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ABSTRACT
Aromatization of androgens is a key step in estrogen production,

and it regulates the delicate balance between estrogens and andro-
gens in the gonads and sex steroid target tissues. In the present study,
we generated transgenic mice (AROM1) bearing the human ubiquitin
C promoter/human P450 aromatase fusion gene. AROM1 male mice
are characterized by an imbalance in sex hormone metabolism, re-
sulting in elevated serum E2 concentrations, combined with signifi-
cantly reduced testosterone and FSH levels, and elevated levels of
PRL and corticosterone. AROM1 males present a multitude of severe
structural and functional alterations in the reproductive organs, such
as cryptochidism associated with Leydig cell hyperplasia, dysmorphic
seminiferous tubules, and disrupted spermatogenesis. The males also
have small or rudimentary accessory sex glands with abnormal mor-
phology; a prominent prostatic utricle with squamous epithelial meta-

plasia, and edema in the ejaculatory ducts and vas deferens. In ad-
dition, the abdominal muscle wall is thin, and the adrenal glands are
enlarged, with cortical hyperplasia. Some of the abnormalities, such
as undescended testes and undeveloped prostate, resemble those ob-
served in animals exposed perinatally to high levels of exogenous
estrogen, indicating that the elevated aromatase activity results in
excessive estrogen exposure during early phases of development.
Some of the disorders in the reproductive organs, furthermore, can be
explained by the fact that AROM1 males are hypoandrogenic, and
have elevated levels of serum PRL and corticosterone. Thus, the
AROM1 mouse model provides a novel tool to investigate the conse-
quences of a prolonged increase in conversion of androgens to estro-
gens which results in complex hormonal disturbances altering the
structure and function of various male reproductive organs. (Endo-
crinology 142: 2435–2442, 2001)

THE ROLE OF androgens in the development of male
reproductive tissues and reproductive performance is

well characterized, but the role of estrogens in male repro-
duction remains to be elucidated further. Estrogens are
known to be involved in the negative feedback regulation of
gonadotropin secretion in men (1, 2), and are important for
the masculinization of the male brain during development
and for the maintenance of sexual behavior during adult-
hood (3). The two forms of estrogen receptors (ER), ERa and
ERb, have been shown to be widely distributed in male
reproductive organs, including the testis, efferent ducts, ep-
ididymis, vas deferens, bulbo-urethral glands, prostate, and
seminal vesicles (4–6). This suggests a direct role for estro-
gens in male urogenital systems. Recently, the generation of
knockout mice as regards ERa (7), ERb (8) and P450 aro-
matase (P450arom; Ref. 9) have expanded our understanding
of estrogen action, and provided new insights into the role
of estrogens in the male. For example, ERa-deficient male
mice are infertile, presenting reduced mating frequency and

low sperm number with abnormal testicular morphology
(10). Studies on ERa-deficient male mice further showed that
the males have a failure in the reabsorption of seminiferous
tubule fluid in the efferent ductules, resulting in a defect in
posttesticular sperm maturation, leading to infertility (11).
Male mice deficient in P450arom are initially fertile but show
disrupted spermatogenesis and infertility at an older age
(12). Furthermore, ERa2/2 males, but not ERb2/2 males,
exhibit abnormal sexual behavior (13, 14). Therefore, the data
show an essential role, direct or indirect, for estrogens in
male reproductive functions.

The P450arom enzyme is the product of the cyp19 gene (15)
and it catalyzes aromatization of the A-ring of androgens
such as testosterone (T) and androstenedione, resulting in the
formation of a phenolic A ring characteristic of estrogens, E2

and estrone, respectively (16, 17). Aromatization of andro-
gens by P450arom is one of the final steps in ovarian E2

