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1 Introduction

Alternant codes form a large and powerful family of codes. They can be obtained

by a simple modification of the parity-check matrix of a BCH code. The most fa-

mous subclasses of alternant codes are BCH codes and (classical) Goppa codes,

the former for their simple and easily instrumented decoding algorithm, and the

later for meeting the Gilbert-Varshamov bound. However, most of the work re-

garding construction and decoding of alternant codes has been done considering

codes over finite fields. On the other hand, linear codes over integer rings have

recently generated a great deal of interest because of their new role in algebraic

coding theory and their successful application in combined coding and modula-

tion. A remarkable paper by Hammons et al. [1] has shown that certain binary

#542/01. Received: 7/III/01.



234 ALTERNANT AND BCH CODES OVER CERTAIN RINGS

nonlinear codes with good error correcting capabilities can be viewed through a

Gray mapping as linear codes over Z4. Moreover, Calderbank et al. [2] studied

cyclic codes over Z4. Viewing many BCM (block coded modulation) schemes as

group block codes over groups, in [3] it was shown that group block codes over

abelian groups can be studied via linear codes over finite rings. Andrade and

Palazzo [4] constructed BCH codes over finite commutative rings with identity.

Also, Greferath and Vellbinger [5] have investigated codes over integer residue

rings under the aspect of decoding. The Lee metric ([6], [7]) was developed as

an alternative to the Hamming metric for transmission of nonbinary signals over

certain noisy channels. Roth and Siegel [8] have constructed and decoded BCH

codes over GF(p) under Lee metric.

In this paper we address the problems of constructing and decoding alternant

codes over arbitrary finite commutative local rings with identity and the problems

of construction of BCH codes for the Lee metric. The core of the construction

technique mimics that of alternant and BCH codes over a finite field, and is based

on the factorization of xs − 1 over an appropriate extension ring. The decoder

is capable of handling both errors and erasures, which enables the implemen-

tation of generalized minimum distance decoding (GMD) to further reduce the

probability of decoding error [9].

This paper is organized as follows. In Section 2, we describe a construction of

alternant codes over a finite commutative local ring with identity and an efficient

decoding procedure is proposed. We show how this decoding procedure can

also be used to handle erasures. In Section 3, we describe a construction of BCH

codes over Zq , where q is a prime power, under Lee metric. The question of the

existence of a simple decoding algorithm for these codes remains open.

2 Alternant Code

In this section we present a construction technique of alternant codes over finite

commutative local rings with identity, in terms of parity-check matrices. First we

collect basic definitions and facts from the Galois theory of commutative rings,

which are necessary to characterize such matrices. Throughout this section we

assume that A is a finite commutative local ring with identity, maximal ideal M

and residue field K = A

M
∼= GF(pm), where m is a positive integer and p is a
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prime. Let f (x) be a monic polynomial of degree h in A[x], such that µ(f (x))

is irreducible in K[x], where µ is the natural projection. Then by [10, Theorem

XIII.7(a)], we have f (x) also irreducible in A[x]. Let R be the ring
A[x]
〈f (x)〉 .

Then R is a finite commutative local ring with identity and is called a Galois

extension of A of degree h. Its residue field is K1 = R

M1

∼= GF(pmh), where

M1 is the maximal ideal. We have that K
∗
1 is the multiplicative group of K1,

whose order is pmh − 1.

Let R∗ denotes the multiplicative group of units of R. It follows that R∗ is

an abelian group, and therefore it can be expressed as a direct product of cyclic

groups. We are interested in the maximal cyclic group of R∗, hereafter denoted

by Gs , whose elements are the roots of xs − 1 for some positive integer s such

that gcd(s, p) = 1. From [10, Theorem XVIII.2], there is only one maximal

cyclic subgroup of R∗ having order relatively prime to p. This cyclic group has

order s = pmh − 1.

Definition 2.1. Let η = (α1, α2, · · · , αn) be the locator vector, consisting of

distinct elements of Gs , and let w = (w1, w2, · · · , wn) be an arbitrary vector

consisting of elements of Gs . Define the matrix H by

H =




w1 w2 · · · wn

w1α1 w2α2 · · · wnαn

w1α
2
1 w2α

2
2 · · · wnα

2
n

...
...

. . .
...

w1α
r−1
1 w2α

r−1
2 · · · wnα

r−1
n




,

where r is a positive integer. Then H is the parity-check matrix of a shortened

alternant code C(n, η, w) of length n ≤ s over A. �

It is possible to obtain an estimate of the minimum Hamming distance d of

C(n, η, w) directly from the parity-check matrix. The next theorem provides

such an estimate.
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236 ALTERNANT AND BCH CODES OVER CERTAIN RINGS

Lemma 2.1. Let α be an element of Gs of order s. Then the difference αl1 −αl2

is a unit in R if 0 ≤ l1 < l2 ≤ s − 1.

