Altering Java Semantics via Bytecode
Manipulation

Eric Tanter!, Marc Ségura-Devillechaise?, Jacques Noyé?, and José Piquer!

! UNiversITY OF CHILE, COMPUTER SCIENCE DEPT.
Avenida Blanco Encalada 2120, Santiago, Chile,
{etanter, jpiquer}@dcc.uchile.cl
2 ECOLE DES MINES DE NANTES, OCM GROUP
La Chantrerie, 4, rue Alfred Kastler. B.P. 20722,
F-44307 Nantes Cedex 3, France,

{msegura,noye}@emn.fr

Abstract. Altering the semantics of programs has become of major
interest. This is due to the necessity of adapting existing software, for
instance to achieve interoperability between off-the-shelf components. A
system allowing such alterations should operate at the bytecode level in
order to preserve portability and to be useful for pieces of software whose
source code is not available. Furthermore, working at the bytecode level
should be done while keeping high-level abstractions so that it can be
useful to a wide audience. In this paper, we present Jinline, a tool that
operates at load time through bytecode manipulation. Jinline makes it
possible to inline a method body before, after, or instead of occurrences of
language mechanisms within a method. It provides appropriate high-level
abstractions for fine-grained alterations while offering a good expressive
power and a great ease of use.

1 Introduction

Altering the semantics of programs serves many objectives in software engineer-
ing, related to software adaptation. A particular case of software adaptation,
highlighted by Keller and Holzle in [I], is to make several off-the-shelf com-
ponents interoperable [2]. To this end, Keller and Holzle proposed binary
component adaptation (BCA), a tool for performing coarse-grained alterations
on component binaries. However, coarse-grained alterations, usually limited
to modifications of the interface or of the type hierarchy, may turn out to be
insufficient. Another objective addressed by alteration of program semantics is
that of separation of concerns [3], as emphasized by the work carried out within
the reflection community [4J5lJ6], and more recently, by the emerging paradigm of
aspect-oriented programming (AOP) [7]. In both cases, an important objective
is to separate the development of the functional core of an application from the
implementation of its non-functional concerns, such as persistency, distribution,
or security. The complete application is then obtained by merging the different
parts together. Such a merging requires to perform fined-grained alterations

D. Batory, C. Consel, and W. Taha (Eds.): GPCE 2002, LNCS 2487, pp. 283-[298 2002.
© Springer-Verlag Berlin Heidelberg 2002

284 E. Tanter et al.

within method bodies. The purpose of the work we present in this paper is to
provide a tool enabling such alterations with the appropriate level of abstraction.

In Java, portable transformation mechanisms require code rewriting. This
usually automated rewriting can be performed on source code or on bytecode.
The Java community has already developed an impressive set of tools trans-
forming source code: Aspect]J [8] to support AOP, Sun’s JavaScope project to
instrument source code, a Dylan-like macro system called Java Syntactic Exten-
der [9] and a class-based macro system, OpenJava [1(]]. Nevertheless, in many
contexts, expecting source code availability is a mistake: off-the-shelf compo-
nents usually ship in binary form, and sophisticated distributed systems, like
mobile agent platforms, usually rely on dynamic class loading. Therefore, while
still interesting in themselves, these tools are not generally applicable. This is
why we claim that transformation tools should operate on bytecode.

Available transformation tools based on bytecode rewriting are usually
inadequate for a wide and generic use. First, most of these tools offer bytecode-
level abstractions. This is inadequate if the tool has to be used by a wide
audience, since precise knowledge of the bytecode language is required. This
point has been addressed by Javassist [11], which offers high-level abstrac-
tions. Though targeted to structural reflection, Javassist can be used to
perform fine-grained alterations. However, in this domain, Javassist suffers from
a limited expressive power and a lack of generality, as we will discuss in section

In this perspective, we propose Jinline, a tool for altering Java semantics.
Jinline operates on bytecode, keeps high-level abstractions, offers a good ex-
pressive power and generality. To summarize, Jinline makes it possible to inline
a method body before, after, or instead of a language mechanism occurrencd]]
within a method.