biosynthesis, but the enzyme is also widely expressed in
female and male extragonadal tissues. However, extrago-
nadal tissues lack the capacity to synthesize androgenic pre-
cursors, and estrogen production is dependent on these pre-
cursors produced in the gonads. Interestingly, androgen
receptor, ERb and ERa, as well as P450arom, are colocalized
in several tissues of male reproductive organs, often with a
cell-specific expression pattern in the tissues (6, 18). This
suggests that there is a delicate balance between estrogen and
androgen action in male reproductive organs. Most impor-
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tantly, several studies on both humans and rodents indicate
that prenatal or early postnatal exposure to exogenous es-
trogens induce severe persistent changes in the structure and
function of male reproductive organs, such as atrophic and
small testes, epididymal cysts, and abnormalities in the rete
testis (19–21). The results of some studies also suggest that
estrogens might have a central role in the mechanisms lead-
ing to male reproductive tract malformations such as cryp-
torchidism and enlarged prostatic utricle, and diseases such
as testicular (21, 22) and prostatic tumors (23).

To study further the role of estrogen/androgen balance in
male reproductive functions, we have generated a transgenic
mouse model with an imbalance in sex hormone metabolism
by expressing P450arom under the human ubiquitin C pro-
moter. The promoter is known to be activated on embryonic
day 15 in mice (24), and ubiquitous and permanent transgene
expression in a large variety of tissues is expected. Hence, in
this mouse model, there is increased conversion of andro-
gens to estrogens at all phases of testicular androgen pro-
duction, in perinatal life, during puberty and in adults. Thus,
the mouse lines developed provide a novel model to study
the physiological consequences of estrogenization of males
during various phases of their life span.

Materials and Methods

Construction of the transgene

An expression vector for human P450arom (pUbC-AROM) was con-
structed by using the pRC/CMV plasmid (Stratagene, La Jolla, CA) as
a backbone. A 2.4-kb HindIII/XbaI fragment coding for full-length hu-
man P450arom complementary DNA (cDNA; provided by Prof. Evan
Simpson, Prince Henry’s Institute of Medical Reseach, Clayton, Aus-
tralia) was subcloned into the multiple cloning site of the pRC/CMV
plasmid. The CMV promoter of the vector was then replaced with a
1.0-kb-long ubiquitin C promoter (BglII/HindIII fragment, provided by
Prof. Peter Angel, Deutsches Krebsforschungszentrum Heidelberg, Hei-
delberg, Germany). To confirm the activity of the pUbC-AROM expres-
sion vector, stable cell lines with an increased P450arom activity were
generated in HEK-293 cells.

The 4.0-kb-long pUbC-AROM fragment was released from the vector
backbone by digestion with BglII and DraI enzymes. Before microin-
jection, the fragment was resolved in 1% agarose gel and isolated by
electroelution followed by purification by means of Elutip-D columns
(Schleicher & Schuell, Inc., Keene, NH). Finally, the fragment was di-
luted in TE buffer (10 mm Tris-HCl, 0.5 mm EDTA, pH 7.5) at a con-
centration of 2 ng/ml.

AROM1 transgenic founder mice

Using the purified pUbC-AROM expression vector (Fig. 1A), trans-
genic mice were produced by a standard technique. The pronuclei of
fertilized eggs from the FVB/N strain were microinjected with the DNA
(2 ng/ml). Microinjected oocytes were implanted into oviducts of pseu-
dopregnant female mice (NMRI strain) and carried to term. Positive
founders for the transgene (AROM1) were identified by Southern blot
analysis of DNA obtained from tail biopsies. Genomic DNA (10 mg) was
digested with EcoRI and resolved by electrophoresis in 0.8% agarose gel.
The DNA was then blotted onto nylon membrane, the membrane was
cross-linked by UV, prehybridized for 1 h at 64 C in hybridization buffer
(5 3 SSC, 53 Denhardt’s solution, 0.5% wt/vol SDS), and with
[a-32P]dCTP (Amersham Pharmacia Biotech, Aylesbury, UK) -labeled
P450arom cDNA overnight at 64 C in the hybridization buffer. The
membranes were then washed in 23 SSC, 0.1% SDS once at 64 C for 15
min, once in 0.53 SSC, 0.1% SDS at 64 C for 15 min, and then exposed
to x-ray films for 1–3 days at 280 C.

