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Malignant transformation of cells is associated with aberrant glycosylation presented on the
cell-surface. Commonly observed changes in glycan structures during malignancy encom-
pass aberrant expression and glycosylation of mucins; abnormal branching of N -glycans;
and increased presence of sialic acid on proteins and glycolipids. Accumulating evidence
supports the notion that the presence of certain glycan structures correlates with cancer
progression by affecting tumor-cell invasiveness, ability to disseminate through the blood
circulation and to metastasize in distant organs. During metastasis tumor-cell-derived gly-
cans enable binding to cells in their microenvironment including endothelium and blood
constituents through glycan-binding receptors – lectins. In this review, we will discuss
current concepts how tumor-cell-derived glycans contribute to metastasis with the focus
on three types of lectins: siglecs, galectins, and selectins. Siglecs are present on virtually
all hematopoietic cells and usually negatively regulate immune responses. Galectins are
mostly expressed by tumor cells and support tumor-cell survival. Selectins are vascular
adhesion receptors that promote tumor-cell dissemination. All lectins facilitate interactions
within the tumor microenvironment and thereby promote cancer progression. The identi-
fication of mechanisms how tumor glycans contribute to metastasis may help to improve
diagnosis, prognosis, and aid to develop clinical strategies to prevent metastasis.
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INTRODUCTION
The majority of cancer deaths are attributed to the metastatic
spread of cancer cells to vital organs rather than to the primary
tumor outgrowth. During malignant transformation, the genetic
alteration in the cells results in mutations of proto-oncogenes and
tumor suppressor genes, which as a result give rise to tumor clones
with different properties (1). Malignant cells thereby acquire char-
acteristics enabling them dissociation from tumors, degradation of
the extracellular matrix, invasion, adhesion, and metastasis to dis-
tant organs. Alteration of tumor-cell-surface glycosylation is one
of the characteristic traits associated with enhanced malignancy
(2–4). Glycans are oligosaccharide structures that are covalently
bound to proteins, lipids, or present in a free form in tissues or
tumors. Glycans are bound to the protein either through Asn (N -
linked glycan) or through Ser or Thr (O-linked glycan). Lectins are
a family of carbohydrate-binding proteins that specifically recog-
nize glycans. Fundamental processes such as cell–cell recognition,
cell adhesion, mobility, and pathogen–host interaction are facil-
itated by lectins in healthy organisms. The common expression
of lectins on endothelial cells, immune cells, in the extracellular
matrix or as soluble adhesion molecules enables them to bind to
tumor-cell glycans and thereby affect tumor-cell progression (5).
Subsequently, accumulating evidence supports the involvement
of tumor-cell-surface glycans in tumor-cell migration, adhesion,
and metastasis. This review addresses the role of cancer-associated
glycans during metastasis with the focus on endogenous lectin
interactions within the tumor microenvironment.

THE PROCESS OF METASTASIS
Hematogenous metastasis is a multistep process during which
malignant cells detach from the primary tumors, degrade the

extracellular matrix, invade the surrounding tissue, enter the blood
or lymphatic vessels, and extravasate to form metastatic lesions.
Tumor cells through the cell-surface glycans can engage with a
variety of endogenous lectins both at the primary site of a tumor
and in the circulation. Tumor cell upon reaching the blood circu-
lation induces microthrombi, the formation of which is facilitated
by platelet P-selectin binding to tumor-cell-surface glycans (6, 7).
Tumor-cell emboli formation contributes to mechanical lodging in
the microvasculature and/or adhesion to the endothelium thereby
promoting tumor-cell extravasation and metastasis (8). There
is accumulating evidence that vascular lectins–selectins facili-
tate tumor-cell interactions with all blood constituents, platelets,
leukocytes, and endothelial cells, and thereby contribute to metas-
tasis (3, 9, 10). In addition, recruitment of immune cells to the
metastatic microenvironment is dependent on selectins (11–13).

Specific glycan structures on colonic epithelium provide
immune-modulatory activity to tissue macrophages through
sialic acid-binding lectins–siglecs (14, 15). In addition, galactose-
binding lectins–galectins were shown to be involved in immune-
suppression and metastasis (16). Consequently, altered glycosy-
lation may both induce inflammatory reactions and promote
immune-suppression, however; it is dependent on the cellular
context within the tissue. Finally, glycan changes associated with
cancer progression profoundly define the phenotype of cancer cells
depending on interactions with endogenous lectins both in tumor
and metastatic environments.

GENERAL MECHANISMS FOR ALTERED GLYCOSYLATION IN
CANCER
Cancer progression requires a range of alterations in extracel-
lular and intercellular signaling that promotes cell proliferation,
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emergence of invasive subsets, dissociation from the tumor,
intravasation, and adhesive interactions within the circulation
that finally facilitate metastasis. Within the tumor environment
changes in glycosylation allow malignant cells to promote cell
mobility, cell adhesion, and even receptor activation, and thereby
contributing to the invasive phenotype (3–5). Malignant trans-
formation leads to expression of oncofetal antigens, epitopes that
are present on embryonic tissues and tumor cells, but are generally
absent in healthy adult cells. Neo-synthesis and incomplete synthe-
sis are the two major mechanisms for generation of cancer-specific
glycans (2).

Altered glycosylation of N -linked glycans in cancer is typ-
ically associated with enhanced β1,6-branching (Table 1) that
is facilitated by β1,6-N -acetylglucosaminyltransferase-5 (GnT5)
(17, 18). Increased activity of GnT5 is associated with increased
polylactosaminic sequences, and the inhibition of GnT5 resulted
in attenuation of metastasis (19, 20). GnT5 deficiency (Mgat5-
deficient mice) resulted in reduced tumor growth and metastasis
(21). However, the functional role of branched N-glycosylation in
cancer was later shown to be dependent on galectin binding and
thereby altering the phenotype of the cell (22).

Virtually in every cancer type upregulation of glycosyltrans-
ferases has been detected, leading to expression of common tumor-
cell epitopes such as sialyl-Lewisx and sialyl-Lewisa (sLex/sLea),
Thomsen-nouvelle antigen (Tn), and sialyl-Tn (sTn) (3–5, 23,
24). Hypoxia has been identified as one of the factors leading to
increased expression of glycosyltransferases (25, 26). For instance,
increased expression of α1,3-fucosyltransferase-7 (FUT7) and

α2,3-sialyltransferase ST3Gal1, enzymes involved in synthesis of
sLex/a has been detected (27). The general increase in sialylation
has been detected both in clinical settings and experimental mod-
els that is associated with a metastatic cell phenotype (25, 28, 29).
An increase in α2,6-sialylation in tumors is usually attributed to the
upregulation of ST6Gal1 sialyltransferase that is primarily active
on N -linked glycans (30–32), or ST6GalNAc family of sialyltrans-
ferases, which are active on O-linked glycans or glycolipids (33).
Accordingly, overexpression of Neu1 sialidase in colon cancer cells
led to reduced liver metastasis in mice due to increased desialyla-
tion of β4 integrin whereas silencing of Neu1 sialidase increased
cell migration, invasion, and adhesion in vitro (34).

