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Abstract

Objective

Late preterm birth confers increased risk of developmental delay, academic difficulties and

social deficits. The late third trimester may represent a critical period of development of

neural networks including the default mode network (DMN), which is essential to normal

cognition. Our objective is to identify functional and structural connectivity differences in the

posteromedial cortex related to late preterm birth.

Methods

Thirty-eight preadolescents (ages 9–13; 19 born in the late preterm period (�32 weeks ges-

tational age) and 19 at term) without access to advanced neonatal care were recruited from

a low socioeconomic status community in Brazil. Participants underwent neurocognitive

testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state

functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI

analyses were performed using unilateral seeds within the posterior DMN (posterior cingu-

late cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri).
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Results

Late preterm children demonstrated increased functional connectivity within the posterior

default mode networks and increased anti-correlation with the central-executive network

when seeded from the posteromedial cortex (PMC). Key differences were demonstrated

between PMC components with increased anti-correlation with the salience network seen

only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic

tractography showed increased streamlines within the right inferior longitudinal fasciculus

and inferior fronto-occipital fasciculus within late preterm children while decreased intrahe-

mispheric streamlines were also observed. No significant differences in neurocognitive test-

ing were demonstrated between groups.

Conclusion

Late preterm preadolescence is associated with altered functional connectivity from the

PMC and lateral parietal cortex to known distributed functional cortical networks despite no

significant executive neurocognitive differences. Selective increased structural connectivity

was observed in the setting of decreased posterior interhemispheric connections. Future

work is needed to determine if these findings represent a compensatory adaptation employ-

ing alternate neural circuitry or could reflect subtle pathology resulting in emotional process-

ing deficits not seen with neurocognitive testing.

Introduction

Clinical Importance of Prematurity on Brain Development

Advances in perinatal care over the past few decades have increased the number of surviving

preterm neonates. The effects of increased risk for medical conditions, learning disabilities, and

psychological problems among early preterm infants lasting into adulthood have a visible

impact on developed societies [1, 2]. Preterm birth may be associated with serious neurodeve-

lopmental impairments related to deficits in executive function and attention [3–6]. Early pre-

maturity significantly confers greater risk of autism spectrum disorders, and it is possible that

these effects may also be observed in later preterm births [7]. While late preterm birth (gener-

ally between 34 and 36 6/7 weeks’ gestation) had traditionally been regarded as a relatively

benign process due to a relatively lower neonatal morbidity and mortality compared to early

preterm birth, the substantial developmental risks of late preterm birth, including cerebral

palsy, are now better appreciated [8–10]. Developmental delay and increased academic difficul-

ties are more common amongst even healthy children born late preterm with a risk of develop-

mental delay approximately one-third higher than term infants [11, 12].

This study aims to ascertain possible functional connectivity and anatomical connectivity

alterations in children born at late preterm that could relate to neurocognitive differences.

Role of Default Mode Network in Brain Development

The default mode network (DMN) is a group of neuroanatomical structures acting in syn-

chrony at-rest as indicated by resting state functional MRI (RS-fMRI) that are thought to inte-

grate associative information and play a role in self-referential (introspective) thought activities

[13, 14]. The late third trimester (32–40 weeks’ gestational age) serves as a critical period to
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form the foundation of the DMNmarked by substantial increases in white matter architecture

with gains from a rich-club network of highly clustered cortical hubs into a more globally inte-

grated network [15, 16]. Importantly, these early DMN elements in infancy are mostly com-

prised of posterior structures such as posterior cingulate cortex (PCC), precuneus and parietal

cortex with frontal structures emerging and increasing in connection strength alongside

increased myelination across development [17–21]. Rudimentary posterior DMN connectivity

patterns are observed in term infants, but not preterm infants (even at term-equivalent age),

suggesting the late third trimester constitutes an important developmental epoch for DMN

formation [22]. In addition, others have shown progressive formation of DMN connections

between 29 and 40 weeks gestational age [23]. This finding is in distinction to the earlier emer-

gence of other functional networks (e.g. auditory, visual and somatosensory) [18]. Highly clus-

tered networks constituting early forms of resting state networks including salience, central-

executive and default mode networks are apparent at 30 weeks’ gestational age, and these

highly organized rich-club networks may be more vulnerable to injury during the late preterm

period [16]. Therefore, targeted examination of resting state network formation during the late

preterm period in this study is logical due to its later formation and concomitant vulnerability

to insults related to prematurity.