Traditionally, inlining means replacing a call to a function by an instance of
the function body [12]. What Jinline actually does is inserting code or replacing
code. The new code is defined by a method and therefore the inserted code is
conceptually a method call, except that Jinline actually inlines this new method.
Hence, although Jinline cannot be qualified as an inliner, most of its job consists
of inlining pieces of code into others. In addition to this, Jinline provides two
different sets of information:

1. Static information at inlining time. Jinline provides static information
that can be used to drive the inlining process. For instance, in the case of
a message send, it will provide the signature of the invoked method. This
helps to decide whether inlining should occur or not, which method should
be inlined and where (before, after, instead of).

2. Dynamic information at run time. Jinline ensures that the inlined
method will receive as arguments all the useful dynamic information that

! By language mechanisms we refer to the standard mechanisms offered by the lan-
guage, such as message sending, accessing fields, casting, etc. A language mechanism
occurrence is a particular instance of a language mechanism in a piece of code.

Altering Java Semantics via Bytecode Manipulation 285

can be extracted. This point is very important since it makes the tool partic-
ularly suited for implementing generic extensions, as we will exemplify in the
rest of this paper. In the case of a message send, the dynamic information
includes the method invoked, the method from which the invocation is done,
references to the caller and the callee, in addition to the actual arguments
of the invocation.

Applications of such an alteration tool are manifold. We have already
mentioned the issue of off-the-shelf components integration. Two of the authors
are actually working on an open implementation of a run-time MetaObject
Protocol (MOP), Reflex [13]. Many transformers for the Reflex framework can
be implemented with Jinline, thus increasing its expressiveness with caller-side
interceptions. Jinline is also particularly adapted for implementing custom
extensions and AOP systems.

The rest of this paper is organized as follows: in section 2, we will review
the different Java bytecode manipulation tools and relate our work to them.
In section 3 we will present Jinline, its interface to the outside world and an
overview of its architecture. In section 4 we will present a simple example of
applying Jinline. Section 5 will conclude the paper.

2 An Overview of Bytecode Manipulation Tools

One way of modifying a program is to alter its semantics by using reflection [14]
15]. However, the Java programming language does not provide support for
altering the semantics of programs. Since the class model is closed (class Class
and all the classes of the Reflection API are final), it is not possible to refine
the semantics of language mechanisms by specializing the class model, as can
be done in Smalltalk [T6]. Therefore, alterations have to be implemented either
at the virtual machine level, like in VM-based run-time metaobject protocols
like Metaxa [17], Guarand [18] and Iguana/J [19] thus sacrificing portability, or
at the code level, through code transformation. We have already discarded the
possibility of operating on source code for reasons of availability of the source
code itself. This is why a number of propositions have been made to transform
bytecode. These propositions differ in terms of the abstraction level of the entities
a user is expected to program with, and in the expressive power or granularity
of the transformations permitted.

2.1 Transformations Based on Bytecode-Level Abstractions

A number of extensions allow programmers to transform classes at load time at
the expense of manipulating abstractions representing bytecode.

BIT [20] suffers from a too restricted scope: it only offers the possibility to
insert before/after methods, but does not address transformation of interfaces
or method bodies.

286 E. Tanter et al.

There are several general-purpose implementations of bytecode manipulation
available: BCEL [21], JikesBT [22], and JOIE [23]. All of them translate the
class file data structure into an intermediate representation, allow the user to
perform modifications and to finally regenerate a valid class file data structure
from the transformed intermediate representation. The bytecode-level API of
Javassist [11] could fit into this category although bytecode instructions are not
reified: the programmer is just provided with an iterator over a sequence of
bytes. The main strength of these general-purpose extensions is their expressive
power, since they are able to express anything that can be written in bytecode.
However, their main drawback is to be low-level and therefore difficult to use.

2.2 Transformations Based on Source-Level Abstractions

Metaobject protocols (MOPs) are a natural framework for reifying high-level
language entities [24]. Run-time MOPs are an approach to enable the run-time
alteration of program semantics. Compared to static transformation systems —
such as macro systems, inlining systems, and compile-time MOPs —, where the
link between the modifier and the modified entity is merged at some point, run-
time MOPs maintain this link, known as the causal connection link [L4I15], at
run time, thus enabling dynamic updates of this link at the expense of a certain
overhead.

Reflex [13] and Kava [25] are run-time MOPs for Java that rely on load-
time insertion of pieces of code (hooks) to transfer control to the metalevel
at run time. These systems are bound to behavioral reflection, which is the
ability of dynamically altering the behavior of objects. This approach is in fact
complementary to static code transformation approaches in cases where dynamic
adaptability or instance-specific alterations are needed (see for instance [26]).