Synthesis of shorter glycan structures like Thomsen–
Friedenreich (TF or T), Tn, and sTn epitopes has been observed in
a number of carcinomas (35–39). One of the factors affecting the
synthesis of incomplete glycan structures is the frequent muta-
tion of the Cosmc chaperone that is required for the galactosyl-
transferase activity that modifies O-linked glycans (40). Another
example of shortened glycan synthesis is the reduced expression
of disialyl-Lewisa (di-sLea) and sialyl 6-sulfo Lewisx structures in
epithelial cancer. Disialyl-Lewisx (di-sLex) structure is synthesized
with the α2,6-sialyltransferase ST6GalNAc6, and its expression is
downregulated by epigenetic silencing in malignant epithelium
(41, 42). Similarly, repressed expression of sulfotransferase respon-
sible for 6-sulfo Lex was detected in cancer cells but not in normal
epithelial cells (26).

Gangliosides are sialic acid-containing glycolipids, which
expression is often dysregulated during malignant transformation

Table 1 | Common glycan alterations on carcinoma cells and their effect on lectin recognition.

Structural change Carriers Biosynthetic basis of

structural change

Potential lectin

partners

Reference

Increased β1,6-branching

(N -linked)

N -glycans Increased GnT5 Galectins

Siglecs

Guo et al. (19), Lagana et al. (20)

Increased α2,6-sialylation N -glycans, e.g., β

integrin

Increased ST6Gal1

sialyltransferase

Seales et al. (32)

General increase in

sialylation

Mucins N -glycans Increased sialyltransferase

activity

Selectins, siglecs,

galectins

Dall’Olio et al. (30), Gessner et al. (31)

Increased sialyl-Lewisx/a Mucins Increased FUT7, FUT3, FUT6,

ST3Gal6

Selectins Barthel et al. (169), Julien et al. (195), Koike

et al. (27), Ogawa et al. (161), Yin et al. (198)

Decreased

di-sialyl-Lewisx/a

Mucins, glycolipids Decreased ST6GalNAc6 Selectins Miyazaki et al. (41), Tsuchida et al. (42)
GlcNAc6ST1 Reduced siglecs

binding

Nudelman et al. (43)

Increased Tn epitopes

Mucins (e.g., MUC1),

CD44, β1 integrin,

osteopontin

Downregulated T-synthase

activity due to Cosmc mutations

Galectins Ju et al. (40)

Increased sialyl-Tn

epitopes

Increased ST6GalNAc1

expression

Siglecs Julien et al. (67), Ozaki et al. (68)
Galectins

Increased T antigen (core

1 structure)

Decreased C2GnT2 Galectins Brockhausen et al. (53), Dalziel et al. (55)
Enhanced availability of

UDP-galactose

Kumamoto et al. (73)

Increased sialyl-T

antigens

Increased levels of

α2,3-sialyltransferase (ST3Gal1)

Galectins

Siglecs

Burchell et al. (78), Dalziel et al. (55), Picco

et al. (79), Schneider et al. (72)
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(2). Apart from glycolipid specific glycan structures containing
disialic acid in a α2,8-linkage (e.g., GD3), changes in glycosyl-
transferases promote expression of sLex epitopes (43). Overex-
pression of sialidase Neu2 led to reduced metastasis, while Neu2
was found to be downregulated in highly metastatic variants of
colon carcinoma (44).

Despite many possibilities for the formation of glycans (link-
age and sequence of monosaccharide units) there is a rather small
number of structures commonly detected in cancer. Furthermore,
terminal glycan structures exposed on the cell surfaces of tumor
cells can be recognized through endogenous lectins and thereby
modulate cancer progression.

ALTERATIONS OF CANCER-ASSOCIATED O-LINKED GLYCANS
Mucins are high molecular weight glycoproteins exhibiting a rod
like conformation due to heavy glycosylation with O-linked gly-
cans (3, 45). O-linked glycosylation, which is based on GalNAc
bound to the Ser/Thr of a protein, is further modified by galactose
(core 1 structure) or GlcNAc (core 3 structure) in normal mucins
(Figure 1). During malignant transformation mucins of intestine,
colon, liver, and pancreas have reduced core 1 and core 3 struc-
tures that correlate with enhanced sialylation of Tn and T antigens
(24, 46, 47). Core 3-derived glycans are a major type expressed
by normal epithelial cells of the gastrointestinal tract, which are
downregulated during malignancy due to loss of functional β3-N -
acetylglucosaminyltransferase-6 (core 3 synthase) expression (48,
49). Consequently, overexpression of core 3 synthase in pancreatic
cells was associated with decreased presence of Tn antigens and
resulted in a reduced tumorigenicity and metastasis upon ortho-
topic injection. In addition, enhanced expression of the core 2

β1,6-N -acetylglucosaminyltransferase (C2GnT1) responsible for
the core 2 synthesis was detected in colorectal and lung carcino-
mas, which correlated with high levels of sLex on O-glycans and
therefore strong binding to E-selectin and metastasis compared
to normal tissues (50–52). Mucins of normal mammary epithe-
lial cells contain a mixture of O-glycans and the majority is core
2-based structures (53, 54). Reduced expression of C2GnT1 in
mammary cancer is associated with enhanced presence of Tn and
sTn (53–56). However, despite reduced core 2 structures on breast
cancer cells, increased presence of sLex epitopes has been observed,
which likely is a result of increased fucosylation (57).

FORMATION OF T, Tn, AND sTn ANTIGENS DURING CANCER
PROGRESSION
In healthy tissues, core 1-based T and Tn epitopes are almost absent
however; in about 90% of all human carcinomas these precursor
structures are detected (36, 39). Unsubstituted Tn epitopes occur
in human cancers of colon, breast, bladder, prostate, liver, ovary,
and stomach; and their presence correlate with cancer progres-
sion and metastasis (35–37, 58–63). Similarly, sialylated T and
Tn antigens correlate with progression of epithelial cancer and
poor clinical prognosis of many carcinomas (25, 28, 39, 64–66).
ST6GalNAc1-mediated α2,6-linked sialylation of GalNAc of the
precursor Tn antigen results in formation of the sTn antigen (25,
67–69). The sialylation step prevents further glycan extension and
therefore leads to truncation of O-linked glycans (47, 70).