Vulnerability of Posterior Default Mode Network in Prematurity

Preterm birth-related effects demonstrate a posterior predilection with greater grey matter

reductions in the parieto-occipital cortices and white matter injury predominantly affecting the

posterior limb of the internal capsule and posterior portions of the corpus callosum [24–26].

Animal models of hypoxic-ischemic injury to model prematurity support this posterior injury

bias with reactive astrocytes and microglia in these regions [27]. Because of the aforementioned

predilection for preterm brain injury to the posterior portions of the cerebrum and the impor-

tance of the posterior DMN formation during infancy, this study focused on examining differ-

ences between children born at late preterm versus term within elements of the posterior

DMN. To our knowledge, this is the first time that structural and functional connectivity have

been examined simultaneously to assess the consequence of vulnerabilities during the late pre-

term period of brain development. We specifically focus on posterior cortical vulnerability in

relation to resting state networks from a seed-based approach examining the posteromedial

cortex and lateral parietal cortex.

Materials and Methods

Subjects

As part of a longitudinal international collaborative investigation of the genetic and environ-

mental influences of prematurity on long-term neurocognitive functioning and health out-

comes, 19 preadolescent pairs of twins (38 participants aged 9–13 years) were recruited from

Minas Gerais, a developing region in Northeastern Brazil. The preadolescent twin pairs were

recruited through an existing twin registry by newspaper advertisements. The registry is com-

prised of twins who had participated in prior studies investigating genetic influences on oral

health [28, 29]. Sampling for this longitudinal program aims to balance zygosity (i.e., equal

numbers of monozygotic and dizygotic twin pairs), prematurity, term birth, and gender.

Ethics Statement

Research protocols were approved by local Institutional Review Boards in the United States

(New York University, University of Pittsburgh and University of Southern California) and
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Montes Claros, Brazil (Universidade Estadual de Montes Claros). Written informed consent

was obtained from study participants’ parents or legal guardians.

Neurocognitive Measurements

Neurocognitive measures employed in this study included the Rey-Osterrieth Complex

Figure Test (CFT), the Trail-Making Test (Children’s Version, Parts A and B), and selected

non-verbal subtests from the NEPSY-II, including Memory for Designs (Immediate and

Delayed), Affect Recognition, 3D Block Construction, Geometric Puzzles and Route Finding.

Neurocognitive test administration was carried out in Portuguese by a Brazilian neuropsychol-

ogist after all test instructions had been translated into Portuguese. Moreover, an experienced,

American neuropsychologist (JLW) was present for much of the neurocognitive test adminis-

tration to ensure consistency and adherence to testing protocols. The neurocognitive tests were

scored in accordance with published procedures [30] and US norms were used as a reference

point for the NEPSY-II subtests. While abnormal results were not defined in reference to a nor-

mative sample, the use of US norms is not expected to affect the group level comparisons given

that identical procedures were applied to both groups.

Diffusion Tensor Imaging

Data Acquisition Protocol. Diffusion scans were acquired at 1.5 T with the following

parameters: Spin-Echo EPI, TR = 6000 ms, TE = 90 ms, slice thickness = 2 mm, matrix = 112 X

112, FOV = 22.4 cm X 22.4 cm, SENSE factor = 2, b value = 1000 s/mm2, one scan acquired

without diffusion weighting (b = 0 s/mm2) and 32 scans acquired with diffusion gradient direc-

tion according to the Philips Achieva 32-direction sequence.

Probabilistic Tractography Analysis. Between-group probabilistic tractography analysis

was carried out in a similar manner as a previously published method [31]. Diffusion tensors

were estimated from diffusion scans after distortion correction and co-registration with seg-

mented 3D-T1-weighted images using BrainSuite (http://brainsuite.usc.edu) including the

SVReg atlas [32–34]. Seed regions were generated from anatomical labels for individual sub-

jects and manually edited for each study to ensure precise correspondence with anatomical

landmarks on a participant-specific basis. The posterior DMN seeds included the posterior cin-

gulate and precuneus, both collectively and separately. Lateral inferior parietal cortex was also

used as a seed related to the posterior DMN. These regions of interest were then applied as

seed points for probabilistic tractography analysis using FSL ProbTrackx (FDT Toolbox, ver-

sion 2.0; http://fsl.fmrib.ox.ac.uk/fsl/fsl-4.1.9/fdt/fdt_probtrackx.html). This process is depicted

graphically in Fig 1. Following seed placement, streamlines representing tracts to and from

these regions were reconstructed. 1000 streamlines were initiated from each seed voxel; the

stopping criterion was a curvature threshold of 80 degrees. The number of streamlines through

each voxel was divided by the total number of streamlines. These maps were spatially normal-

ized into MNI space using routines in SPM8 (Wellcome Institute of Cognitive Neurology, Lon-

don, UK). A white matter map was segmented from an anatomical T1-weighted image and

then spatially normalized into MNI space using a pediatric white matter template; the same

transformation was then used for the streamline maps. A GLM was used with preterm status

the variable of interest; and sex and age as covariates of no interest. A clustered wild bootstrap