BCA [1] is a bytecode modification tool with a high-level interface, but it
only deals with external interfaces and class hierarchies, ignoring method bod-
ies. Javassist [I1] is a mature tool for load-time structural reflection in Java.
Structural reflection is the ability of a program to alter the definitions of data
structures such as classes and methods. With Javassist, the transformations that
can be made are at the granularity of class or members. The main goal achieved
by Javassist is a high-level and easy-to-use interface. To allow finer-grained trans-
formations, Javassist has recently made public its bytecode-level API, which we
mentioned in subsection 2.1l Recall that it lacks a concrete reification of bytecode
instructions. To bridge the gap between its high-level and low-level APIs, Javas-
sist offers a code converter to instrument method bodies through a high-level
interface.

2.3 Limitations of the Code Converter of Javassist

The code converter of Javassist — the closest tool to our proposal — offers a simple
high-level API to alter method bodies. This API allows inserting before/after
methods, redirecting method invocations or field accesses, and replacing cre-
ations. We claim that its expressiveness is limited and that it lacks generality.

Altering Java Semantics via Bytecode Manipulation 287

Its limited expressiveness is in fact not that much an issue since it can actually
be upgraded, and also, in many cases, it is sufficient to alter such mechanisms
as method invocations, field accesses and object creations. A more annoying
problem is the limitation about the possible transformations: for instance, a field
access can only be replaced by a static method call, and a method invocation
can only be replaced by another method invocation on the same object with the
same parameters.

But all in all, the major drawback of the code converter lies in the fact that
it is not well-suited to designing generic solutions. Since Javassist lacks semantic
information in the process of modifying bytecode (remember that Javassist
does not reify bytecode instructions as such), the possible transformations
are limited. The code converter does not perform any reification of what is
actually occurring. For instance, an object creation can be replaced by a method
invocation, but this method will not receive as argument the name of the class
that was to be instantiated: it has to be specific to a type. This limitation is
common to all transformations.

To illustrate this limitation, consider the following simple example: we want
to set up a factory pattern [27] for instantiating any class in an existing appli-
cation. That is to say, instead of calling directly new, we want to call a factory
method. Designed with generality and extensibility in mind, the factory method
would be:

public Object getInstance(String classname, Object[] args){...}

Then we want to transform all the instantiations so that they call this unique
factory method, for instance:

new Point(1,2); = Factory.getInstance(’Point”, [1,2]);

This is not feasible with the code converter. The only possible replacement is:
new Point(1,2); = Factory.getPoint(1,2);
The following issues come to light:

— First, the name of the instantiated class is not passed as a parameter, which
implies that we need a method per class (a getPoint method, a getTriangle
method, etc.).

— Second, the arguments are not packed, which means we need a method
per set of parameters (a method getPoint(int, int), another method
getPoint (Point), etc.).

It is easy to see that such an approach is not applicable to real world cases.
What is needed is a tool that can systematically provide runtime information
in a cost-effective manner to the new inserted code. In addition to this, more
flexibility with respect to what code can be inserted is highly appreciable. This
is exactly what Jinline is about.

288 E. Tanter et al.

3 Jinline

Jinline is a Java tool for altering the semantics of programs via bytecode ma-
nipulation. Jinline makes it possible to inline a piece of code before, after, or
instead of occurrences of language mechanisms. Jinline provides all the necessary
static information to drive the inlining process and, which is really important,
it wraps at runtime all the available dynamic information and passes it to the
inlined code. This makes generic alterations possible, unlike the CodeConverter
of Javassist. We will show in section 4 how simple it is to solve with Jinline the
issue presented in section 2.3

Unlike low-level bytecode translators, Jinline keeps high-level abstraction
while offering a good expressive power. This makes it usable by a wide audience
and applicable to cases where source code is not available (e.g., components,
mobile code systems). Inlining can be triggered on language-level mechanisms
(message send, constructor send, cast, ...) and the inlined code is also expressed
in source code.

Jinline is integrated within the Javassist framework for load-time bytecode
transformation which was designed with type safet and correctnessd in mind.
Types and methods reifications in Jinline are those of the core Javassist API.