Several mechanisms have been described to enable increased
Tn, sTn, or T expression in cancer (Table 1) (33, 46). (1) Decreased
activity of core 2 C2GnT1 enzyme leads to accumulation of T anti-
gen (described above) that is further sialylated by ST6GalNAc1

Ser/ThrGalNAcα

Siaα6

GlcNAcβ3-GalNAc α

Tn antigen

core 3

Galβ3-GalNAc α

T antigen
core 1

core 1 GalT

ST6GalNAc

GlcNAcβ3-GalNAc α

core 4
C2GnT2

GlcNAcβ6

Galβ3-GalNAc α

core 2

GlcNAcβ6

C2GnT1

Galβ3-GalNAc α

sialyl-T antigens

Siaα3-Gal β3-GalNAc α

sialyl-Tn antigen

Siaα6-GalNAc α

core
 3 G

lcNAcT

ST6GalNAc

ST3G
al1

core 2 extension to terminal sialyl-Lewis      antigenx/a

FIGURE 1 | Biosynthesis of O-glycans. O-glycan synthesis is initiated by
linking of GalNAc to the protein at Ser or Thr residue. The simplest
O-glycan Tn antigen can be further converted to core 1 structure (T
antigen) by β1,3 galactose extension; core 3 structure by addition of
β1,3-GlcNAc. During cancer increased expression (green arrow) of

sialyltransferases with concomitant reduced expression (red arrow) of core
1 GalT and core 3 GlcNAcT leads to increased formation of sialyl-Tn and
sialyl-T antigens. Core 1 structure is further branched by C2GnT1 to form
core 2 that can be further modified to poly-N -acetyllactosamine structures
carrying sialyl-Lewisx/a [modified from Ref. (23)].
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and ST6GalNAc2 enzymes (71, 72). (2) Enhanced availabil-
ity of the nucleotide sugar substrate UDP-galactose appears
to promote increased T antigen biosynthesis through core 1
β1,3-galactosyltransferase (73). Colon cancer tissues expressed
increased levels of the UDP-Galactose transporter, which brings
the sugar donor into the Golgi apparatus compared to non-
malignant mucosa. (3) Activity of β1,3-galactosyltransferase (T
synthase) requires the presence of the molecular chaperon protein
Cosmc, which is responsible for folding and stability of the enzyme
(40, 74). The absence of Cosmc leads to β1,3-galactosyltransferase
degradation. Mutation in Cosmc chaperone is associated with
increased Tn expression in colon carcinoma and melanoma cell
lines and also increased sTn expression (40, 75). Accordingly,
down-regulation of T-synthase resulted in a marked increase of T,
Tn, and particularly sTn in colon carcinoma cells (76). (4) Gener-
ation of sTn is facilitated by the sialyltransferase ST6GalNAc1 and
ST6GalNAc2 (71, 72). Human gastric cancer cells with enhanced
ST6GalNAc1 expression showed higher intraperitoneal metas-
tasis compared to sTn-negative tumor cells. Similarly, overex-
pression of ST6GalNAc1, thereby sTn epitope, in human breast
cancer cells led to increased tumor growth in immunodeficient
mice (68, 77). In addition, enhanced sialylation of T antigen in
breast cancer correlated with higher levels of α2,3-sialyltransferase
(ST3Gal1) (72, 78). Overexpression of ST3Gal1 under the human
MUC1 promoter in a spontaneous murine breast cancer model
resulted in significantly decreased tumor latency compared to
mice without ST3Gal1 overexpression (79). Furthermore, the
sialyltransferase expression alone was responsible for enhanced
tumorigenesis indicating that this enzyme per se acts as a tumor
promoter (79).

Only few glycoproteins are known to present Tn, T, or sTn
and sialyl-T (sT) antigens in malignant tissues (66). Mucin MUC1
and CD44v6 display sTn and sT antigens in colon, gastric, and
breast cancers (80–83). MUC2 is a major carrier of shortened gly-
cans in gastric cancer (84). Enhanced sTn expression in breast
and gastric cancer is associated with overexpression of MUC1,
CD44, and ST6GalNAc1 (68, 77). Although CD44v6 is expressed
in some types of healthy epithelia, higher expression is observed in
squamous cell carcinomas and adenocarcinomas including breast,
lung, colon, and pancreatic carcinomas (85–87). Interestingly,
serum levels of osteopontin, a CD44 ligand, that itself is a sTn
carrier, have been detected in cancer patients and correlate with
poor prognosis (87).

The enhanced expression of Tn, sTn, and T antigens on MUC1,
osteopontin, and CD44 is associated with high metastatic potential
and poor prognosis (84,88,89). However, there is little evidence for
the functional consequence of this aberrant glycosylation during
cancer progression. In human breast cancer cells, expression of sTn
on MUC1 was associated with reduced cell adhesion and increased
cell migration (77). In addition, β1 integrins carry aberrant forms
of O-glycans that is associated with metastasis (90). Enhanced
expression of ST6GalNAc1 in murine carcinoma cells led to an
increase in sTn expression on β1 integrin subunit associated
with morphological changes including loss of epithelial appear-
ance, disorganization of actin stress fibers, and reduced ability to
migrate on fibronectin. A recent study showed that high expres-
sion of the ppGalNAcT13, which initiates O-glycan synthesis by

adding the first GalNAc to Ser/Thr, induced high metastatic poten-
tial of Lewis lung carcinoma by generating trimeric Tn antigens
(GalNAc1-Ser/Thr)3 on syndecan 1 (91). The complex formation
of trimeric Tn antigens on Syndecan 1 together with α5β1 integrin
and MMP-9 resulted in enhanced invasion and metastasis. Recent
findings provide evidence that cell-surface mucins are involved in
signal transduction events [reviewed in Ref. (24, 45)]. Decreased
sTn expression on neuroblastoma achieved by extension of core
1 structure with B3GNT3 expression reduced activation of focal
adhesion kinase and thereby partially suppressed malignant phe-
notype (92). Aberrant glycosylation in cancer does not affect
only the tumor-cell phenotype behavior (e.g., proliferation, dif-
ferentiation, and adhesion), but also contribute to the control of
the local microenvironment, immune responses, and metastasis.
Therefore, these glycans serve as ligands for cells in the tumor
microenvironment through endogenous lectins.