Proof. It is sufficient to show that 1 − αj , j = 1, 2, · · · , s − 1 is a unit. If

1 − αj ∈ M1 for some 1 ≤ j ≤ s − 1, it follows that αj = 1, which is a

contradiction. �

Theorem 2.1. C(n, η, w) has minimum Hamming distance d ≥ r + 1.

Proof. Suppose c is a nonzero codeword in C(n, η, w), such that the weight

wH(c) ≤ r . Then, cHT = 0. Deleting n − r columns of the matrix H corre-

sponding to zeros of the codeword, it follows that the new matrix H
′
is Vander-

monde, and therefore its determinant is a unit in R. Thus, the only possibility

for c is the all-zero codeword. �

Example 2.1. The polynomial f (x) = x3 + x + 1 is irreducible over Z2, and

over the commutative local ring A = Z2[i], where i2 = −1. Thus R = A[x]
〈f (x)〉

is a Galois extension of A. Let α be a root of f (x). We have that α generates

acyclic group Gs of order s = 23− 1 = 7 in R∗. Setting η = (1, α, · · · , α6) and

w = (1, 1, 1, 1, 1, 1, 1), if r = 2 then we have an alternant code C(7, η, w) over

Z2[i] with minimum Hamming distance of at least 3. �

2.1 Decoding Procedure

This section is devoted to developing a decoding method for an alternant code

as defined in the previous section. Let C(n, η, w) be an alternant code with

minimum Hamming distance at least r + 1, i.e., this code can correct up to

t = [(r + 1)/2] errors, where [n] denotes the largest integer less than or equal

to n. Then t = (r + 1)/2 when r is odd, and t = r/2 when r is even. The

idea is to extend efficient standard decoding procedures for BCH codes which

work well over fields (as described, for example, in [12], [13], [14], and [15])

to finite commutative local rings with identity. Note that these afore mentioned

decoding procedures do not work over rings, in general. As an example, the
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original Berlekamp-Massey algorithm [12], [16], which is fundamental in the

decoding process of a BCH code, cannot be applied directly if the elements of

the sequence to be generated do not lie in a field.

First, we establish some notation. Let R denotes the ring defined in Sec-

tion 2 and α be a primitive element of Gs . Let c = (c1, c2, · · · , cn) be the

transmitted codeword and r = (r1, r2, · · · , rn) be the received vector. The

error vector is given by e = (e1, e2, · · · , en) = r − c. Given a locator vec-

tor η = (α1, · · · , αn) = (αk1, · · · , αkn) in Gn
s , we define the syndrome values

s� ∈ Gs , of an error vector e = (e1, · · · , en), as

s� =
n∑

j=1

ejwjα
�
j , � ≥ 0.

Suppose that ν ≤ t is the number of errors which occurred at locations x1 =
αi1, · · · , xν = αiν , with values y1 = ei1, · · · , yν = eiν . Since s = rHT = eHT ,

where s = (s0, · · · , sr−1), the first r syndrome values s� can be calculated from

the received vector r as s� =∑n
j=1 ejwjα

�
j =

∑n
j=1 rjwjα

�
j , � = 0, 1, · · · , r−

1. The elementary symmetric functions σ1, σ2, · · · , σν of the error-location

numbers x1, x2, · · · , xν are defined as the coefficients of the polynomial

σ(x) =
ν∏

i=1

(x − xi) =
ν∑

i=0

σix
ν−i ,

where σ0 = 1. Thus, the decoding procedure being proposed consists of four

major steps [11]:

Step 1 – Calculation of the syndrome vector from the received vector;

Step 2 – Calculation of the elementary symmetric functions σ1, σ2, · · · , σν

from s using the modified Berlekamp-Massey algorithm [11];

Step 3 – Calculation of the error-location numbers x1, x2, · · · , xν from
σ1, σ2, · · · , σν that are roots of σ(x);

Step 4 – Calculation of the error magnitudes y1, y2, · · · , yν from xi and s by
Froney’s procedure [13].