(5000 repetitions, Rademacher distribution) was used [35] in order to appropriately handle the

different sources of variance (e.g. within-family, between-family). For each bootstrap replica-

tion, the residual multipliers were kept the same for each voxel in order to accurately account

for the effects of spatial autocorrelation. T-scores were determined as the mean over the boot-

strap repetitions divided by the standard deviation. T-scores were then converted into Z-scores.
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AMonte-Carlo simulation [36] which estimates intrinsic spatial autocorrelation via “noise”

maps obtained from the fit residuals was used to determine family-wise-error (FWE) statistical

significance. FWE corrected p< 0.05 was determined to be at Z> 2.75, spatial filtering at σ =

3 mm, spatial extent threshold at 200 voxels (= 1600 mm3).

Resting State Functional Connectivity

Data Acquisition Protocol. Resting-state BOLD was acquired on a Philips 1.5T Achieva

scanner. Scan parameters were: TR = 3000 ms, TE = 50 ms, FOV = 21.1 cm X 21.1 cm, imaging

Fig 1. Summary of Tractography Methods. Probabilistic tractography comparison between groups was performed as summarized above [33, 87, 88].

doi:10.1371/journal.pone.0130686.g001
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matrix = 80 X 80, slice thickness = 4 mm, 30 slices acquired covering the whole brain, SENSE

factor = 2, 100 volumes acquired for a total scan time of 5 minutes per run. Two scan runs were

acquired: one with the child asked to keep his eyes open, and one with eyes closed. There was a

brief time gap (approximately 15 seconds) between runs to allow the examiner to provide

instructions to study participants to close their eyes.

Functional Connectivity Analysis. The data processing procedure closely followed that of

Power et al. [37], shown to greatly minimize the risk of spurious results due to participant

motion. Slice timing correction was performed using sinc interpolation with elimination of the

first two TRs. The best reference frame for motion correction was found via minimization of

an intensity-based cost function. Parameters for motion correction (affine) were found using a

pyramid iterative routine [38]. The reference frames were transformed to the EPI template (in

MNI space) using routines in SPM8 and resampled to 3 mm isotropic spatial resolution. A

study-specific template was constructed via averaging the normalized reference frames across

all participants and (rigid-body) coregistering the averaged reference template to the EPI tem-

plate. Each reference frame was then normalized to the study-specific template. Each frame

from each dataset was motion corrected (using the parameters found from above) and trans-

formed into MNI space (using the transform found above) in a single step and normalized to

global mean = 1000. The BrainSuite parcellation was also normalized into MNI space using the

same transform. The mean voxelwise standard deviation between frames (DV) and the frame-

wise displacement (FD) parameters (from the motion correction) were computed. Acceptable

frames were those with DV< 30 and FD< 0.2 mm. The entire dataset was discarded if there

were less than 40 usable frames. For each seed region (precuneus, posterior cingulate, postero-

medial cortex, and angular gyrus), the seed time course was extracted by averaging over all vox-

els within the BrainSuite parcellation. Nuisance regressors (consisting of the parameters from

the motion correction, linear and quadratic drift, and global signal mean) were regressed out of

the seed time course. White matter and CSF signals were not included in the nuisance regres-

sors, as their impact on results from group analysis has been shown to be minimal [37]. The

seed time course was band-pass filtered with the pass band between 0.009 and 0.08 Hz, using

only the retained frames, as the salient information in RS-fMRI is contained within this fre-

quency band [39–43]. The seed time course was regressed on all voxels in the brain, using the

nuisance regressors described above as covariates of no interest. The T-scores were retained for

second level analysis. For second-level analysis, each participant was only included if there

were at least 40 retained frames from each dataset (eyes open and eyes closed) and at least 100

total frames retained (corresponding to 5 minutes or more acquisition time). This resulted in

retaining data from 25 (11 full-term, 14 preterm) out of the 38 participants while discarding

data from the other 13 of the participants. A GLM was used with preterm status the variable of

interest; and sex, age, eyes open status, square root of number of frames from the eyes open

run, and square root of number of frames from the eyes closed run as covariates of no interest.