Establishment of AROM1 transgenic lines

Two of the five AROM1 founder mice generated (one male, no. 33,
and one female, no. 21) were fertile and they were used to produce
subsequent generations by breeding with the wild-type (WT) FVB/N
mouse background. All the male mice born of both lines (from the F1

generation and thereafter) were infertile; hence, the transgenic lines
could be established only by mating AROM1 females with WT FVB/N
males. The phenotypic characteristics of the AROM1 male mice shown
here were obtained using F1 to F4 generations of these crossings. As the
negative fetuses of these transgenic females were also potentially ex-
posed to extra doses of estrogens during fetal life, they were not used
as negative controls. Instead, animals of WT FVB/N breeding pairs were
used for this purpose. The mice were housed one to six per cage in
controlled conditions of light and temperature. They were fed with
commercial mouse chow and tap water ad libitum. All mice were handled
in accordance with the institutional animal care policies of the University
of Turku (Turku, Finland).

For routine genotyping of the AROM1 mice, PCR analyses were
carried out using DNA extracted from tail biopsies. The sequences of the
PCR primers were as follows: 59-TGGCGAGTGTGTTTTGTG-39 (for-
ward primer) and 59-CCATCTTGTGTTCCTTGACC- 39 (reverse prim-
er). The PCR (30 cycles) were carried out in a 50-ml volume using the
following program: denaturation at 94 C for 1 min, annealing at 50 C for
1 min, and extension at 72 C for 1 min. The resulting PCR products were
analyzed by electrophoresis on 2.0% agarose gel and the 200-bp-long
PCR products were visualized with ethidium bromide.

Identification of transgene expression by RT-PCR

Total RNA was isolated from brain, heart, kidney, liver, spleen, and
testis using the acid phenol method, and RT-PCR was carried out. Four
micrograms of total RNA were incubated with 10 IU of avian myelo-
blastosis virus reverse transcriptase (Finnzymes, Espoo, Finland) at 50

FIG. 1. A, Schematic representation of the pUbC-AROM transgene
construct. The transgene consists of a 1.0-kb human ubiquitin C
promoter fragment fused with a 2.4-kb-long fragment of human
P450arom cDNA coding for the full-length protein, and a 39-untrans-
lated region and polyadenylation signal of bovine GH. B, RT-PCR
analysis of the pUbC-AROM transgene expression in 4-month-old
AROM1 male mice (line 21). The transgene was detected both in testis
and extragonadal tissues (brain, heart, and liver).
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C for 20 min. The cDNAs were then denatured at 95 C for 5 min and
amplified by 25 cycles of PCR using the following conditions: 94 C for
1 min, 50 C for 1 min, and 72 C for 1 min. The primers used were as
follows: 59-ACCTCTACACCGCTCTTC-39 (forward primer) and 59-
GCTTCTCTCACCAATAACAGTC-3 (reverse primer). As an internal
control, a 200-bp fragment of the L19 ribosomal protein gene was am-
plified, using 59-GAAATCGCCAATGCCAACT-39 (forward primer)
and 5-TCTTAGACCTGCGAGCCTCA-39 (reverse primer). An aliquot of
the RT-PCR product was subjected to agarose gel electrophoresis and
visualized by ethidium bromide staining.

Measurement of serum hormones and morphological and

histological analyses

WT and AROM1 mice were obtained at similar ages. They were
anesthetized by ip injection of 300–600 ml 2.5% avertin. Blood was
collected by cardiac puncture, and tissues were dissected out for mac-
roscopic analyses and for obtaining the organ weights. Serum samples
were separated by centrifugation and stored at 220 C until hormone
concentrations were measured. Concentrations of LH and FSH were
measured by using time-resolved immunofluorometric assays (25, 26).
Serum T was measured by RIA after diethyl ether extraction, as de-
scribed previously (27). Concentrations of E2 were measured using a
commercial RIA kit (Immunotech, Beckman Coulter, Inc., Marseille,
France), according to the manufacturer’s instructions. For histological
evaluation, the tissues were fixed in 4% paraformaldehyde, except for
the testes, which were fixed in Bouin’s solution. The tissues were then
dehydrated, embedded in paraffin, and sectioned. Two- to three-mi-
crometer-thick sections were deparaffinized in xylene and then stained
with hematoxylin and eosin.