SIGLECS
Sialic acid-binding immunoglobulin superfamily lectins (siglecs)
are the largest family of sialic-acid-binding molecules (93–95).
Siglecs are expressed on specific subpopulations of hematopoietic
cells where they exert their immune-regulatory function. Many
siglecs contain intracellular tyrosine motifs, which include one
or more membrane-proximal immunoreceptor tyrosine-based
inhibitory motif (ITIM) and a membrane-distal ITIM-like motif
(93, 94). These motifs are involved in inhibitory signal transduc-
tion. Based on both sequence similarity and conservation between
mammalian species siglecs are divided in two major subgroups.
The first group comprises Siglec-1 (sialoadhesin, CD169), Siglec-2
(CD22), Siglec-4 (myeloid-associated glycoprotein), and Siglec-
15. The second subfamily of CD33/Siglec-3 related siglecs consists
of 10 human members (Siglec-3, -5, -6, -7, -8, -9, -10, -11, -14, and
-16) and 5 rodent members (Siglec-3, -E, -F, -G, and -H) (93, 95).
The first subgroup with its evolutionary conserved members has
restricted expression patterns. For instance Siglec-1 is specifically
expressed on macrophages, Siglec-2 on B-cells and Siglec-4 on
oligodendrocytes and Schwann cells in the nervous system (96).
On the other hand, CD33-related siglecs display a more divergent
expression pattern dependent on developmental stage of immune
cells (93, 95). The high sialic acid concentration on the cell-surface
of siglec-expressing cells often leads to binding to the cell glycans
(in cis) or adjacent cells (in trans). Siglecs can be affected by var-
ious stimuli including cytokines, toll-like receptor activation, and
viral and bacterial infections, the biology of siglecs is therefore
rather complex (96). The binding specificity of siglecs depends on
the distinct types, linkages (α2,3, α2,6, and α2,8), arrangements of
sialic acids, their way of presentation on different cells, organs,
and organisms. Siglec binding to ligands modulates cell–cell
interactions, cell proliferation, cell death, and endocytosis (96–99).

THE ROLE OF SIGLECS IN CANCER PROGRESSION
Accumulating evidence indicates that the interaction between
tumor-specific glycans and lectins on immune cells are involved in
modulation of the tumor microenvironment (100). The inhibitory
nature of siglec upon binding of specific glycan may lead to
dampening of immune responses and thereby escape of immune
surveillance and clearance. Whether siglecs contribute to cancer
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progression through recognition of distinct cancer-specific glycan
structures is currently under investigation. Non-malignant colon
epithelial cells express di-sLea epitopes that serve as ligands for
both Siglec-7 and -9 (15). The expression of siglec ligands was
decreased upon malignant transformation, which was associated
with enhanced expression of sLex and sLea epitopes (26). Expres-
sion of ST6GalNAc6, which synthesizes di-sLea in human colon
cancer cells resulted in increased di-sLea, loss of sLea epitopes, and
increased binding to Siglec-7 (41). Mainly resident macrophages
were found to carry Siglec-7 and -9 in a colonic lamina pro-
pria and Siglec-7/9 ligation could suppress macrophage-mediated
cyclooxygenase-2 (COX2) and prostaglandin E2 expression and
thereby prevent inflammatory damage of the colonic mucosa (15).
Siglec-15, which preferentially recognizes sTn antigen, is expressed
in tumor-associated macrophages (TAMs) in various human car-
cinoma tissues including lung, liver, and rectum (101). Binding
of myeloid cells through Siglec-15 to sTn on tumor cells resulted
in increased TGF-β secretion into the tumor microenvironment
that is associated with cancer progression. Interestingly, Siglec-
15 expression was induced by M-CSF, which usually polarizes
macrophages to M2 phenotype commonly detected in the tumor
microenvironment.

Siglec-1 is expressed in a subset of macrophages that are
involved in the pathophysiology of cancer (102). Clinical observa-
tion showed that increased Siglec-1 is present in splenic marginal
cell lymphoma as well as in macrophage infiltrates of MUC1-
positive breast cancers (103, 104). Siglec-1 positive macrophages
were found to infiltrate into rat xenograft tumors in a CCL2-
dependent manner (105). On contrary, recent study demonstrated
that Siglec-1 positive macrophages in regional lymph nodes of
colorectal carcinoma patients promote CD8+ T-cell mediated
anti-tumor immunity and are associated with a better prognosis
for these patients (106).

Siglec-9, a surface receptor on NK cells, B-cells, and mono-
cytes, has been identified as a receptor for mucin MUC16 (14).
Cell-surface bound as well as soluble MUC16 is overexpressed in
human ovarian tumor cells and detected in peritoneal fluid of
cancer patients (107). Engagement of Siglec-9 on monocytes also
induced secretion of immunosuppressive cytokine IL-10 (108).
Similar immune-suppression mediated by Siglec-7 on NK cells was
observed in renal cell carcinoma expressing disialosyl globopen-
taosylceramide (DSGb5) as a major ganglioside (109). Recent
study from C. Bertozzi group provided strong evidence that siglec-
7-mediated cytotoxicity of NK cells can be modulated by the
alteration of glycans on cell surfaces (110). Presentation of sia-
lylated ligands on tumor cells recognized by siglec-7 resulted
in enhanced phosphorylation of cytoplasmic tyrosine residues,
causing dampening of cytolytic activity.

The association between Siglec-9 positive immune cells and
MUC1-positive tumor cells has been detected in tissues of human
colon, pancreas, and breast cancer. Interestingly, Siglec-9 binding
to MUC1 expressing tumor cells was shown to induce recruitment
of β-catenin in tumor cells resulting in promotion of cell growth
in vitro (111). These findings suggest that Siglec-9 engagement of
carcinoma mucin MUC1 may be involved in tumor growth, how-
ever; the nature of Siglec-9 ligands as well as the cellular context
in vivo remains to be defined.

Taken together, the current evidence is largely based on clin-
ical correlation of cancer–glycan expression and several experi-
ments showing Siglec-cancer–glycan interaction in vitro. Whether
these interactions indeed functionally modulate immune cell
responses in the tumor microenvironment and thereby affect
cancer progression in vivo requires experimental validation.

SIGLECS AS TARGET OF CANCER THERAPY
The identification of Siglec-2 and Siglec-3 as markers of acute
myeloid leukemia (AML) and B-cell lymphomas raised interest
in potential immunotherapy (112–114). Anti-Siglec-2 and siglec-
3 specific antibodies were conjugated with variety of toxins and
such immunotoxins have been targeted in several autoimmune
diseases and hematological malignancies [reviewed in Ref. (93, 94,
115)]. In the majority of acute lymphoblastic leukemias (ALL)
Siglec-2 (CD22) was identified as a useful target for cell-depletion
therapy (116). Inotuzumab ozogamicin is an immunotoxin com-
prised of a humanized IgG4 monoclonal antibody covalently
linked to calecheamicin (CMC-544). CMC-544 was active against
B-cell tumors in preclinical models and has been evaluated in
phase I study for patients with B-cell lineage ALL (117). Ino-
tuzumab ozogamicin used as a single therapy in patients with
refractory-relapsed ALL showed positive results.