A clustered wild bootstrap (1000 repetitions, Rademacher distribution) was used in order to

appropriately handle the different sources of variance (e.g., within-participant, within-family,

and between-family). For each bootstrap replication, the residual multipliers were kept the

same for each voxel in order to accurately account for the effects of spatial autocorrelation. T-

scores were determined as the mean over the bootstrap repetitions divided by the standard

deviation. T-scores were then converted into Z-scores. A Monte-Carlo simulation [36],

which estimates intrinsic spatial autocorrelation via “noise”maps obtained from the fit residu-

als, was used to determine family-wise-error (FWE) statistical significance. FWE corrected

p< 0.05 was determined to be at Z> 3.25, spatial filtering at σ = 4 mm, spatial extent threshold

at 100 voxels (= 2700 mm3).
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Results

Patient Characteristics

We report results from a community-based cohort of low-to-moderate socioeconomic status

preadolescent (ages 9–13) twin pairs born late preterm or at full term. This study is part of an

international collaborative longitudinal research program to investigate genetic and environ-

mental influences on prematurity, long-term neurocognitive functioning and general health

outcomes. The preadolescents in this study were recruited from a city in Northeast Brazil

(Montes Claros, pop. ca. 410,000). This region not only has a high incidence of natural multiple

gestation pregnancies but also a high rate of late preterm birth coupled with limited healthcare

resources [29]. As a result, none of the preadolescents had ever been hospitalized as infants in a

neonatal intensive care unit. Therefore, this cohort provides a unique opportunity to analyze

the longitudinal impact of prematurity-related stress during the late third trimester of brain

development on the organization of developing neural systems. Late preterm birth was defined

as gestational age between 34 and 36 weeks. The term controls group was defined as gestational

age greater than 37 weeks without perinatal complications. There were a total of 38 pre-adoles-

cent children recruited with a median age of approximately 10 years for late preterms and

approximately 10 years for term controls. Thirteen resting-stated BOLDMRI studies were

removed for technical reasons (motion-related artifacts) resulting in a total of 25 subjects for

final functional connectivity analysis (11 preterm and 14 full-term preadolescent children).

Neurocognitive Assessment

The neuropsychological test battery performed by all participants included the Rey-Osterrieth

Complex Figure Test (CFT), the Trail Making Test (children’s version), and selected subtests

of the NEPSY-II assessing visuospatial, visuo-perceptual, and memory functions: Affect

Recognition, Memory for Designs, Block Construction, Geometric Puzzles, and Route Finding.

No significant difference in cognitive performance was seen between preterm and term preado-

lescents after controlling for age (MANCOVA, F (12,27) = 0.735, p> 0.5). A nominally

significant difference in the direction of the preterm preadolescents outperforming the term

preadolescents was detected only on Block Construction (F (1,37) = 4.131, p = 0.049), not sur-

viving correction for multiple comparisons.

Resting State Functional Connectivity Results

Posteromedial Cortex. Late preterm individuals during preadolescent childhood

demonstrate increased functional connectivity when seeding from the PMC as shown in Fig 2.

Increased functional connectivity strength was noted within the posterior DMN of the parietal

and occipital cortices. Significantly increased anti-correlation was present within the dorsolat-

eral prefrontal cortex for late preterms – a key component of the central-executive network.

As shown in Fig 3, the patterns of connectivity increases in late preterm individuals demon-

strate similar increased connectivity within the posterior parietal and occipital cortices of the

posterior DMN for both precuneus and posterior cingulate seeding. Posterior cingulate seeding

demonstrated slightly greater increased connectivity within the posterior DMN. More impor-

tantly, the posterior cingulate cortex seeds demonstrated anti-correlation with the salience net-

work components (insular cortex) and central executive network (prefrontal cortex) not

observed with precuneus seeding. This finding suggests decreased connectivity involving both

the salience and central-executive networks in late preterm children.

Altered Brain Connectivity in Late Preterm Children
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Strength of increased functional connectivity within the posterior DMN was greater for the

right hemispheric seeds compared to left-sided seeding as displayed in Fig 4 and verified by sta-

tistical testing (data not presented).

Lateral Parietal Cortex. Hyperconnectivity of the DMN in late preterm children was also

demonstrated when seeding from the lateral parietal cortex (superior marginal and angular

gyri) as shown in Fig 5 with increased connectivity of posterior DMN structures as well as the

anterior cingulate cortex. Components of the right salience network (insular cortex) and execu-

tive network (frontal cortex) demonstrate increased anti-correlation when seeded from the

parietal cortex similar to the posterior cingulate cortex seed results. Increased connectivity to

predominantly posterior DMN structures from lateral parietal seeding was present for both

sides, but overall magnitude was greater for the left seed.