Statistical analysis

Statview software (Statview for Windows, v. 4.57; Abacus Corpora-
tion, Berkeley, CA) was used for ANOVA and Fisher’s Protected least
significient difference post hoc tests.

Results

In the present study, transgenic mice expressing human
P450arom cDNA under control of the ubiquitin C promoter
(Fig. 1A) were generated. A total of five transgenic founder
mice (two males and three females) were identified by South-
ern hybridization analysis of genomic DNA obtained from
tail biopsies. Three of them (two females and one male) were
infertile as judged by their inability to produce offspring over
a 4-month period. This suggests that a high overexpression
of P450arom may disrupt the reproductive function both in
males and females.

The two fertile founders (one female, no. 21, and one male,
no. 33) transmitted the transgene to subsequent generations
in a Mendelian fashion, and were used to produce AROM1

transgenic lines. To analyze the distribution of transgene
messenger RNA (mRNA) expression in AROM1 mice, RT-
PCR was carried out on mRNA prepared from a variety of
tissues in the line 21. The strongest signal for transgene
mRNA was detected in the testis, and the mRNA was de-
tected at a lower level in the heart, brain, and liver (Fig. 1B).
Hence, it is evident that the transgene is expressed both in
gonadal and extra-gonadal tissues of the AROM1 male mice.

To analyze the consequences of the transgene expression
into circulating hormone concentrations, serum sex steroid
and gonadotropin concentrations were measured in
4-month-old AROM1 mice of the line 21, and were compared
with WT mice. The AROM1 male mice demonstrated ele-
vated E2 levels of 98–225 pg/ml (Fig. 2A), whereas in the WT
males E2 concentrations were below the detection limit of the

assay used (10 pg/ml). In accordance with the high E2 con-
centration, serum T concentrations in the AROM1 males
were dramatically reduced (Fig. 2B). However, detectable T
concentrations were present (65–323 pg/ml), showing that T
biosynthesis continued, providing an androgenic precursor
for E2 biosynthesis in the AROM1 males. Because sex ste-

FIG. 2. Serum hormone concentrations in AROM1 male mice (line
21) at the age of 4 months. A, E2 concentrations in the AROM1 males
were between 98–225 pg/ml, whereas, in the WT male mice, no E2 was
found above the limit of detection (10 pg/ml) of the method used. B,
T concentrations in AROM1 males were clearly reduced compared
with those in WT mice but they were still measurable. LH concen-
trations in the AROM1 males were within the normal range (C),
whereas FSH values were significantly reduced (D). PRL (E) and
corticosterone (F) concentrations in AROM1 mice were also markedly
elevated as compared with the WT mice. n 5 6–10 mice in all groups.
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roids are known to exert strong feedback effects on serum
gonadotropins, we also measured the circulating concentra-
tions of LH and FSH. No significant difference was found
between LH levels in AROM1 and WT males (Fig. 2C). How-
ever, there was less variation in the serum LH values in the
AROM1 males, suggesting that their LH secretion probably
displayed less marked pulsatility. Interestingly, the mean
serum FSH levels were moderately decreased in the AROM1

males, compared with age-matched WT mice (Fig. 2D). In
addition to the sex hormone imbalance, highly elevated lev-
els in serum PRL (Fig. 2E) and corticosterone (Fig. 2F) con-
centrations were measured in 4-month-old AROM1 males.