Next we analyze each step of the decoding algorithm in some detail. Since

calculation of the syndromes is straightforward, we will not make any comments

on Step 1.
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238 ALTERNANT AND BCH CODES OVER CERTAIN RINGS

The set of possible error-location numbers is a subset of {α0, α1, · · · , αs−1}.
The elementary symmetric functions σ1, σ2, · · · , σν (where ν denotes the

number of errors introduced by the channel) are defined as the coefficients of the

polynomial (x − x1)(x − x2) · · · (x − xν) = xν + σ1x
ν−1 + · · · + σν−1x + σν .

In Step 2, the calculation of the elementary symmetric functions is equivalent to

finding a solution σ1, σ2, · · · , σν , with minimum possible ν, to the following

set of linear recurrent equations over R

sj+ν + sj+ν−1σ1 + · · · + sj+1σν−1 + sjσν = 0,

j = 0, 1, 2, · · · , (r − 1)− ν,
(1)

where s0, s1, · · · , sr−1 are the components of the syndrome vector. We make use

of the modified Berlekamp-Massey algorithm [11] to find the solutions of Eq.

(1), that hold for commutative rings with identity. We call attention to the fact

that in rings care must be taken regarding zero divisors, multiple solutions of the

system of linear equations, and also with an inversionless implementation of the

original Berlekamp-Massey algorithm. The algorithm is iterative, in the sense

that the following n− ln equations (called power sums)


snσ
(n)
0 + sn−1σ

(n)
1 + · · · + sn−lnσ

(n)
ln
= 0

sn−1σ
(n)
0 + sn−2σ

(n)
1 + · · · + sn−ln−1σ

(n)
ln
= 0

...

sln+1σ
(n)
0 + slnσ

(n)
1 + · · · + s1σ

(n)
ln
= 0

are satisfied with ln as small as possible and σ (0) = 1. The polynomial σ (n)(x) =
σ

(n)
0 + σ

(n)
1 x + · · · + σ

(n)
ln

xn represents the solution at the n-th stage. The n-th

discrepancy will be denoted by dn and defined by dn = snσ
(n)
0 + sn−1σ

(n)
1 +

· · · + sn−lnσ
(n)
ln

. The modified Berlekamp-Massey algorithm for commutative

rings with identity is formulated as follows: The inputs to the algorithm are

the syndromes s0, s1, · · · , sr−1 which belong to R. The output of the algorithm

is a set of values σi, 1 ≤ i ≤ ν, such that the equations in Eq. (1) hold

with minimum ν. In order to start the algorithm, set the initial conditions:

σ (−1)(x) = 1, l−1 = 0, d−1 = 1, σ (0)(x) = 1, l0 = 0, and d0 = s0 [15]. Thus,

we have the following steps:

1) n ← 0.
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2) If dn = 0, then σ (n+1)(x)← σ (n)(x), and ln+1 ← ln, and go to 5).

3) If dn 
= 0, then find an m ≤ n − 1 such that dn − ydm = 0 has a
solution in y and m − lm has the largest value. Then, σ (n+1)(x) ←
σ (n)(x)− yxn−mσ (m)(x), and ln+1 ← max{ln, lm + n−m}.

4) If ln+1 = max{ln, n + 1 − ln} then go to 5), else search for a solution
D(n+1)(x) with minimum degree l in the range max{ln, n+ 1− ln} ≤ l <

ln+1 such that σ (m)(x) defined by D(n+1)(x) − σ (n)(x) = xn−mσ (m)(x) is
a solution for the first m power sums, dm = −dn, and with σ

(m)
0 a zero

divisor in R. If such a solution is found, σ (n+1)(x) ← D(n+1)(x), and
ln+1 ← l.

5) If n < r − 1, then dn+1 ← sn+1 + snσ
(n+1)
1 + · · · + sn+1−ln+1σ

(n+1)
ln+1

.

6) n ← n+ 1; if n < r go to 2), else stop.

The coefficients σ
(r)
1 , σ

(r)
2 , · · · , σ (r)

ν satisfy the equations in Eq. (1). The

basic difference between the modified Berlekamp-Massey algorithm and the

original one lies in the fact that the modified algorithm allows updating a minimal

polynomial solution σ (n)(x) (at the n-th step) from a previous solution σ (m)(x),

whose discrepancy can even be a noninvertible element in the commutative ring

under consideration. This process does not necessarily lead to a minimal solution

σ (n+1)(x) (at the (n + 1)-th stage). So, Step 4, calculated at Step 3, is checked

to be a minimal solution. This search consists of finding a polynomial σ (m)(x),

satisfying certain conditions, and being a solution for the first m power sums.

Since the number of polynomials σ (m)(x) to be checked is not too large, Step 4

does not essentially increase the complexity.