3.1 A User View on Jinline

Inlined code. A natural formalism for representing a piece of code to inline
is indeed a method. The programmer is responsible for writing it in Java and
compiling it using a standard compiler. It will then need to feed the inliner
with the bytecode definition of this method. In addition to this, choosing to
inline methods provides us with a natural way to pass dynamic information at
run time to the inlined piece of code: all relevant information is packed and
passed as argument of the inlined method. We will describe the structure of this
information later in this section.

When a method is inlined, it is not recursively processed by Jinline. This is
to avoid inconsistencies: if one wants to inline a method for method invocations
and another method for casts, Jinline will actually perform both transforma-
tions simultaneously. Therefore the order of the transformations does not have
any impact on the result: none of the inlined methods will be transformed. Nev-
ertheless, it is not impossible to imagine cases where one would like to process
the inlined code. This can be done by completing the first process and then
performing a second pass over the transformed code.

Descriptions. All the language mechanisms are represented in Jinline by de-
scription classes. There is a description class for message send, one for cast, etc.
An instance of such a class contains all the static information that describes the
occurrence of the mechanism. The methods of each class are the accessors to

2 You cannot get an invalid reference to a reification of a class or method.
3 Javassist greatly limits the possibility of producing bytecode rejected by the JVM.

Altering Java Semantics via Bytecode Manipulation 289

the static information that is provided to the user for driving the inlining pro-
cess. Figure [I] shows the hierarchy of description classes in Jinline. Jinline does
not cover message reception, since it can typically be implemented by coarser-
grained transformations (as done in the reflection package of Javassist). Also,
Jinline does not cover control structures, since they are not always represented
the same way in the bytecode that in the source code: some compiler optimiza-
tions may eliminate or alter control structures existing in the source code.

One can refer to a language mechanism by using its description class object.
For instance, MessageSend.class represents the language mechanism of send-
ing messages, while an instance of this class represents an occurrence of this
mechanism.

The process. The inlining process is based on a listener-notifier schema as
illustrated in Figure 2l In Jinline, method definitions are the unit of transfor-
mations. When parsing a method to alter, Jinline notifies a listener each time
it encounters an occurrence of interest. The notification embodies all the static
information that can be extracted about the occurrence. The listener can then
analyze this static information and decide to inline or not a piece of code before,
after, or instead of the occurrence.

An inlining process is represented by an instance of the Jinliner class. The
inlining process is specified by attaching the proper listener to each language
mechanism of interest. For instance, to specify that the Jinliner object should
send a notification upon occurrences of message send, one should write:

jinliner.notifyUpon(MessageSend.class, aJinler);

One of the advantage of such an approach is that it is possible to specify a
common super type of mechanism in the specification. For instance:

jinliner.notifyUpon(Description.class, aJinler);

implies that aJinler will be notified of any occurrence of a known mechanism.

To instrument a method, this method first needs to be reified into a Javassist
CtMethod object:

CtMethod myMethod = aCtClass.getDeclaredMethod("myMethod") ;
Then the process can be started:
inliner.process (myMethod) ;

It is also possible to process an entire class (by passing a CtClass object to
process) in which case, by default, all its public methods and constructors will
be processed.

290 E. Tanter et al.

MessageSend ConstructorSend Array
getReceiverClass() getReceiverClass()
getName() getParameterTypes() A
getParameterTypes() getExceptionTypes() ArrayCreate
getReturnType() isStatic()
isStatic() getType()
ArrayLength
FieldAccess LocalVarAccess
getOwner() ,-geﬂ“-oc‘a-lVariable() || ArrayAccess
getName() isPrimitiveType() isPrimitiveTypeQ
tiveType
getType() isPrimi Y]
isStatic()
LocalVarWrite ArrayWrite
FieldWrite
LocalVarRead ArrayRead
FieldRead
Type Terminate LockRequest
getType()
Cast Return LockGrab
RunTimeTypeld ThrowException LockRelease
getType()
isCaught()
EnterMethod EnterTry EnterCatch

Fig.1. The hierarchy of description classes.Note that the common superclass
Description has been omitted for the sake of readability.

Jinlers and static information. Jinlers are objects that listen for notification
from the inliner and that drive the inlining process. Such objects implement the
Jinler interface, which declares the method:

public ToInline notify(Description desc, Context context);

This means that upon notification, the Jinler object receives an instance of
a description class, which encapsulates all the static information about the oc-
currence of the mechanism. For instance, to reason about the return type of a
message send, one can use:

if (((MessageSend)desc) .getReturnType () .equals(...))