The immunotoxin gemetuzumab ozogamicin (OG, Mylotarg;
Wyeth, Madison, NJ, USA), which consists of a humanized anti-
CD33 (siglec-3) murine antibody linked to calicheamicin, was
approved by the FDA for treatment of CD33+ AML patients.
Binding and endocytosis of the conjugate resulted in the intra-
cellular release of the toxin causing cell death of CD33+ cells
(94, 115). However the drug is off the market since 2010 because
the key phase III trial (South West Oncology Group Study
S0106) in which GO was combined with induction chemother-
apy failed to improve disease-free survival and caused higher
fatal induction toxicity rate compared to chemotherapy alone
(118). Recent studies using lower or fractionated dose of GO
suggest that GO may still improve survival of distinct sub-
sets of AML patients, particularly patients with favorable cyto-
genetics (119). New approaches with humanized CD33 anti-
body conjugated to synthetic DNA cross-linking pyrroloben-
zodiazepine (SGN-CD33A) have been developed and revealed
promising effectiveness in animal models (120). SGN-CD33A is
now currently being tested in a phase I trial (ClinicalTrials.gov:
NCT01902329).

GALECTINS
In contrast to siglecs and selectins, which are mostly cell-surface-
bound receptors, galectins are soluble immunomodulatory lectins
(121). Galectins bind to galactose that is either β1,3- or β1,4-linked
to N -acetylglucosamine, a common disaccharide found both on
N - and O-linked glycans and glycolipids. Galectins act both intra-
cellularly by modulating signaling pathways and extracellularly as
regulatory receptors (100). Up to date the galectin family consists
of 15 members, which are classified into three groups based on
structural differences: prototype galectins (Galectin-1, -2, -5, -7,
-10, -11, -13, -14, and -15) having one carbohydrate recognition
domain (CRD), tandem repeat-type galectins (Galectin-4, -6, -8,
-9, and -12) having two CRDs, and the single member Galectin-3,
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which has one CRD connected to a non-lectin N-terminal region
responsible for oligomerization (100). Galectins are expressed by
various cell types including epithelial and immune cells, but their
expression is altered during progression of colon, breast, lung, pan-
creatic, head and neck, and cervical cancers (16, 122). Many studies
indicate that cancer-associated galectins could regulate cancer cell
proliferation, signaling, adhesion, invasion, and metastasis (122–
124). Galectin-1 and Galectin-3 were most intensively studied in
context of cancer.

GALECTIN-1
Accumulating evidence indicate that tumor-derived Galectin-1
contributes to immunosuppressive activity in different tumors,
including lung and pancreatic carcinoma, melanoma, and neu-
roblastoma (16, 125–127). It has been shown that Galectin-1
binding to T-cells through N - and O-linked glycans on CD43
or CD45 mucins induces apoptosis of activated T-cells (128,
129). Galectin-1 expression by melanoma cells induced apopto-
sis of tumor-specific effector T-cells, and Galectin-1 inhibition
allowed generation of a tumor-specific T1 response (126). Mod-
ification of cell-surface glycosylation affects glycan pattern on
T-cells and thereby changes Galectin-1 binding. Enhanced expres-
sion of α2,6-sialyltransferase-1 (ST6Gal1) selectively modified N -
glycans on CD45 and thereby inhibited Galectin-1 binding (130).
How Galectin-1 contributes to immune-suppression in tumors
has been delineated in lung cancer (131). High expression of
Galectin-1 in lung cancer cell lines, as well as in human tumor
tissues, alters the phenotype of monocyte-derived dendritic cells
and impairs T-cell response, concomitant with increased presence
of regulatory T-cells (Tregs). The regulatory effect of Galectin-
1 is mediated by increased expression of IL-10 in monocytes
thereby inducing a Th2-dominant cytokine profile. The enhanced
infiltration of CD11c+ dendritic cells in human lung cancer
samples has been recapitulated in a mouse model, which was
completely omitted after transplantation of Galectin-1 silenced
tumor cells. In another study, the amount of Galectin-1 pos-
itive cells correlated with the tumor grade in human breast
cancer (132). Silencing of Galectin-1 in a metastatic murine
mammary tumor led to a reduction of tumor growth and lung
metastasis with a concomitant reduction in infiltrating regulatory
T-cells.

Experimental evidence also suggests that Galectin-1 expressed
on various tumor-cell types including hepatocellular carcinoma,
melanoma, ovarian, and prostate cancer cells mediates tumor-
cell adhesion to the extracellular matrix (133, 134). In addition,
Galectin-1 mediated attachment of cancer cells to the extracel-
lular matrix and endothelial cells through binding to CD44 and
CD326 on murine breast and colon cancer cells (16). Galectin-1
might also be involved in formation of platelet-cancer cell com-
plexes since it was shown to activate platelets (135). Murine breast,
colon, and Lewis lung cancer cells with silenced Galectin-1 showed
decreased lung metastasis, which was associated with increased T-
cell numbers and reduced angiogenesis (16, 125). Taken together,
tumor-derived Galectin-1 exerts its immunosuppressive function
through binding to endogenous (non-tumor-derived) glycans and
thereby contributes to cancer progression.

GALECTIN-3
There is accumulating evidence that the cancer-associated T,
Tn, and sTn structures promote metastasis through binding to
Galectin-3. Galectin-3 expression is also increased in patient sera
of several cancer types and associated with increased risk of metas-
tasis (136, 137). For instance, T antigen expression by breast and
prostate cancer cells facilitated interactions with cancer-associated
Galectin-3 or with endothelial associated Galectin-3 (66, 138–
140). These interactions lead to homotypic aggregation of cancer
cells, which protects cancer cells from apoptosis induced by the
lack of adhesion to the extracellular matrix (139). In addition,
cancer cell-associated T antigens can induce Galectin-3 expression
on the endothelium, which enabled cancer-endothelium adhesion
(140). Another study has shown that lysosomal-associated mem-
brane protein-1 (LAMP-1) on highly metastatic melanoma cells
carries N -acetyllactosaminyl structures, which are recognized by
Galectin-3 on lung endothelial cells suggesting that lung endothe-
lial galectin-3 can serve as anchor for LAMP-1 expressing tumor
cells in the circulation (141).