In Step 3, the calculation of error location numbers over rings requires one

more step than over fields, because in R the solution of Eq. (1) is generally

not unique and the reciprocal of the polynomial σ (r)(z) (output by the modified

Berlekamp-Massey algorithm), namely ρ(z), may not be the right error locator

polynomial (z − x1)(z − x2) · · · (z − xν) where xi = αkj (j is an integer in

the range 1 ≤ j ≤ n such that kj indicates the position of the error in the

codeword) are the correct error-location numbers, ν is the number of errors, and

α is the generator of Gs . Thus, the procedure for the calculation of the correct

error-location numbers [11] is given by
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• Compute the roots of ρ(z) (the reciprocal of σ (r)(z)), say, z1, z2, · · · , zν ,

• Among the xi = αkj , j = 1, 2 · · · , n, select those xi’s such that xi − zi

are zero divisors in R. The selected xi’s will be the correct error-location
numbers and kj , j = 1, 2, · · · , n, indicates the position of the error in the
codeword.

In Step 4, the calculation of the error magnitudes is based on Forney’s procedure

[13]. The error magnitudes y1, y2, · · · , yν are given by

yj =
∑ν−1

�=0 σj�sν−1−�

Ej

∑ν−1
l=0 σj�x

ν−1−�
j

, j = 1, 2, · · · , ν, (2)

where the coefficients σj� are recursively defined by σj,i = σi + xjσj,i−1, i =
0, 1, · · · , ν − 1, starting with σj,0 = σ0 = 1. The Ej = wij , j = 1, 2, · · · , ν
are the corresponding location of errors in the vector w. Again making use of

Lemma 2.1, it can be shown that the denominator in Eq. (2) is always a unit

in R.

Example 2.2. Let G7 be the cyclic group as in Example 2.1. Considering

η = (α5, α, α4, α2) = (αk1, · · · , αk4), w = (α4, α, α4, α) and r = 2, we have

an alternant code over Z2[i] of length 4 and minimum Hamming distance at

least 3. Let H be the parity-check matrix. Assume that the all-zero codeword

c = (0, 0, 0, 0) is transmitted, and the vector r = (0, 0, i, 0) is received. Then

the syndrome vector is s = rHT = (iα4, iα). By the modified Berlekamp-

Massey algorithm we obtain σ (2)(z) = 1+ α4z. The root of ρ(z) = z+ α4 (the

reciprocal of σ (2)(z)) is z1 = α4. Among the elements α0, · · · , α6, we have that

x1 = α4 satisfies x1 − z1 = 0 (zero divisor in R). Therefore, x1 is the correct

error-location number since k3 = 4 indicates that one error has occurred in the

third coordinate of the codeword. The correct elementary symmetric function

σ1 = α4 is obtained from x − x1 = x − σ1 = x − α4. Finally, applying

Forney’s method to s and σ1, gives y1 = i. Therefore, the error pattern is

e = (0, 0, i, 0). �

Comp. Appl. Math., Vol. 22, N. 2, 2003



A.A. ANDRADE, J.C. INTERLANDO and R. PALAZZO JR. 241

2.2 Error-and-Erasure Decoding

In this subsection we briefly discuss how the decoding procedure for alternant

codes can be used to correct errors and erasures. The development is based

in [15, pp. 305-307]. We know that if the minimum distance d of a code C

satisfies d ≥ 2t + e + 1, then e erasures and up to t errors can be corrected by

C. Suppose that ν ≤ t errors occur in positions x1 = αk1, x2 = αk2, · · · , xν =
αkν

, with respective nonzero magnitudes y1, y2, · · · , yν . Suppose further that e

erasures occur in positions u1 = α�1, u2 = α�2, · · · , ue = α�e
, with respective

magnitudes v1, v2, · · · , ve. Note that whereas e and the ui are known to the

decoder, the vi are not. The syndrome of a received vector r is given by

sj =
ν∑

i=1

y ′ix
j

i +
e∑

p=1

v′puj
p ; 0 ≤ j ≤ r − 1, (3)

where y ′i = yiwki
, and v′p = vpw�p

. Defining the elementary symmetric func-

tions τk of the known erasure locations by
∏e

i=1(u− ui) =∑e
k=0(−1)kτku

e−k,

and the modified syndromes tj by tj =∑e
k=0(−1)kτksj−k ; j = e, e+1, . . . , r−

1, it can be shown that

tj =
ν∑

i=1

fix
j

i ; j = e, e + 1, . . . , r − 1,

where fi = yix
−e
i

e∑
k=0

(−1)kτkx
e−k
i .