Altering Java Semantics via Bytecode Manipulation 291

o notifyUpon (type, jinlerA)

Jinliner

o process (myMethod)

o return inlining

o notify(description, context) order (or null)

o analyze static data QO

jinlera

Fig. 2. The inlining process is based on a notification scheme. (1) jinlerA is registered
for notification of occurrences of type. (2) The Jinliner is given the method to process.
(3) Each time an occurrence of type is encountered, the Jinliner notifies jinlerA. (4)
jinlerA analyzes the static data about the occurrence. (5) It returns an inline order or
null if no inlining should take place.

The Context object given upon notification is simply an object that encapsulates
the current class and the current method being processed.

Finally, to specify the desired inlining (that is, which method(s) to inline
and where), a Jinler returns a ToInline object. Such an object is a structure
of CtMethod objects to inline before, after, or instead of the occurrence. For
instance:

return new ToInline(myMethod);

specifies that the inliner should inline myMethod instead of the current occur-
rence, whereas:

(1) return new ToInline(beforeMethod, afterMethod);
(2) return new ToInline(beforeMethod, null);

(1) specifies that beforeMethod should be inlined before the occurrence and that
afterMethod should be inlined after it, and (2) specifies that only beforeMethod
should be inlined before the occurrence.

Dynamic information and inlinable methods. At run time, dynamic in-
formation is packed and passed to the inlined method. Great attention has been
paid to provide to the inlined method all the information available. The informa-
tion is passed as an array of objects containing only standard objects and arrays,
in order to be cost-effective. Table[ll shows how the information is ordered in the
given array depending on the mechanism.

The way in which dynamic information is passed imposes a compatibility
rule over inlinable methods. In Jinline, to be inlinable, a method has to accept
either an array of objects as unique parameter or no parameter at all. If the

292 E. Tanter et al.

Table 1. Information delivered at runtime to the inlined method.The information is
passed as an Object[]. For all mechanisms, the first two elements are the same: the
method in which the occurence is located and the instance that is involved (this). The
table shows how specific information is stored in the array for each language mechanism.
(*) Due to restrictions in the JVM specifications, only before/after insertion is possible.

Language Dynamic information Expected
mechanism passed to the inlined method Index: type return value
Common qualified name of altered method 0: String
this object 1: Object
Message qualified name of invoked method 2: String invocation
sent target instance 3: Object result
values of arguments 4: Object []
Constructor qualified name of target class 2: String object
argument values 3: Object []
Cast qualified name of target type 2: String object (cast)
and RTTI target instance 3: Object or boolean (RTTI)
Field qualified name of field read 2: String field value
read target instance 3: Object
Field qualified name of field written 2: String void
write target instance 3: Object
new field value 4: Object
Local variable is this 2: Boolean variable value
read is parameter 3: Boolean
is primitive type 4: Boolean
Local variable is this 2: Boolean void
write is parameter 3: Boolean

is primitive type 4: Boolean
new variable value 5: Object

Array creation qualified name of array type 2: String array

Array length array whose length is being accessed 2: Object [] array length

Array read array which is being accessed 2: Object [] object
index of the array element 3: Integer

Array write array which is being accessed 2: Object [] void

index of the array element 3: Integer
new array element value 4: Object

Lock grab (*) target instance 2: Object void
Lock release (*) target instance 2: Object void
Throw exception exception instance 2: Throwable exception

to throw
Return value that is to be returned 2: Object object

to return
Enter a method none void

or a try/catch

method does not accept any parameter, no dynamic information will be passed
(which is much more efficient when dynamic information is not needed). This
entails that when creating a ToInline object, the CtMethod objects given to the

Altering Java Semantics via Bytecode Manipulation 293

constructor must fulfill this compatibility requirement otherwise an exception is
thrown.

As far as return values are concerned, no check is made when creating a
ToInline object. In case of inlining before/after, the return value is simply not
taken into account since it is irrelevant. In the case of a replacement, it is up
to the programmer to guarantee that the value returned by the inlined method
is compatible with the expected type (see table [[]). Jinline only takes care of
wrapping and unwrapping primitive types and exceptions, which is actually the
only thing it can do systematically. At run time, if an inlined method returns an
incompatible value, a ClassCastException is thrown.