A characteristic feature of galectins is the induction of com-
plex formation by cross-linking glycoproteins, which can form
multimers “lattice” microdomain (121). Complex N -glycans are
formed by GnT5 modification of N -glycans that are the ligands
for Galectin-3 (142). Expression of GnT5 has long been impli-
cated in tumor progression and metastasis (17). In particular, the
absence of GnT5 delayed tumor formation and suppressed metas-
tasis (21). Accordingly, up-regulated GnT5 expression has been
observed in various human cancers (18, 143); and the ectopic
expression of the GnT-V in multiple epithelial cells resulted in
increased cell motility, tumor formation, and enhanced metasta-
sis (144, 145). Furthermore, GnT5-dependent modifications of
tyrosine kinase receptors such as EGF, TGF-β, IGFR, and PDGF
enhanced affinity to galectin-3 and thereby prolonged their cell-
surface expression (22, 146). Galectin-3-induced lattice formation
prevented the surface clearance of receptors by clathrin-dependent
endocytosis and enabled interaction with inhibitory caveolin-1
domains.

Branched O-glycans with poly-N -acetyllactosamine structures
are recognized by Galectin-3 (147). In C2GnT1-expressing blad-
der tumor cells core 2 O-glycans present on MHC class I-related
chain A are bound to Galectin-3 that reduced the affinity for the
activating NK cell receptors NKG2D, thereby impairing NK cell
function and anti-tumor activity.

Recent findings suggest that Galectin-3 also regulates dynam-
ics of N-cadherin and the lipid raft marker ganglioside GM1
(148). Accumulation of N-cadherin and GM1 at cell–cell junctions
destabilized cell–cell junctions and thereby promoted tumor-cell
migration. N -glycans on α5β1 integrin are important for their
proper binding to fibronectin (149, 150). Increased GnT5 medi-
ated β1,6-branching reduces cell-surface clustering of α5β1 inte-
grin, specifically of the β1 subunit, resulting in a less adhesive
phenotype due to reduced adhesion to fibronectin and modu-
lates fibronectin matrix remodeling in tumors (20, 151). Thus,
Galectin-3 lattice formation provides another mechanism how
altered glycosylation contributes to the malignant and invasive
phenotype of tumor cells (148).
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SELECTINS
Selectins are vascular cell adhesion molecules that belong to a
family of C-type lectins, which facilitate the initial attachment of
leukocytes to the endothelium during the process of leukocyte
extravasation. The selectin family consists of L-, E-, and P-selectin,
which share around 50% sequence homology in their C-type lectin
domain (152). L-selectin (LECAM-1 and CD62L) is constitu-
tively expressed on almost all hematopoietic cell types including
myeloid cells, naïve, and some activated memory T-cells (152) and
enables adhesion of leukocytes to the activated endothelium or
in high endothelial venules of the peripheral lymph nodes (153,
154). E-selectin (ELAM-1 and CD62E) is exclusively displayed on
endothelial cells, which requires de novo expression in response to
inflammatory stimuli such as TNF-α and Il-1β. However, skin and
parts of the bone marrow microvasculature have been shown to
constitutively express certain E-selectin levels (155). On contrary,
P-selectin (PADGEM and CD62P) is stored in alpha-granules of
platelets as well as in Weibel–Pallade bodies of endothelial cells
and can be rapidly mobilized to the cell-surface upon activation
of platelets or the endothelia. E- and P-selectin bind to ligands
on myeloid cells (156), certain types of lymphocytes (152) but
also to several types of tumor cells (157–159). Selectins are the
most-studied lectins in cancer biology, which promote cell–cell
interaction with tumor cells and their microenvironment (9). All
three selectins have been shown to contribute to tumor dissem-
ination and specifically facilitate processes when the tumor cells
are in the circulation.

SELECTIN LIGAND EXPRESSION CORRELATES WITH CANCER
PROGRESSION
There is compelling clinical and experimental evidence that over-
expression of tetrasaccharides sLex and sLea correlates with poor
prognosis due to enhanced metastatic phenotype in a number of
cancer types, including colon, gastric, prostate, renal, pancreatic,
and lung cancer (89, 160–165). Enhanced expression of sLex/a on
cancer cells correlated with increased ability to adhere to E-selectin
or to the activated endothelial cells and stromal cells in vitro (157,
166–168). Furthermore, high cell-surface expression levels of sLex

were linked to enhanced metastatic activity in various experimen-
tal metastasis models using human carcinoma cells compared to
lower or minimal sLex expression (169–171).

The minimal recognition motif for all three selectins are
tetrasaccharides sLex/a (Figure 2) (172). SLex are terminal struc-
tures of N -or O-linked glycans attached to glycoproteins and
glycolipids displayed by most circulating leukocytes and endothe-
lial cells whereas sLea is detected on some epithelial cells but mostly
on various tumor cells (3, 4, 173). The four glycosyltransferases N -
acetylglucosaminyltransferase, β1,4-galactosyltransferase, α2,3-
sialyltransferase, and α1,3-fucosyltransferase-7 are responsible for
synthesis of sialyl-Lewisa/x structures on cells of the hematopoietic
system (172, 174). Efficient selectin binding to carbohydrates usu-
ally requires a glycoprotein scaffold that facilitates the presentation
of selectin ligands in clusters (175). One of the best characterized
ligands for all three selectins is the P-selectin glycoprotein ligand-
1 (PSGL-1), which is concentrated on the tips of microvilli on
leukocyte surface (176). To the most common mucins carrying
selectin ligands that are associated with cancer progression belong

GlcNAcβ

a

ST3Gal

α4-FUT

sialyl-Lewis

Fucα4

β3-GalT β4-GalT

Galβ3-GlcNAc β Galβ4-GlcNAc β

ST3Gal

Siaα3Galβ3-GlcNAc β Siaα3Galβ4-GlcNAc β

α3-FUT

Siaα3Galβ3-GlcNAc β Siaα3Galβ4-GlcNAc β

Fucα3

xsialyl-Lewis

FIGURE 2 | Formation of Lewis antigens. Terminal GlcNAc residues,
particularly on core 2 structures, are further extended by addition of β1,4
galactose, for Lewisx epitope, and β1,3 galactose, for Lewisa epitope. This is
further followed by the addition of α2,3-linked sialic acid to Gal by ST3Gal
enzymes and finalized by the addition of α1,3-linked fucose for sLex and
α1,4-linked fucose for the sLea antigen. FUT3 finalized the synthesis of Lea
antigen, while FUT6 and FUT7 were shown to finalize Lex epitopes.