Continuous mating was carried out to analyze the fertility
of the AROM1 females and males up to 6 months of age. All
the AROM1 males of the F1 generation and thereafter failed
to have offspring. It was unknown why all of the males from
the F1 generation from the mouse line generated from a fertile
founder male (no. 33) were infertile. However, it is known
that the transgene expression in a mouse line may vary in the
first generations; hence, the phenotype is also often unstable
during the first generations. To determine the cause of the
infertility in AROM1 males, morphological analysis of the
reproductive organs was carried out in both AROM1 lines
(21 and 33), and multiple abnormalities were observed. The
phenotypes were similar in both of the mouse lines and were
consistent in all the mice analyzed (summarized in Table 1).
In contrast to males, the AROM1 females were not found to
have drastic defects in their reproductive functions. They
went through pregnancy, delivered pups, and nursed the
offspring. However, the possible long-term effects of ele-
vated P450arom expression in the female mice remain to be
analyzed.

Southern blot analysis indicated that the highest copy
number was present in founder number 31. The infertile male
founder showed no signs of reproductive tract dysfunction
until the age of puberty. At that time it became evident that
the external genitalia of the mouse were not developed nor-
mally, and a severe inguinal hernia was observed (Fig. 3A).

Furthermore, the testes were enlarged, with Leydig cell hy-
pertrophy/hyperplasia. However, the tubular structures ap-
peared normal in light microscopy, and thus the reason for
infertility is not known.

All the AROM1 males (F1 to F4 generations) were cryp-
torchid, with the testes located in the bottom of the abdom-
inal cavity (Fig. 3B), and the weights of the testes, epididymis,
seminal vesicles, and prostate lobes were significantly re-
duced (Fig. 3C and Table 1). In the seminiferous epithelium
of the testis, there were no germ cells beyond the stage of
pachytene, and numerous degenerating germ cells could be
seen near the lumen (Fig. 4, B and C). Furthermore, cells with
intensively staining nuclei and eosinophilic cytoplasm, mor-
phologically resembling eosinophil leukocytes, were de-
tected in seminiferous tubules (Fig. 4, C and E). In addition,
numerous vacuoles of different sizes were observed within
the seminiferous epithelium (Fig. 4, B and C). The intersti-
tium was enlarged and filled with two populations of cells,
namely hypertrophic Leydig cells and large multinucleated
cells (Fig. 4, C and D). The Leydig cells displayed swollen
cytoplasm and ocular nuclei, and appeared to be larger than
those of the WT males.

As another steroidogenic organ, we analyzed the weights
of adrenal glands of 4-month-old male mice, and they were
significantly greater than those of control mice at the same
age (Table 1). In line with the increased corticosterone pro-
duction, histological examination showed adrenocortical hy-
perplasia (Fig. 4, G and I), with pronounced expansion of the
innermost cortical layer, apparently the X-zone, filled with
large centripetal vacuole-filled structures (Fig. 4I).

Histological examination further confirmed the small sem-
inal vesicles and prostate glands (Fig. 3) with undifferenti-
ated stratified epithelium and uncanalized bud-like forma-
tions surrounded by dense fibromuscular stroma (Fig. 5B). In
the collecting ducts, squamous epithelial metaplasia (Fig. 5C)
was present in all AROM1 males analyzed, although the
extent varied from animal to animal. In some AROM1 males
a prominent prostatic utricle with keratinized stratified squa-

TABLE 1. Reproductive phenotypes in AROM1 male mice

Phenotype Line 21 Line 33 FVB/N control

Infertility Yes Yes
Cryptorchidism Yes Yes
Testis size Reduced Reduced
Testis histology Leydig cell hyperplasia Leydig cell hyperplasia

Abnormal seminiferous tubules Abnormal seminiferous tubules
Epididymis Reduced Reduced
Prostate size Reduced Rudimentary
Seminal vesicle size Rudimentary Rudimentary
Adrenal gland size Enlarged Enlarged
Adrenal gland histology Cortical hyperplasia Cortical hyperplasia
Abdominal muscle layer Thin Thin
Pituitary gland Enlarged Enlarged
Mammary gland Gyneacomastia Gyneacomastia