3.2 Overview of Implementation

We have created our own reification of bytecode instructions and created a high-
level symbolic object for bytecode modification: BytecodeSequence. Such ob-
jects represent sequences of bytecodes and offer services to manipulate them, in
particular inserting another sequence at a given index. Since our main goal is
easy insertion of sequences into others, our reification of bytecode is a straight-
forward one. We are not interested in optimizing the bytecode or performing
analyses on it. This is why we do not change the bytecode format, as is done in
a dedicated framework like Soot [28].

A BytecodeSequence object can be created out of Javassist MethodInfo
objects, which are the low-level reifications of methods. During parsing, any
information (indexes, jumps, local variables, etc.) is translated into symbolic
data. Manipulation over bytecode sequences is all symbolic. This makes copies
of method bodies into others fairly straightforward. It is only at generation time
that the symbolic information is translated back to raw data. The MethodInfo
object is then updated with this new raw data.

For the inlining part, a MethodParser is responsible for parsing a method
body and notifying the appropriate Jinlers whenever needed. When an inlining
needs to be done, it is delegated to a MethodInliner.

A MethodInliner is responsible for inlining the method in a semantically
correct manner:

— if the inlined method expects dynamic information, it first inserts a prologue
that does the wrapping of all the parameters. Such a prologue is specific to
each supported mechanism. The array of objects that the inlined method
expects as an argument is transmitted via an extra local variable;

— it adjusts the method to inline to remove its return statements and ensure
stack consistency. This modification is common to all mechanisms. Note
that the value returned by the inlined method is also transmitted via a local
variable;

— it appends the adjusted method body after the prologue;

— it adds an epilogue that unwraps the return value and manages the excep-
tions that the inlined code may throw. More precisely, if the inlined method
throws an exception that was expected by the original code, it is simply

294 E. Tanter et al.

thrown again, otherwise an UndeclaredThrowableException is thrown, as
is done in the Dynamic Proxy APT of Java [29]. Such an epilogue is common
to all mechanisms as far as the return value is concerned, but the exception
handling part is specific to each mechanism. Recall that in the case of a
before/after inlining, the return value is simply ignored.

Figure [3] below illustrates the inlining operation in the case of a replacement.

i-1 i-1

il] [1 prologue
i+l
adjusted
body
original bytecode E epilogue
sequence i+

bytecode sequence
after inlining

body to inline

Fig. 3. The inlining operation at the bytecode level (replacement of i).The method
body to inline is ajusted before insertion. The prologue wraps the arguments to the
inlined body (if needed). The epilogue unwraps the return value (if needed) and handles
exceptions.

4 Example

Let us come back to the example presented in section when highlighting the
limitations of the CodeConverter of Javassist. This section clearly shows how
generic solutions can be implemented easily thanks to Jinline’s ability to provide
dynamic information. The objective is to use Jinline to replace any instantiation
statement by a call to a generic factory method. We therefore assume that we
have developed the factory:

public class Factory {
public Object getInstance(String classname, Object[] args)
{ // factory code }

}

We now present the 3-step process used to solve the problem with Jinline.

Altering Java Semantics via Bytecode Manipulation 295

1. Code to inline. The first step is to write a method that contains the code
to inline. This is done by defining a sample class:

public class FactorySample {
public Object newMethod(Object[] jinArgs){

(1) String classname = (String) jinArgs[2];

(2) Object[] args = (Object[]) jinArgs[3];

(3) return Factory.getInstance(classname, args);
}

}

Since in this example we make use of the dynamic information that Jinline
provides to the inlined code, the method we will inline, newMethod, accepts as
unique argument an array of objects. According to the way dynamic information
is structured (see table[]), we know that the third argument in the array is the
name of the class and that the fourth argument is the array of arguments to
the constructor. Hence, we first retrieve those values (1 & 2). Then, we simply
invoke the factory method with the extracted values (3).

This sample class has to be compiled so that it is possible to obtain a Javassist
reification of the method newMethod.