MUC1, MUC2, MUC4, and MUC16 (35, 45, 177, 178). Apart from
mucins, several other selectin ligand carriers on tumor cells have
been identified that includes CD24, CD44, death-receptor 3, E-
selectin ligand-1, PSGL-1, and podocalyxin-like protein and this
list is by far not complete (179–183). Several of these ligands are
also expressed on tumor cells and are associated with cancer pro-
gression. For instance,CD44 glycoproteins exist in several isoforms
and are expressed on epithelial and endothelial cells as well as
on multiple cancer cell types such as gastric, colorectal, pancre-
atic, and lung cancer (184–186). The aberrant expression of CD44
in colorectal carcinoma cells correlated with increased metastatic
potential in vivo (187, 188). Based on flow-based adhesion assays
in vitro, CD44v on human colon carcinoma cells binds to P-, E-,
and L-selectin (189, 190). The majority of selectin ligands are pre-
sented on mucins, but they can be found equally functional also
on N -linked glycans or glycolipids. Finally, P- and L-selectins also
bind to heparin, heparan sulfate, and sulfated glycolipids, which
also indicates certain flexibility in ligand recognition (9, 175). In
addition, chondroitin sulfate glycosaminoglycans (CS-GAGs) on
breast cancer cells were identified to serve as a P-selectin ligand
that is associated with breast cancer metastasis (191). Despite the
large variety of glycans, tumor cells express sialylated and fucosy-
lated molecules, mostly on mucins which are also recognized by
selectins (158, 159, 167, 192, 193).

Increased expression of sLex/a in tumor cells has been attrib-
uted to elevated levels of α1,3-fucosyltransferase-7 (FUT7), which
has also been shown to correspond with increased malignancy in
lung cancer patients (161). In addition, overexpression of α1,3-
fucosyltransferase-3 and -6 in metastatic prostate cancer cells
correlated with higher sLex levels and more metastasis that was
dependent on E-selectin-mediated recruitment to distant sites
(169, 194). Genes encoding for FUT3, FUT4, and ST3GAL6
enzymes that are involved in sLex synthesis were significantly
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increased in breast cancers and correlated with metastasis to the
bone where sLex receptor E-selectin is constitutively expressed
(195). Inflammatory cytokines might also be involved in sLex

production. TNF-α enhanced motility and invasion properties
of prostatic cancer cells were associated with selective upregu-
lation of genes related to sLex synthesis (196). Studies analyzing
prostate and pancreatic cancer cell homing into bone showed that
E-selectin-mediated adhesion is dependent on enhanced α1,3-
fucosyltransferase, FUT3, FUT6, and FUT7 activity (197, 198).
Consequently, down-regulation of α1,3-fucosyltransferase activ-
ity dramatically reduced prostate cancer incidence. However, there
is also the possibility that selectin-mediated activation of either
tumor cells or the tumor microenvironment further promote
inflammation that is a hallmark of cancer progression.

P-SELECTIN
The association between circulating cancer cells, platelets, and for-
mation of tumor microemboli is widely accepted (199–202). Many
studies showed that platelets enhance hematogenous dissemina-
tion, intravascular tumor-cell survival, and metastasis (203–206).
However, the major mechanism of platelet-adhesion to tumor
cells has been found to be mediated by platelet P-selectin (6).
Platelet-tumor cell interactions were significantly reduced in P-
selectin deficient mice, and consequently attenuation of metastasis
was observed. Enzymatic removal of carcinoma mucins carrying
selectin ligands from tumor cells prior to tail vein injection resulted
in attenuated metastasis comparable to the absence of P-selectin
(158, 203). In addition, endothelial P-selectin-mediated interac-
tions also contributed to metastasis indicating that both platelet
and endothelial P-selectin promote early events during tissues col-
onization (11, 207). Another study shows that platelets promote
lung metastasis of B16F1 melanoma and 4T1.2 breast cancer cells
(208). Platelet depletion resulted in a significant reduction of lung
metastasis when compared to NK cell depleted animals, indicating
an additional pro-metastatic function of platelets. These findings
are in agreement with a direct effect of platelet–tumor-cell interac-
tions that promotes the metastatic behavior of tumor cells (209).
Taken together, P-selectin-mediated interactions significantly con-
tribute to the early steps of metastasis when tumor cells are in
circulation.

L-SELECTIN
L-selectin binds to a variety of tumor cells and contributes to
metastasis (167, 210). Intravenous injection of human and murine
tumor cells in L-selectin deficient mice resulted in reduced recruit-
ment of leukocytes and subsequently attenuated metastasis that
confirmed the active role of L-selectin-mediated interaction in
this process (11, 13). Metastasis was further attenuated in P- and
L-selectin double deficient mice providing evidence that both
selectins synergistically contribute to metastasis (11). In addition,
the enhanced expression of selectin ligands around the metastatic
tumor cells was detected with L-selectin chimera, which corre-
lated with the recruitment of leukocytes (13). These findings
indicated that L-selectin is either responsible for recruitment of
leukocytes or their interactions within the metastatic microen-
vironment. Enhanced presence of inflammatory cells, primarily
myeloid-derived cells, in the tumor microenvironment is usually

associated with tumor growth and metastatic dissemination (211,
212). Thus, L-selectin represents a potential facilitator of myeloid
cell recruitment to metastatic sites and thereby promotes early
steps of metastasis, e.g., tumor-cell extravasation (13, 213). During
inflammation, leukocyte interaction with the endothelium results
in induced vascular permeability. However, whether L-selectin
promotes metastasis through a direct engagement with selectin
ligands on tumor cells or rather mimics inflammatory-like reac-
tion accompanying the process of tumor-cell seeding in distant
organs remains to be determined.

E-SELECTIN
E-selectin has been the first selectin intensively studied in context
of metastasis (9, 10). The original hypothesis was that E-selectin
mediates metastatic dissemination to distant organs through bind-
ing to ligands on tumor cells, similarly to leukocyte adhesion
during inflammation (3). Numerous studies provided evidence
that tumor cells expressing selectin ligands adhere to activated
endothelium under flow condition in vitro (157, 168, 181). While
different E-selectin ligands were linked to enhanced metastasis, the
majority of them belong to the mucin type molecules. Despite the
observation of increased primary tumor growth in selectin defi-
cient mice, which seems to be linked to reduced anti-tumorigenic
infiltration of immune cells (214), there is accumulating evidence
that E-selectin promotes cancer metastasis in animal models.
Enhanced E-selectin expression was observed in the liver dur-
ing metastatic colonization and the down-regulation of E-selectin
resulted in attenuation of metastasis (215, 216). Metastasis was
redirected to the E-selectin overexpressing liver using experimen-
tal lung metastasis model, which provided direct evidence for
involvement of E-selectin in facilitation of tumor-cell seeding
(217). Accordingly, experimental liver metastasis of human colon
carcinoma cells was also E-selectin-dependent (218). However,
experimental lung metastasis of human colon adenocarcinoma
cells remained unchanged in E-selectin deficient mice (219). On
contrary, spontaneous metastasis of human breast cancer cells
to the lungs was significantly attenuated in E-selectin-deficient
mice (220). Interestingly, Hiratsuka et al. showed that factors
secreted from primary tumors can activate endothelial focal adhe-
sion kinase and E-selectin expression in the lung vasculature and
thereby induce the formation of permissible sites for metasta-
sis (221). Enhanced homing of metastatic tumor cells to these
sites was observed and was associated with metastasis. These
observations indicate that primary tumors can actively form a dis-
tant metastatic niche and upregulate expression of cell adhesion
molecules involved in tumor cell-endothelial interactions. In con-
clusion, there is convincing evidence that endothelial E-selectin
facilitates metastasis by enabling tumor-cell adhesion to vascula-
ture. Nevertheless, the exact mechanism of E-selectin facilitation
of metastasis remains to be defined.