Organ weights
Testis 47.0 6 11.34 mga 57.3 6 16.70 mga 102.7 6 12.65 mg
Epididymis 23.5 6 5.85 mga 24.5 6 6.12 mga 46.2 6 7.48 mg
Adrenal gland 6.59 6 1.256 mga 6.33 6 7.340 mga 2.07 6 0.490 mg
Pituitary gland 8.11 6 1.526a 5.70 6 0.361 mga 2.20 6 0.497 mg

The macroscopic phenotype in males from AROM1 lines 21 and 33 was analyzed at the age of 4 months. The phenotype was consistent in
all mice analyzed. The organ weights were collected from 6–12 specimens, and data show the mean 6 SD.

a P # 0.001 vs. control.
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mous epithelium was observed (Fig. 5D). In addition, pro-
nounced expansion of the extracellular spaces in the stromal
layer of ejaculatory ducts was frequently seen bi- or unilat-
erally (Fig. 5E).

Discussion

Male mice with ubiquitin C/P450arom transgene expres-
sion (AROM1 mice) developed severe abnormalities in var-
ious parts of their reproductive organs and were infertile.
The enhanced P450arom expression was shown to lead to
highly elevated serum E2 concentrations, whereas T concen-
trations were reciprocally decreased. Thus, the AROM1

mouse model provides a novel tool to investigate the con-
sequences of prolonged imbalance in the serum androgen to
estrogen ratio and, in particular, of excessive estrogen ex-
posure on male reproductive organs and functions. The topic
is of general interest as there have been several reports on
endocrine disrupters that may estrogenize males of various
species, leading to disturbances in reproductive functions
and behavior (28). However, it is still not known whether

these abnormalities are due to the hormonal or toxic effects
of these compounds, and the mouse model generated could
be used to discriminate these two components.

Recently, another transgenic mouse model with P450arom
overexpression was developed using mouse mammary tu-
mor virus promoter (29). Mouse mammary tumor virus is
active in male reproductive tissues as well as in the mam-
mary gland. About half of these male mice (int-5/aromatase)
were infertile and/or had enlarged testes. Histological anal-
ysis showed the mice to have Leydig cell hyperplasia and
Leydig cell tumors unilaterally or bilaterally (30). However,
serum E2 levels measured in the int-5/aromatase mice were
much lower than those in the AROM1 mice generated in the
present study (5.7 and 150 pg/ml, respectively), and it is
likely that this difference is not explained solely by meth-
odological differences. The difference in the peripheral con-
centrations of E2 between the AROM1 mice and int-5/aro-
matase mice most probably bears a biological significance as
regards the development of the phenotype. In contrast to the
severe structural and functional alterations in AROM1 mice,

FIG. 3. A, Inguinal hernia (indicated
with arrow) in an infertile adult
AROM1 male founder. B, Undescended
testes in adult 4-month-old AROM1

males (line 21) were found in the F1

generation and thereafter. The testes
are indicated with arrowheads. C,
Adult AROM1 males also present un-
derdeveloped seminal vesicles (SV) and
small testes (TE). BL, Urinary bladder.
Age-matched WT controls are shown on
the left.
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no changes of the male accessory sex glands were reported
in int-5/aromatase mice. In addition, in AROM1 mice PRL
and corticosterone production is also markedly elevated,
whereas these effects were not reported in the int-5/aro-
matase mice.

