��	�
�
	�	�
�

���      (1) 

 

 

                                                      � �  ∏ ����
�

�����
�����
���      (2) 

 

where �i is the branching parameter of the ith avalanche in the dataset, Nbin is the total amount of 

bins in the i-th avalanche, nevents (j) is the total number of events active in the j-th bin, and Naval is 
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the total number of avalanche in the dataset. In our analyses the branching ratio was 1 for bin = 2 

(corresponding to bins of 8 ms).  

 

2.7 Avalanche transition matrices  

An avalanche-specific transition matrix (ATM) was calculated where element (i, j) represented the 

probability that region j was active at time t +�, given that region i was active at time t, where � ~8 

ms. The ATMs were averaged element-wise across all avalanches per each participant, and finally 

symmetrized to obtain individualized ATM. 

 

2.8 Correlation analysis 

At first, we correlated the mean thickness value of the ROIs with their mean transitivity (averaged 

transitivity value of the ROI from ATM) across subjects. Then, we computed the correlation 

between the network organization of the brain morphology (i.e., pCN) and the intrinsic functional 

organization (i.e., ATM). The pCN matrix was structured similarly to the the 3D ATMs matrix, i.e.  

68 (ROIs) � 68 (ROIs) � 60 (subjects). We then carried out correlations at the global and subject-

wise level. Specifically, we extracted the thickness and avalanche transition value from the 3D 

matrix for each i-th node with the rest of the brain across subjects, yielding a 68 (ROIs) � 60 

(subjects) matrix. We vectorized these matrices, and we applied permutation-based (10.000 

permutation) Spearman's correlation, using the max-statistic for the p-value correction (Groppe et 

al., 2011). The result represents the global correlation of the thickness covariance value and the 

transition probability of a specific cortical (i-th node) area across subjects (see Fig.1C). 

Furthermore, it is possible to extract ROIs � ROIs slices from the 3D thickness covariance matrix, 

which represent the pCN. We then used Spearman’s correlation between the subject-level pCN and 

ATM, obtaining a value between the individual covariance of a specific node and its transition 

probability (see Fig.1C). Successively, for each region, we provided the percentage of times for a 

region showing a significant pCN-ATM relationship across subjects. Finally, we correlated, using 

Spearman’s correlation, the number of significant regions for each subject with the age of onset, the 

disease duration and the number of ASMs.  
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FIG. 1. Analysis pipeline. The present figure shows the analytical steps in the analysis process. 

Panel A displays the pipeline starting from the structural (magnetic resonance imaging) and 

functional (high density electroencephalography), necessary to obtain the avalanche transition 

matrix. Panel B shows the computation of the personalized covariance network, from the mean 

thickness value of the region of interest. Finally, panel C represents the analytical step in the 

structure-function network correlation both at the group and subject-wise level. 
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3. RESULTS 

3.1 Group level analysis 

For the sake of simplicity, in this section we report the maximum structure-function correlation 

Sperman’s rho for each group. The rho and the relative p-value for each significant region and each 

group are provided in the supplementary materials. When considering the correlation between the 

average cortical thickness of a ROIs and its average transition probability, no significant results 

were found (p-val > .05). Group-wise significant correlation between structure and function was 

detected when considering the network level both at the structural (thickness co-fluctuation) and 

functional level (ATMs). Figure 2 shows the unthresholded (panel A) and the corresponding 

thresholded (panel B) surface maps (p-val < .01; max rho = .092; for all the regions and their value 

see Supplementary Tab.1). One can note that the statistical significances displayed a characteristic 

topography of the regions where structure and function correlated. In particular, structure-function 

correlation clustered in the temporal regions, including the superior and middle temporal poles, the 

insula, the anterior middle cingulate and the parahippocampal cortices (Desikan-Killiany atlas 

based) (see Fig.2B). The rho value was positive, indicating that larger thickness co-fluctuations in 

these regions correspond to an increased probability of neuronal avalanche spreading through them. 

We repeated the analysis for the left-TLE, right-TLE and also for bitemporal patients separately. On 

the one hand, our findings highlight a significant contribution of the temporal areas contralateral to 

the epileptogenic zone. In the left-TLE we observed a significant correlation (p-val < .01; max rho 

= .107; for all the regions and their value see Supplementary Tab.2) between the thickness co-

fluctuation and the ATM, mainly involving the right temporal areas, i.e. the banks of the superior 

temporal sulcus and the middle temporal lobe, as well as the parietal (supramarginal and superior 

parietal) and the bilateral frontal areas (rostral middle frontal and pars triangularis) (see Fig.2C-D). 