2. The Jinler. Next, one needs to define the Jinler, that is to say, the entity
responsible for driving the inlining process:

public class FactoryJinler implements Jinler {
CtMethod newMethod;

FactoryJinler O{
(1) newMethod =
ClassPool.getDefault () .get ("FactorySample")
.getDeclaredMethod ("newMethod") ;

public ToInline notify(Description desc, Context cont){
(2) if (desc instanceof ConstructorSend)
(3) return new ToInline(newMethod);
4 return null;

3

In the constructor, the Javassist reification of newMethod is obtained (1). In
notify, the description object is filtered according to its type (2). If it corre-
sponds to an instantiation, then we return an inline order, specifying that we
want to inline newMethod instead of the current instantiation (3). Otherwise, we
specify that no inlining should occur (4).

296 E. Tanter et al.

3. Connecting to the Javassist framework. The last step is to connect to
the Javassist framework for load-time bytecode transformation. For the readers
which are not familiar with Javassist, let us recall that it is possible to define a
Translator object that is notified each time a class is loaded and that can per-
form some transformation before the class is actually loaded. Here is a translator
for the Javassist framework that uses a Jinliner and the Jinler defined above:

public class FactoryTranslator implements javassist.Translator {
Jinliner inliner = new Jinliner();
Jinler jinler = new FactoryJinler();

public void start(ClassPool pool){
(1) inliner.notifyUpon(ConstructorSend.class, jinler);

}

public void onWrite(ClassPool pool, String classname){
(2) CtClass clazz = pool.get(classname) ;
(3) inliner.process(clazz);

}
}

When connected to the framework, the translator is initialized by a call to its
start method. The initialization work in this case simply consists of telling the
Jinliner that it should notify the Jinler upon occurrences of constructor sends (1).
Then, each time a class is about to be loaded, the translator is informed by
an invocation of its onWrite method. Here, we simply get a reification of the
class (2), and pass it to the Jinliner (3).

With this straightforward code, we are able, at load time, to systematically
transform any occurence of instantiation statements by the appropriate call to
our generic factory.

5 Conclusion

In this paper we have presented Jinline, a tool for altering Java semantics via
bytecode manipulation at load time. Jinline allows fine-grained alterations on
bytecode while keeping high-level abstractions. With Jinline, a method body
can be inlined before, after, or instead of any language mechanism occurrence
within a method. Static information is given to the programmer to drive the
inlining process and dynamic information can be passed to the inlined method,
making generic alterations possible.

The main achievement of Jinline is to be a simple and powerful tool, with a
wide set of possible applications, that seamlessly fits within the Javassist frame-
work to extend the range of easily accessible bytecode manipulation in Java.

With regards to future work, we plan to perform some benchmarks and fo-
cus on optimizing the bytecode generated by Jinline, since code explosion might
become an issue in cases where many alterations are performed within the same

Altering Java Semantics via Bytecode Manipulation 297

method. Possible tracks are the use of subroutines to factor out common parts
and basic optimizations on the generated bytecode sequences. As for applica-
tions, Jinline will be applied to build a comprehensive library of transformers
for the Reflex framework, an open implementation of a run-time MOP [13].

Acknowledgments. We would like to deeply thank Shigeru Chiba for the
highly valuable remarks he made on the first version of this paper. We are also
grateful to the anonymous reviewers for their comments.

This work was partially funded by Millenium Nucleous Center for Web Re-

search, Grant P01-029-F, Mideplan, Chile.

References

1]

Keller, R., Holzle, U.: Binary component adaptation. In: Proceedings of
ECOOP’98 - 12th European Conference on Object-Oriented Programming, Brus-
sels, Belgium, Springer-Verlag (1998) 30729

Wegner, P.: Interoperability. ACM Computing Surveys 28 (1) (1996)

Tarr, P.L., Ossher, H., Harrison, W.H., Jr., S.M.S.: N degrees of separation: Multi-
dimensional separation of concerns. In: International Conference on Software
Engineering. (1999) 107-119

Stroud, R.J., Wu, Z.: Using Metaobject Protocols to Satisfy Non-Functional
Requirements. In: Advances in Object-Oriented Metalevel Architectures and Re-
flection. CRC Press (1996) 31-52

Tanter, E., Piquer, J.: Managing references upon object migration: applying
separation of concerns. In: Proceedings of the XXI International Conference of
the Chilean Computer Science Society (SCCC 2001), Punta Arenas, Chile, IEEE
Computer Society (2001) 264272

McAffer, J.: Meta-level architecture support for distributed objects. In: Inter-
national Workshop on Object-Orientation in Operating Systems (IWOOS’95).
(1995)