Probabilistic Tractography Results

Posteromedial Cortex. Increased streamlines were demonstrated within the right inferior

longitudinal (occipitotemporal) fasciculus (ILF) and overlapping inferior fronto-occipital fas-

ciculus (IFOF) as shown Fig 6. These areas of increased structural connectivity overlap with

the sagittal stratum, which constitutes an axon-rich bundle to the occipital lobe including ILF,

IFOF and posterior thalamic radiation (PTR) [44]. The ILF connects the occipital lobe with the

anterior portions of the temporal lobe [45]. The ILF contains both direct fibers the occipital

lobe to the temporal lobe as well as short association fibers (subcortical U fibers) as an indirect

Fig 2. Posteromedial Cortex Connectivity Comparison of Late Preterms versus Term Control Children. Representative plots on standard anatomic
images demonstrate increases in functional connectivity in late preterms within the posterior DMN components. There is significant decreased connectivity to
components of the executive network (right frontal). These findings are consistent with late prematurity-related posterior DMN hyperconnectivity and
increased anti-correlation (decreased functional connectivity) to the central-executive network.

doi:10.1371/journal.pone.0130686.g002
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occipitotemporal projection system [46]. Decreased white matter integrity within the ILF is

thought to generate difficulties with object recognition, cognition, visual memory, emotional

processing and has been implicated in visual hallucinations in schizophrenia [45–49]. Overlap-

ping with this fiber bundle is the inferior fronto-occipital fasciculus (IFOF, also referred to as

the inferior occipitofrontal fasciculus), which connects the orbito-frontal, temporal and occipi-

tal regions. This is thought of as a pathway for integrating association cortices with the prefron-

tal cortex [50]. Both ILF and IFOF share projections from the posterior temporal and occipital

lobes [50, 51].

In seeding the right and left posteromedial cortex as depicted in Fig 7, both seeds resulted in

significantly increased streamlines within the late preterm children compared to control chil-

dren within the right ILF/IFOF as previously discussed although the left seed streamlines

appear less substantial. Decreases were seen in the posterior corpus callosum (splenium) for

the left PMC seed, implying decreased interhemispheric connectivity. Decreases for the right

PMC seed are demonstrated within the left posterior parietal-occipital white matter. Left PMC

Fig 3. Subdivision of PMC functional connectivity into precuneus and posterior cingulate components. RS-fMRI analysis of the PMC demonstrates
increased connectivity in the posterior default mode network for PMC and its components. Anti-correlation with the salience and central-executive networks
was only observed with the posterior cingulate seed and not when seeding the precuneus, however.

doi:10.1371/journal.pone.0130686.g003

Fig 4. Laterality of functional connectivity patterns of the posteromedial cortex. Increased functional connectivity is demonstrated for both left (A) and
right (B) PMC seeds within the posterior DMN with greater connectivity for the right hemispheric seeds. Decreased connectivity (increased anti-correlation) is
seen within the central executive network.

doi:10.1371/journal.pone.0130686.g004
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seeding, on the other hand, demonstrated increased streamlines within subcortical white mat-

ter in the region of the right lateral parietal cortex, implying increased anatomical connectivity

to the default mode network hub.

Lateral Parietal Cortex. Seeding from the right lateral parietal cortex as shown in Fig 8

demonstrated reduced streamlines within the posterior corpus callosum as in the case of the

left PMC seed, suggesting a common reduction in interhemispheric connectivity. Increased

streamlines for late preterm children are noted within the subcortical white matter near the

supplementary motor area.

Discussion

Functional Hyperconnectivity of the posterior DMN in Late Prematurity

Late preterm birth is increasingly recognized as an important influence in brain development

with documented impairments in learning and neuropsychological performance [52]. In our

examination of preadolescent children born late preterm imaging anatomical and functional

Fig 5. Lateral Parietal Cortex Connectivity Comparison of Late Preterms versus Term Control Children. Increased connectivity within late preterm
children is present predominantly within the posterior DMN when seeded from the angular and superior marginal gyri, although some increased connectivity
was observed within the anterior cingulate cortex of the DMN. Decreased connectivity was observed within components of the salience network (insular
cortex) and central executive network (prefrontal).