On the other hand, right-TLE patients are characterized by the involvement of left middle temporal 

area, as well as the bilateral insular areas in conjunction with caudal and middle frontal regions (p-

val < .01; max rho = .145; see Fig.2E-F; for all the regions and their value see Supplementary 

Tab.3). Finally, the bitemporal group shows a correlation of the bilateral banks of the superior 

temporal sulcus and the insula, as well as of the superior temporal, together with the left precentral 

and right anterior cingulate (p-val < .01; max rho = .151; see Fig.2G-H; for all the regions and their 

value see Supplementary Tab.4).  
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FIG.2 Group level structure-function networks correlation. The present figure displays on the 

left panels the untresholded correlational results at the group level between the covariance network 

and the avalanche transition matrix. By contrast on the right panel are shown the thresholded (p < 

.01) results after false discovery rate correction. Specifically, panel B shows the results taking into 

account the full sample of 60 subjects. Additionally, panels D, F and H show the group level results 

for patients with left and right unilateral temporal lobe epilepsy, and bilateral temporal lobe 

epilepsy.   

 

3.2 Subject level results 

Subject level results are provided as examples for  two randomly-selected cases, whereas the maps 

of all the participants are available online at the following link of the Open Science Framework 

(https://osf.io/9zj3v/?view_only=94a3287ed35e4040aa791076cc032190). One of the patients 

reported in the manuscript (SJ-38) is a right TLE patient showing a well-defined pCN-ATM 
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relationship with involvement of the temporal areas contralateral to the epileptogenic site (max rho 

= .448; p-val < .01; see Fig.3-B; for all the regions and their value see Supplementary Tab.5). The 

second subject that we report (SJ-41) showed a distributed structure-function relationship in 

bilateral temporal areas, including parahippocampal cortex, superior and inferior temporal, as well 

as frontal areas (max rho = .413; p-val < .01; see Fig.3-B; for all the regions and their value see 

Supplementary Tab.6).  As a summary of the subject-wise analysis, we provide the percentage of 

times across subjects in which a region displays a significant structure-function relationship by 

region. The temporal and fronto-central areas, as well as the insular and precentral gyrus, the 

temporal parietal junction and the cingulate cortex (see Fig.3 A) are the most consistent area with a 

larger probability of aperiodic bursts propagation in relation to the morphological configuration. 

structure-function relationship. 

3.3 Relationship with clinical variables 

A significant relationship between the number of regions with a significant structure-function link 

and the number of antiseizure medications was found (rho = .28, p = .030) (see Fig.3 C). By 

contrast, no significant correlations (p > .05) were found with the age of onset nor with epilepsy 

duration.  

 

FIG 3. Additional results. In the Panel A of the figure are represented, as a summary of the 

individual level statistic, the percentage of time across subjects in which a region shows a 

significant structure-function relationship. Panel B shows the pCN-ATM correlation of two subjects 
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randomly selected. Finally, the correlation between the number of regions with a significant pCN-

ATM correlation and the number of antiseizure medications is displayed in panel C. The dashed 

blue lines represent the confidence intervals of 95%. 

4 DISCUSSION 

In the present work we investigated the relationship between cortical morphology and brain activity 

in TLE. We focused on cortical thickness as a marker of brain morphology, as this is altered in TLE 

(Bernhardt et al., 2010, 2011; Caciagli et al., 2017; Larivière et al., 2022). As for brain activity, we 

focused on the spontaneous spatio-temporal dynamics from hdEEG data. Specifically, we computed 

the avalanche transition matrices (ATM), that is a mathematical tool accommodating the non-

linearities of the large-scale brain dynamics and the corresponding multimodal dynamics that they 

generate (Duma et al., 2023; Rucco et al., 2020; Sorrentino et al., 2022; Sorrentino, Seguin, et al., 

2021). We confirmed our hypothesis that the avalanche spread more across regions that are more 

similar in their structural features, namely the network organization of cortical thickness. Larger 

covariation of thickness cortex facilitates/enhances avalanche propagation. These results expands 

previous knowledge that activity synchronization and propagation depends upon cortical thickness 

in healthy individuals (Schuler et al., 2022) by adding the information coming from the non-

linearities of the large-scale brain dynamics. It is interesting to note that the relationship between 

cortical thickness and avalanche spreading involves the limbic system and the regions where 

temporal lobe seizures are known to propagate (Jo et al., 2019; Kubota et al., 2013; Yoo et al., 

2014), such as the bilateral temporal areas, the posterior temporal regions, the insula, the 

parahippocampal and the cingulate cortex (see Fig 2B). Interestingly, these are also regions whose 

cortical thickness has been found altered in previous studies, possibly as an effect of the recurrent 

spread of seizure activity (Abdelnour et al., 2015; Bonilha et al., 2010; Galovic et al., 2019). 