The AROM1 males display several of the changes ob-
served in males perinatally exposed to estrogens (19–23),
such as undescended testes, testicular interstitial cell hyper-
plasia, hypoandrogenism, and growth inhibition of acces-
sory sex glands. The AROM1 mice were generated by using

FIG. 4. Testicular and adrenal gland histology of adult WT and
AROM1 (line 21) male mice at the age of 4 months. A, WT mouse
testis. S, Seminiferous tubule; I, interstitial cells. B and C, The volume
of interstitium (I) is increased in AROM1 mice and contain enlarged
Leydig cells (L) and giant cells (Gi) with multiple nuclei. In addition,
degenerating germ cells within the seminiferous epithelium and nu-
merous vacuoles (arrowheads) of different sizes are present in
AROM1 testis. There are no germ cells beyond the stage of pachytene
spermatocytes (P). Cells with intensively stained nuclei and eosino-
philic cytoplasm (arrows), morphologically resembling eosinophil leu-
kocytes, are frequently present in the seminiferous epithelium of
AROM1 mice. D and E, Higher magnifications showing enlarged
Leydig cells (L) and eosinophil-like cells (arrow), respectively. F and
H, WT mouse adrenal gland. G and I, Adrenal gland of AROM1 mice
(line 21) displaying adrenocortical hyperplasia. Low-power magnifi-
cations (F and G) through the adrenal cortex (Cx), demonstrates the
increased cortical thickness in AROM1 mice. The high magnification
(H and I) show the pronounced expansion of the innermost cortical
layer in AROM1 mice, filled with large centripetal vacuole-filled
structures. Me, Adrenal medulla. Bars, 100 mM (F and G), 50 mM (A-C,
H, and I), and 10 mM (D and E).

FIG. 5. Morphology of the urethroprostatic complex in a 4-month-old
AROM1 male mouse (panels on the right). The corresponding struc-
tures in an age-matched WT mouse are shown on the left. Transverse
section through prostatic urethra (A), dorsolateral prostate (B), pos-
terior collecting ducts (C), prostatic utricle (D), and ejaculatory ducts
(E). Ur, Urethral lumen; ED, ejaculatory ducts; PCD, posterior col-
lecting ducts; PU, prostatic utricle. In the AROM1 male there is poorly
developed prostate gland (B), squamous epithelial metaplasia in the
collecting duct (C), a prominent prostatic utricle (indicated by PU in
A, and shown also in D), and abnormal swelling/distention of the
connective tissue surrounding the ejaculatory duct (E). Original mag-
nifications, 325 (A), 3100 (B), 3200 (C), and 3400 (D and E).
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the human ubiquitin C promoter, which is known to be
activated at around embryonic day 15 in mice, and which has
been shown to drive constitutive expression of transgenes in
a wide range of tissues (24). This, together with the pheno-
typic alterations found in the present study, indicates that the
estrogen to androgen ratio in AROM1 mice is also high in the
fetal and neonatal periods. In addition, as a sign of long-term
excessive estrogen exposure in adulthood, the AROM1

males showed pronounced squamous epithelial metaplasia
in periurethral collecting ducts. Interestingly, no hyperplas-
tic or dysplastic lesions were observed in the prostate glands
of AROM1 mice, although both perinatal estrogen treatment,
as well as chronic combined estrogen-androgen treatment
have been shown to induce prostatic neoplasia in rodents
(31). This could be a result of the constitutive low T concen-
tration in the AROM1 males.

Disruption of spermatogenesis in AROM1 mice could be
a consequence of multiple factors, including cryptorchidism,
abnormal Leydig cell function, hypoandrogenemia, or hy-
perestrogenemia. Estrogens are known to inhibit Leydig cell
development, growth, and function, resulting in suppression
of androgen production (32), and P450arom-deficient mice
develop Leydig cell hyperplasia/hypertrophy (12). How-
ever, the present findings, together with those from int-5/
aromatase mice (30), show that increased E2 to T ratio, in-
cluding excessive estrogen exposure, disrupt Leydig cell
function and can cause hyperplasia, hypertrophy, and Ley-
dig cell tumors. Consistent with these findings, both prenatal
exposure to DES and chronic exposure to DES in adulthood
have been shown to induce Leydig cell tumors in mice (21,
33). Numerous degenerating germ cells and no spermatids
within the seminiferous tubules suggest that germ cell de-
velopment was arrested at the stage of pachytene in the
cryptorchid testes of AROM1 mice. Interestingly, the sper-
matogenic arrest occurs at a stage where P450arom is typi-
cally expressed (34). However, the direct role of P450arom as
a local autocrine/paracrine modulator of spermatogenesis
remains to be characterized further. The spermatogenic ar-
rest found in the AROM1 mice could be explained, at least
partially, by the suppressed FSH action. The morphology of
the hypertrophic Leydig cells in AROM1 mice was very
different from that in the WT mice. The cryptorchidism alone
does not lead to hyperplastic Leydig cells as shown by the
relaxin-like factor knockout mice (35, 36). Hence, the struc-
tural and functional changes in the Leydig cells of AROM1