doi:10.1371/journal.pone.0130686.g005
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connectivity highlights key differences even in the absence of differences in results on neuro-

psychological testing. Connectivity was increased in late preterm children predominantly

within the posterior default mode network and associated with greater anti-correlation to

right-sided components of the salience and executive networks. These findings are suggestive

Fig 6. Increased Structural Connectivity related to the Posteromedial Cortex within IFOF and ILF.Using probabilistic tractography from the right PMC
seed, increased streamlines were demonstrated within the right inferior longitudinal (occipitotemporal) fasciculus (ILF) and overlapping inferior fronto-
occipital fasciculus (IFOF). These increased streamlines overlapped with the axon-rich sagittal stratum. Color bars indicate increased streamlines (+2.1 to
+4.1) and decreased streamlines (-2.1 to -4.1).

doi:10.1371/journal.pone.0130686.g006

Fig 7. Comparison of Tractography Differences between the Right and Left Posteromedial Cortex. Seeding from both the right and left posteromedial
cortex demonstrated increased streamlines within the right ILF/IFOF, but the magnitude of increased streamlines was greater for the right PMC seed.
Decreases within the splenium (mostly within the more right aspect) were seen with left seeding while at the same time significant increases were seen within
subcortical white matter near the right lateral parietal cortex. Right seeding also showed decreases within the left posterior parietal subcortical white matter.
Color bars indicate increased streamlines (+2.1 to +4.1) and decreased streamlines (-2.1 to -4.1).

doi:10.1371/journal.pone.0130686.g007
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of key functional connectivity alterations in late prematurity without significant differences in

cognitive functioning.

During the late third trimester, what mainly shapes brain development is the organization

and reorganization of connections between existing neurons, as neurogenesis is considered

largely complete [53]. At the macroscopic level, the developing connectivity is reflected in the

dramatic changes in brain mass and volume, which increase by 35% and 50% respectively in

the last six weeks of fetal development [54]. At a microscopic level, the developing connectivity

is reflected in the outgrowth of axons and the formation of synapses between newly formed

axons and dendrites—first, constructing thalamocortical networks and later, corticocortical

networks, including the DMN [55]. In contrast to the early preterm period (i.e.,< 32 weeks),

which is characterized by an ingrowth of thalamocortical connections into the developing

cortex, the late preterm period is characterized by an ingrowth of callosal and long-range intra-

hemispheric corticocortical afferents into the developing cortex. Recent work has shown that

signaling mechanisms that guide such axonal ingrowth as well as synaptogenesis are at low lev-

els in late prematurity [56]. While several studies have shown how premature birth during the

early preterm period (26–32 weeks) affects the development of visual, auditory, and somato-

sensory networks, it is less certain how the environmental stress of late premature birth (32–36

weeks) may affect the development of the DMN and how such possible alterations can affect

brain organization.

Recent progress has been made in understanding the early formation of resting state net-

works during late gestation. Some research posits a rich-club network of highly clustered

Fig 8. Lateral Parietal Cortex Structural Connectivity. Anatomic-based seeding from the lateral parietal cortex (superior marginal and angular gyri)
demonstrates decreased streamlines involving the splenium of the corpus callosum and increased streamlines within the frontal white matter near the
supplementary motor area. Color bars indicate increased streamlines (+2.1 to +4.1) and decreased streamlines (-2.1 to -4.1).

doi:10.1371/journal.pone.0130686.g008
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cortical hubs within the infant brain develops by 30 weeks' gestation [16]. The late gestational

period may transition from a small number of densely connected hubs into a more globally

integrate network [15]. Interestingly, these rich-club regions match those areas of hypercon-

nectivity represented in our study—the dorsal/medial frontal cortex, parietal cortex, precuneus,

hippocampus, insula, cingulate cortex, angular and fusiform gyri [15]. During the final trimes-

ter, connections between these rich-club hubs and the remainder of the cortex increase [16].

Expected normal maturation should result in a broadly distributed network with decreased

connectivity within clustered rich-club networks. Instead, we report increased connectivity

from lateral parietal and PMC seeds to components of these rich-club networks, implying pre-

served connections to these less mature networks. Therefore, the observation of hyperconnec-

tivity in rich-club networks during late preterms during childhood in our study may indicate a

failure to progress beyond these initial rudimentary resting networks to a more mature, distrib-

uted network.