CARCINOMA MUCINS AS INITIATORS OF CANCER-RELATED
PROTHROMBOTIC ACTIVITY
Altered cancer glycosylation is not reflected only on cell-surface
molecules, but aberrantly glycosylated proteins are detected in
the circulation (26). Antibodies raised against tumor cells, were
shown to specifically recognize glycan structures, e.g., sLea, which
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are currently used for cancer diagnostics (45). The presence of car-
cinoma mucins (e.g., CA-125, CA19-9), which are shedded from
tumors, are routinely used as serum tumor markers in diagnosis of
cancer. Besides, efficient binding of recombinant soluble selectin
to carcinoma mucins has been observed (158, 222). Increased
thromboembolism is a recognized complication in various car-
cinomas, particularly mucinous carcinomas, however; there are
several pathologic mechanisms likely to be involved (7). Idio-
pathic thromboembolism, which is frequently associated with
occult carcinomas, belongs to the Trousseau syndrome. Recent
studies provided evidence that intravenous injection of carcinoma
mucins carrying selectin ligands into mice resulted in generation
of platelet-rich microthrombi (222). This pathology was markedly
diminished in P-selectin or L-selectin deficient mice. Interest-
ingly, carcinoma mucins could not activate platelets and thereby
could not generate microthrombi in mice lacking PSGL-1 (223).
Carcinoma mucins initiated thrombosis only in the presence of
platelets that induced release of cathepsin G from neutrophils
through a selectin-dependent, reciprocal activation of neutrophils
and platelets. Taken together, carcinoma mucins carrying selectin
ligands in blood circulation may serve as initiators of thrombi
formation observed in cancer patients.

SELECTINS SHAPE THE METASTATIC MICROENVIRONMENT
There is accumulating evidence that selectins facilitate heterotypic
interactions between tumor cells and blood components, includ-
ing the endothelium and thereby promote tumor-cell seeding,
survival and extravasation (8, 9, 224). When circulating tumor
cells arrest in the microvasculature of distant organs, early on
markers of endothelial cell activation and inflammation, includ-
ing E-selectin, were upregulated in experimental lung and liver
metastasis models (219, 225–228). Enhanced E-selectin expres-
sion was detected also in the metastatic lungs using a spontaneous
metastatic model with Lewis lung carcinoma (219, 221). Con-
sequently, inhibition of endothelial activation and/or E-selectin
function attenuated metastasis (227, 229). Endothelial activation
caused by factors derived from primary tumor or from arrested
tumors in the vasculature promoted selectin-mediated interac-
tions and formation of a permissive microenvironment within
the vasculature prior to tumor-cell extravasation (11, 13, 213).
Tumor-cell glycan-induced and P-selectin-dependent endothelial
activation resulted in enhanced expression of E-selectin and vas-
cular cell adhesion molecule 1 (VCAM-1) and promoted lung col-
onization and metastasis (213). In addition, elevated production
of chemokine CCL5 contributed to the recruitment of mono-
cytes. Accordingly, endothelial VCAM-1 expression was induced
by tumor-cell embolus that resulted in increased recruitment of
myeloid cells supporting metastasis (225). Recruitment of inflam-
matory cells, especially myeloid-derived cells, is strongly associated
with enhanced metastatic colonization that is at least partially
dependent on L-selectin (12, 13, 213, 230–232). Taken together,
the selectin-mediated interactions play a critical role during the
establishment of metastasis that is co-initiated by aberrant gly-
cans on tumor cells in circulation. Whether tumor glycans only
initiate the inflammatory-like cascade leading to metastasis or
have further function in shaping this process remains to be
defined.

CONCLUSION AND PERSPECTIVES
Cancer-associated aberrant glycosylation has been identified in
virtually every type of cancer. Expression of cancer-specific gly-
can epitopes represents a great opportunity to explore them for
diagnostics and potentially specific targeting of tumors. Consid-
ering that genes only indirectly regulate glycan formation, it is still
puzzling that glycan epitopes have been consistently validated as
cancer markers. Based on the broad expression and high specificity
for cancer tissues, T antigen is currently explored as a potential
target for the development of cancer diagnostics and immunother-
apeutics (16, 233). Since the expression of sTn antigens on the
majority of tumors correlated with poor prognosis, the sTn anti-
gen has become a target for cancer vaccine (58, 61). Administration
of sTn disaccharide conjugate to highly immunogenic protein
induced antibodies against sTn and showed protective effects in a
mouse model of breast cancer (234). Although a randomized phase
III clinical trial using the same sTn vaccine did not improve overall
survival, patients with high titer against the sTn had significantly
prolonged overall survival (235).

The accumulating knowledge about the function of lectin–
tumor-cell glycan interactions in cancer will open ways for new
approaches to interfere with cancer progression. However, the
exploitation of such therapeutic opportunities requires a compre-
hensive knowledge about the underlying mechanisms of lectin-
mediated interactions. Nevertheless, the role of selectins in cancer
progression has been extensively investigated in number of pre-
clinical models and the mechanism at least partially characterized
(9). Clearly, further studies in the exact mechanism of action are
still required, but selectin inhibition in cancer has been inadver-
tently clinically tested in cancer patients treated with antithrom-
botic therapies (236). Unfractionated heparin as well as low mol-
ecular weight heparin has a strong P- and L-selectin inhibitory
activity at clinically relevant concentrations. Retrospective analysis
of clinical studies revealed that apart from antithrombotic activity,
heparin improved survival of cancer patients especially in patients
with early stage disease. Still,prospective and well-designed clinical
study remains to be performed. Similarly, development of highly
specific ligand probes for siglecs (e.g., Siglec-2) revealed the abil-
ity to target siglec-expressing cells (94). Further investigations are
required for deciding whether glycan-specific targeting of lectins
involved in cancer modulation (e.g., siglec, selectins, or galectins)
or rather development of glycan-specific targeting of tumor cells
represents the right approach for the treatment of cancer. The
cell-surface presentation of unique glycan epitopes makes them
an “ideal” candidate for targeting since they are both specific and
therapeutically accessible. Future studies need to validate the ther-
apeutic potential in clinically relevant experimental models prior
to clinical evaluation.
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