males are suggested to be related with the high E2 levels both
prenatally and at adulthood. Given that the number of Ley-
dig cells in experimentally cryptorchid testes is increased and
T production suppressed (37); however, it is possible that the
impaired Leydig cell function is partly associated with the
cryptorchidism rather than to a direct effect of E2 on Leydig
cells.

The reduced serum FSH levels in AROM1 males are fur-
ther proof of the role of estrogens in suppressing FSH se-
cretion in males (1). No significant differences in the average
LH concentrations were seen between AROM1 and WT male
mice. However, there was less variation in serum LH levels
in AROM1 mice as compared with the WT males suggesting
the possibility of reduced LH amplitude in AROM1 male
mice. A similar effect on LH amplitude has been found in

men after an exogenous estrogen administration (38). The
data suggest that, similar to the situation found in men (39),
FSH is more sensitive than LH in regard to the suppressive
effect of E2 in AROM1 males. Therefore, the AROM1 mice
provide a novel tool to further study the effects of estrogens
on the regulation of LH and FSH secretion. Despite the nor-
mal LH concentrations, androgen levels were reduced in
AROM1 mice, which is in agreement with the idea of tes-
ticular failure.

AROM1 males also display pronounced adrenocortical
hyperplasia with enlarged cells throughout the cortex, and
development of large centripetal vacuole-filled structures in
the innermost cortical layer. Morphologically, this resembles
the adrenal phenotype we recently observed in female bLHb-
CTP mice overexpressing LH. These mice showed high se-
rum corticosterone concentration associated with hyperac-
tive adrenal function due to chronic adrenal gland
stimulation (40). In addition to high corticosterone and LH,
bLHb-CTP mice present elevated E2, T, and PRL concentra-
tions. Interestingly, in the AROM1 male mice, the adreno-
cortical stimulation was associated with high circulating lev-
els of E2 and PRL; hence, the role of these hormones in the
etiology of adrenocortical hyperplasia in these mouse mod-
els remains to be explored.

The high PRL concentration found in the AROM1 males
is in line with previous observations showing that estrogen
exposure, both at neonatal period and at adult age, may
cause hyperprolactinemia in male rats (41, 42). Furthermore,
together with estrogens and androgens, increased PRL action
has been shown to affect prostate structure and function, and
the effect is dependent on the age of the exposure. Neonatal
exposure to estrogens induces hyperprolactinemia and de-
creases prostate weight (43), whereas a chronic (15–20 weeks)
estrogen treatment of adult male rats induces persistent hy-
perprolactinemia, and increased prostate weight (41). The
difference is likely to be due to the interaction between sex
steroid and PRL as, for example, androgens are necessary for
PRL induced prostatic growth (44). Also hyperprolactinemic
male mice have enlarged accessory sex glands, including the
prostate, due to an increased amount of secretory material
and interstitial tissue (45, 46). The fact that the prostate in the
AROM1 mice is small and undeveloped is most likely due
to the lack of proper amount of androgens at adult age and
to the increased estrogen action at the neonatal period.

In conclusion, the AROM1 male mice generated show
complex hormonal disturbances with multiple structural and
functional abnormalities in the male reproductive system.
Several of the abnormalities found resemble those described
in mice exposed to exogenous estrogens during perinatal life.
Hence, AROM1 mice represent a valuable model for ana-
lyzing the direct and indirect effects of unbalanced estrogen
and androgen action, especially in the developing males.
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