Despite lacking significant cognitive differences between preadolescent children born late

preterm versus at term in this study, there remains valuable information regarding possible

anatomical and functional connectivity explanations for increased risk of developmental delay

and cognitive disability with prematurity. Because of an increased risk of autism with preterm

birth, preterm birth could share changes in brain connectivity with autism [57, 58]. In addition,

some investigators attribute autistic behavior to a lack of integrating associative

information – a function of the DMN [59]. In autism, increased dendritic spine density has

been observed within the frontal, temporal and parietal cortex that correlated inversely with

cognitive function [60]. These finding suggests a possible pathophysiological link to decline in

cognitive function in autism with greater dendritic spine density thought to correspond to

excessive excitatory connectivity [61]. Functional connectivity studies are varied in autism, but

some show a decrease in connectivity between the anterior cingulate with the PMC in autism;

findings of a lack of anterior-posterior connectivity in the DMNmay also be seen in preterm

infants [62–64]. On the other hand, increases in task-related activation in autism have been

observed within the parietal cortex [65].

Increased excitatory activity or, as suggested in our study, excess functional hyperconnectiv-

ity within posterior DMN structures may relate to disruption of normal synaptic pruning that

is expected to occur postnatal development, but may be altered in a variety of conditions such

as autism and obsessive-compulsive disorder [66, 67]. In our study, increased functional con-

nectivity within the posterior DMN in late preterms was seen without significant abnormalities

on neurocognitive testing. In an animal model of prenatal valproic acid exposure, neocortical

pyramidal neurons were found to have increased local connectivity that was more sensitive to

excitation and more active [68]. Therefore, the absence of normal synaptic pruning may lead

to neural hyperactivity. Work examining young rhesus monkeys previously demonstrated

effective postnatal pruning with a substantial decrease in axonal connections from birth. Pre-

maturity could effectively halt this selective axonal pruning and thereby explain findings of

hyperconnectivity that persist into childhood. [69, 70]. More recent work in a murine model

shows that deficits in synaptic pruning by microglia lead to immature brain circuitry [71].

While the clinical significance of hyperconnectivity observed in this study is not definitively

associated with cognitive dysfunction, the context of these findings combined with that of oth-

ers in autism and prenatal injury strongly suggests that a developmental deficit in pruning of

local connections may be responsible for neurocognitive deficits seen in late prematurity. This

lack of pruning may occur with greater preponderance in the posterior regions as indicated by

predominant hyperconnectivity within the posterior default mode network and established

posterior cortical vulnerability.
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Selective Increased Anatomical Connectivity in Late Prematurity

Probabilistic tractography differences were less pronounced in comparison to the previously

described functional connectivity findings as expected in this group of late preterms without

significant cognitive deficits. Nevertheless, in this study, we observe selectively increased

streamlines in our probabilistic tractography analysis of later preterm versus term infants

within the region of the right inferior occipito-frontal fasciculus (IFOF) and right inferior lon-

gitudinal (occipito-temporal) fasciculus (ILF). In addition, the left PMC showed increased

streamlines within right parietal white matter. These increases occurred in the setting of

decreased streamlines within the splenium of the corpus callosum from the left PMC and

right lateral parietal cortex, thereby implying deceased interhemispheric connections.

Previously, others [72] have noted increased anisotropy in the sagittal strattum (which

includes IFOF and is adjacent to the ILF) in preterms. These changes were bilateral but more

substantial within the right, interestingly. More recent work by Feldman and colleagues shows

increased fractional anisotropy (FA) within the right inferior fronto-occipital/inferior longitu-

dinal fasciculi posteriorly and bilateral superior longitudinal fasciculi in high functioning pre-

terms during adolescence [73]. Others previously showed increased FA within the inferior

fronto-occipital fasciculus and uncinate fasciculi in very preterm individuals at young adult-

hood [74].

On the other hand, earlier voxel-based morphometry studies of earlier preterms show

decreased white matter volume in the longitudinal fasciculi both during infancy and early ado-

lescence [75, 76]. In preterm VLBW infants with deficits, FA is lower in the inferior fasciculus

and inferior fronto-orbital fasciculus [77], but this is not a comparable study to our group of

late preterms and in Skranes’ group, most patients had ventriculomegaly and other abnormali-

ties. Moreover, it is uncertain whether there is initial insult in this region indicated by low FA

that subsequently recovers during development with later increases when these preterm infants

are imaged during later childhood or early adulthood.