Kiczales, G., Irwin, J., Lamping, J., Loingtier, J., Lopes, C., Maeda, C., Mend-
hekar, A.: Aspect Oriented Programming. In: Special Issues in Object-Oriented
Programming, Max Muehlhaeuser (general editor) et al. (1996)

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An
overview of AspectJ. Proceedings of ECOOP 2001 (2001)

Bachrach, J., Playford, K.: The Java syntactic extender. OOPSLA 2001 confer-
ence proceedings (2001) 31-42

Tatsubori, M.: An extension mechanism for the Java language. Master’s thesis,
Tsukuba, Japan (1999)

Chiba, S.: Load-time structural reflection in Java. European Conference on
Object-Oriented Programming (ECOOP’00) (2000)

Howe, D.: FOLDOC: Free On-Line Dictionary Of Computing. (1993)
http://foldoc.doc.ic.ac.uk.

Tanter, E., Bouraqgadi, N., Noyé, J.: Reflex — Towards an Open Reflective Exten-
sion of Java. In: Proceedings of the Third International Conference on Metalevel
Architectures and Advanced Separation of Concerns (Reflection 2001). Volume
2192 of Lecture Notes in Computer Science., Kyoto, Japan, Springer-Verlag (2001)
25-43

298

[14]

[15]
[16]
[17]

[18]

[19]

[26]

[27]

[28]

[29]

E. Tanter et al.

Smith, B.: Reflection and semantics in Lisp. In: Proceedings of the 14th Annual
ACM Symposium on principles of programming languages, POPL’84. (1984) 23—
25

Maes, P.: Computional reflection. PhD thesis, Artificial intelligence laboratory,
Vrije Universiteit, Brussels, Belgium (1987)

Goldberg, A., Robson, D.: Smalltalk-80: The Language and its Implementation.
Addison-Wesley (1983)

Golm, M.: Design and implementation of a meta architecture for Java. Master’s
thesis, Leipzig Germany (1997)

Oliva, A., Calciolari Garcia, 1., Buzato, L.: The reflexive architecture of Guarana.
Technical report, IC-98-14, Institute of Computing, State University of Campinas
(1998)

Redmond, B., Cahill, V.: Supporting Unanticipated Dynamic Adaptation of Ap-
plication Behavior. In: Proceedings of ECOOP 2002. Volume 2374 of Lecture
Notes in Computer Science., Mélaga, Spain, Springer-Verlag (2002) 205-230
Lee, H.B., Zorn, B.G.: BIT: A tool for instrumenting Java bytecodes. In: USENIX
Symposium on Internet Technologies and Systems. (1997)

Dahm, M.: Byte code engineering. In Cap, C., ed.: Proceedings of JIT’99, Berlin.
(1999) 267-277

AlphaWorks: JikesBT. http://www.alphaworks.ibm.com/tech/jikesbt (1998)
Cohen, G., Chase, J., Kaminsky, D.: Automatic program transformation with
JOIE. in Proceedings of the 1998 USENIX Annual Technical Symposium (1998)
Kiczales, G., Des Rivieres, J., Bobrow, D.: The Art of the Meta-Object Protocol.
MIT Press (1991)

Welch, 1., Stroud, R.: Kava - a reflective Java based on bytecode rewriting. In:
1st OOPSLA Workshop on Reflection and Software Engineering (OORaSE’99).
Volume 1826 of Lecture Notes in Computer Science., Denver, USA, Springer-
Verlag (2000) 165-167

Tanter, E., Vernaillen, M., Piquer, J.: Towards Transparent Adaptation of Mi-
gration Policies. In: 8th ECOOP Workshop on Mobile Object Systems (EWMOS
2002), Malaga, Spain (2002)

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Professional Computing Series. Addison-
Wesley (1994)

Vallee-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot - a
Java optimization framework. In: Proceedings of CASCON 1999. (1999) 125-135
SUN Microsystems: Dynamic Proxy Classes. (1999)
http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html.

	Introduction
	An Overview of Bytecode Manipulation Tools
	Transformations Based on Bytecode-Level Abstractions
	Transformations Based on Source-Level Abstractions
	Limitations of the Code Converter of Javassist

	Jinline
	A User View on Jinline
	Overview of Implementation

	Example
	Conclusion