Importantly, the structure-function relationship is not observed when the thickness of a region is 

directly related to the mean avalanche transitivity, but only when the network level is taken into 

account. These findings imply that the morphology of a single region is not sufficient to explain the 

spreading of the aperiodic activity by itself. In fact, neuronal avalanches are a product of large-scale 

brain activity, meaning that the transitivity in one region is highly dependent on the network 

activity. For this reason, a whole-brain structural configuration perspective can capture the 

relationship between neuronal large scale dynamics and brain structure. This is in line with the 

recent findings that cortical activity can be better understood as resulting from excitations of 

fundamental, resonant modes of the brain’s structure (Pang et al., 2023). In fact, the pCN considers 

the covariance of one region with the others across subjects, or intra-individually, partly capturing 

the geometric configuration of the whole-cortex. Our findings suggest that the relationship between 
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structure and activity is significant in both temporal lobes in patients with TLE. To investigate the 

structure-function relationships in different TLE subgroups, we then performed additional analysis 

by dividing our clinical population into left, right and bilateral TLE. This comes with the price of a 

smaller sample size for each group. This analysis revealed that patients with bilateral TLE show a 

significant bilateral temporal thickness-avalanches relationship (see Fig.2H) Surprisingly, unilateral 

TLE was associated with a stronger structure-function link in the contralateral temporal lobe, 

together with contralateral temporo-parietal junction and bilateral prefrontal areas (see Fig.2D and 

F). The thinning of the contralateral temporal areas has been described in unilateral temporal lobe 

epilepsy with a greater involvement of the right-TLE (Park et al., 2022; Seidenberg et al., 2005), but 

to a lesser degree as compared to the ipsilateral cortex. One possibility is therefore that the 

contralateral temporal lobe is less affected by cortical thinning, resulting in an enhancement of the 

avalanche spread. One alternative explanation is that the contralateral compensatory plastic changes 

occur in TLE and explain the increased connectivity in the contralateral regions (Bettus et al., 

2009). Overall, our results align well with the interpretation of epilepsy as a network disorder. 

While previous studies have highlighted either impairment of structure or functional data, here we 

demonstrate how these two properties closely interact, providing a comprehensive view leveraging 

on multimodal data. We further tried to account for variability in our sample by pushing forward an 

attempt to bring the study of structure-function relationship at the subject level, acknowledging that 

even within homogeneous TLE groups each subject has their own specificities (see Fig.3B). 

Subject-level analysis confirmed and strengthened group-level results. The link between thickness 

and avalanche spreading was stronger at the individual level, suggesting that the group-level 

analysis may underestimate the relationship due to inter-individual differences. Some cortical 

regions were consistently recruited by ongoing avalanches, particularly in the brain regions that are 

structurally altered in TLE (Fig 3A). Finally, with regards to the possible relation between 

anatomofunctional architecture and clinical variables (age of epilepsy onset, epilepsy duration and 

number of ASMs) we only found an association between the number of regions with significant 

structure-function correlation and ASMs, with the former increased in individuals with higher 

ASMs load.  The ASMs load may reflect epilepsy severity, which in turn has been associated to a 

more diffuse spreading of epileptic activity within the brain (Andrews et al., 2019). Moreover, our 

previous findings highlighted that patients with TLE are characterized by an iper-integration of the 

functional networks (Duma et al., 2022). In light of this, we may speculate that a more severe 

clinical picture, likely requiring a larger number of ASMs, is linked to a widespread dysregulation 

of both the functional and structural networks, resulting in a less segregated and localized structure-

function links. To sum up, in the present work we merge structural and functional imaging in TLE 
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patients, and demonstrate, subject-wise, a relationship between the alterations of the aperiodic 

dynamics and cortical organization. We provided a methodological insight with a new way to 

compute a personalized structural covariance, together with an innovative approach investigating 

the aperiodic brain dynamics, namely the neuronal avalanches. Our approach finds its rationale in 

the idea that the altered activities in epilepsy might be the result of local structural alterations and 

the way they affect the resonances that are generated at the whole-brain level. As such, the 

integration of structural and whole-brain functional data is indispensable. In fact, our results may 

have clinical relevance for the diagnostic process, especially in terms of the identification of the 

epileptogenic network (EN). Our findings could represent a first step in the inclusion of the 

morphological regions heterogeneity to increase the accuracy of the models of brain dynamics in 

epilepsy (Hashemi et al., 2020; Jirsa et al., 2017; Proix et al., 2018), as suggested by Suarez and 

colleagues (Suárez et al., 2020). In fact, the inclusion of the morphological configuration to predict 

the behavior of the brain networks is useful for the surgical treatment in focal epilepsy, as well as to 

enhance personalized modeling for the optimization of drug delivery or neuromodulatory 

approaches (Sobayo & Mogul, 2016). 

CONCLUSIONS 

In the present work we deployed a novel methodological approach to test the hypothesis that large-

scale dynamics is influenced by structural features of the cortex. We observed a stable cluster of 

correlation in the bilateral temporal and limbic areas across subjects, highlighting group-specific 

features for left, right and bilateral TLE patients. We developed strategies to bring the investigation 

to the individual level, confirming group-wise findings and expanding them to the single subject 

level. We confirmed that TLE is characterized by structural cortical alterations that are intimately 

related to the alteration of the fast whole-brain functional dynamics. Finally, we showed that the 

structure-function link has a tight relationship with clinical features such as disease severity. In this 

study, we leveraged on a well-defined model of neurological disease and pushed forward 

personalization approaches potentially useful in clinical practice for TLE. Nevertheless, the present 

methodology may have clinical implications in conditions with a much broader heterogeneity of 

structural alterations across the brain (e.g., stroke, multiple sclerosis). 
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