We propose that the finding of increased right IFOF/ILF streamlines suggests compensatory

increased anatomical connectivity within the right hemisphere. The conventional pathway for

semantic language processing follows the inferior fronto-occipital fasciculus (IFOF) with the

inferior longitudinal fasciculus (ILF) constituting an indirect pathway [78]. Prior work in

preterms during adolescence hypothesizes that differences represent recruitment of an alterna-

tive language circuit with bilateral ventral pathway involvement [79, 80]. These findings of

bilateral language pathway formation with prematurity can be thought of as an arrest of normal

left-side language dominance occurring during the final trimester of prenatal development

[81]. In a study of children with stuttering, only the right inferior longitudinal fasciculus and

uncinate fasciculus demonstrated increased anatomical connectivity with higher FA in stutter-

ing children [82]. In general, increased FA within the uncinate and arcuate fasciculi corre-

sponds to better performance on language tasks [83]. Therefore, increased streamlines in our

probabilistic tractography in this region in late preterms with normal cognitive performance

may suggest a pattern of compensatory neural circuitry that is consistent with others' work

[73].

Another possible explanation for selective increased streamlines within the IFOF and ILF in

late preterm infants may represent aberrant white matter development that affects brain func-

tion not assessed by conventional neuropsychological tests. Prior work in William’s syndrome

has shown similar increased FA within the IFOF that is thought related to increased myelina-

tion [84]. While these patients had changes within the right fusiform gyrus that corresponded

to social cognition scores, no significant correlations were observed for white matter changes

including the IFOF and test results [84]. Moreover, ex-preterms have been found to have social
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deficits that related to alterations within emotional processing networks [85]. Hyperconnectiv-

ity is also documented in autism and is directly correlated with social dysfunction [86]. Our

work adds to increasing evidence suggesting hyperconnectivity within emotional processing

networks may serves as the basis for social deficits in ex-preterm individuals.

Study Limitations

This study included individuals who were born at late preterm versus term gestational age and

examined brain development during the preadolescent period. One important aspect of this

study population is the lack of early perinatal intervention in a preterm population from a

poor, developing region [28, 29]. While this allows us to observe the effects of late prematurity

without bias from early intervention, our observations of differences may not correlate with

those of late preterm infants from higher socioeconomic regions, who would be expected to

exhibit less significant differences in functional and structural connectivity. In addition, other

unknown environmental variables could play a role in differences between groups. Neverthe-

less, as all study participants were recruited from the same impoverished region of a developing

country, differences between the groups would be expected to reflect the effects of late preterm

birth without early intervention although socioeconomic status was not formally measured.

In analyzing this data post hoc, there was a slight but statistically significant increase in the

number of included scans in the eyes-open condition for the preterm group, although not for

the eyes-closed condition. Accordingly, there was a slight but significant difference in the fra-

mewise displacement (FD) parameter between groups in the eyes-open condition (mean

FD = 0.10 for preterms, mean FD = 0.11 for terms) though not for the eyes-closed condition

(mean FD = 0.093 for preterms, mean FD = 0.097 for terms). As part of the functional connec-

tivity data processing, WM and CSF values were not included as regressors in the analysis as

they were not shown to significantly change the results. These minor technical limitations are

not expected to significantly affect the results of this study due to the rigorous frame inclusion

criteria, however future studies may benefit from these additional data analysis strategies.

Serial data examining patterns of development would strengthen our understanding devel-

opmental phenomena related to late preterm birth by looking at dynamic changes over time

within the individual rather than at one point in time. Despite promising results from an

increasing body of literature, both methods are indirect indicators of functional and anatomical

connectivity, respectively. Moreover, conventional DTI is limited by its inability to distinguish

tracts within axon-rich crossing-fiber regions, a limitation that may be overcome with future

work employing diffusion spectrum imaging.

One other key aspect of this study was the use of participant-specific anatomic parcellation

to accurately identify the function of the anatomic PMC structures. Function-based parcella-

tion may yield differing results that could add further detail to our study. In addition, the use of

other methods such as graph theory or independent components analysis could be helpful to

validate our findings. Moreover, future work comparing our findings with those of earlier pre-

term infants in a different setting would enrich our understanding of the magnitude of brain

development alterations related to prematurity within the posterior DMN and other critical

neuroanatomical regions.

Conclusions

Our findings support appreciable abnormalities in brain development in infants born late pre-

term even in the absence of detectable differences in neuropsychological performance. Thus,

the late prenatal period represents a key timeframe for the formation of mature resting state

networks and disruption of these neural connections may incite increased local functional
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connectivity within the posterior DMN, greater anti-correlation with salience and executive

networks and lead to the strengthening of additional axonal pathways within the inferior longi-

tudinal fasciculus and inferior fronto-occipital fasciculus that serve as compensatory alterations

or pathologic sequelae that could affect emotional processing and social function not ade-

quately assessed on routine neuropsychological testing.
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