(4)

Since xi 
= 0, and xi 
= ui , it follows that fi 
= 0. The equations in Eq. (4) can

be efficiently solved for the xi using the modified Berlekamp-Massey algorithm.

We call attention to the fact that the first value assumed by the exponent j is e,

instead of 0, as before. Now, with the xi known, all we need to complete the

decoding process is to solve the equations in Eq. (3) in order to find yi and vi .

To this end, Forney’s procedure can be applied again as in Step 4 of the decoding

procedure for the alternant codes.

Example 2.3. Let R = Z4[x]/(x3 + x + 1). The element α = x2 = (0, 0, 1)

generates G7. Considering η = (α2, α, α3, α5, α4, α6) = (αk1, · · · , αk6), w =
(1, 1, 1, 1, 1, 1) and r = 4, we have an alternant code over Z4 of length 6 and
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minimum Hamming distance at least 5. This code can correct 1 error and 2

erasures. Assume that the all-zero codeword c = (0, 0, 0, 0, 0, 0) is transmitted,

and the vector r = (2, 0, ?, 0, 0, ?) is received, where ‘‘?’’ denotes an erasure.

Note that the erasures in r can take values on Z4. For example, we can ‘‘guess’’

that the erasure in the third coordinate is a 3, and the erasure in the sixth coordinate

is a 2. Thus the received vector is r = (2, 0, 3, 0, 0, 2). It follows that the

components of the syndrome vector are s0 = (3, 0, 0), s1 = (1, 2, 3), s2 =
(1, 1, 3), and s3 = (2, 1, 3). From the equation (u − α3)(u − α6) = τ0u

2 +
τ1u+ τ2 we obtain the elementary symmetric functions τk of the known erasures

locations, that is, τ0 = (1, 0, 0), τ1 = (2, 3, 2), and τ2 = (0, 3, 3). The modified

syndromes are therefore t2 = (0, 2, 0) and t3 = (0, 0, 2). Applying the modified

Berlekamp-Massey algorithm to the sequence {t2, t3}, we obtain σ(z) = 1 +
(0, 1, 0)z. The root of ρ(z) = z + (0, 1, 0) is z1 = (0, 3, 0). Among the

elements α0, · · · , α6, we have that α4 = (2, 1, 0) satisfies α4 − z1 = 0 (zero

divisor in R). Therefore, x1 = αk1 = α2 is the correct error-location number,

since e = 2. It indicates that one error has occurred in the first position of the

codeword. Forney’s procedure applied to τ1 = α2 gives y1 = 2, v1 = 3, and

v2 = 2. Therefore, the error pattern is e = r . �

3 BCH code

In this section we present a construction technique of BCH codes over commuta-

tive ring of integers modulo q, where q is a prime power, in terms of parity-check

matrices under Lee metric based in the work by Roth and Siegel [8]. First we

collect basic definitions and facts from Lee metric over Zm, where m is a positive

integer.

Definition 3.1. Let Zm denotes the commutative ring of integers modulo m,

where m is a positive integer.

• The Lee value of an element α ∈ Zm is defined by

| α |=




α, for 0 ≤ α ≤
[m

2

]
,

m− α, for
[m

2

]
< α ≤ m− 1.

,
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where
[

m
2

]
is the greatest integer smaller than or equal to m

2 .

• The Lee distance between two vectors a = (a1, a2, . . . , an) and b =
(b1, b2, . . . , bn) over Zm is defined by

dL(a, b) =
n∑

i=1

dL(ai, bi),

where dL(ai, bi) = min{ai − bi, bi − ai}(mod m), i = 1, 2, . . . , n.

• The Lee weight of a vector a = (a1, a2, . . . , an) over Zm is defined by

wL(a) = dL(a, 0) =
n∑

i=1

| ai | .

• The minimum Lee distance, dL(X), of a subset X of Z
n
m is the minimum

Lee distance between any pair of distinct vectors in X. �

Remark 3.1.

• The elements 0, 1, 2, . . . ,
[

m
2

]
of Zm are defined as the positive elements.

The rest of the elements are the negative ones [8].
• The minimum Lee distance of a code is defined as the minimum Lee dis-

tance between all pairs of codewords. For linear codes, the difference

of any two codewords is also a codeword. Thus, the minimum Lee dis-

tance of a linear code is equal to the minimum Lee weight of its nonzero

codewords.

• The minimum Lee distance of a code is greater than or equal to the min-

imum Hamming distance of the same code, and smaller than or equal to

the Lee distance between the two codewords which define the minimum

Hamming distance. Thus

dH ≤ dL ≤
[m

2

]
dH .

• The Lee distance defines a metric over Zm.
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• For m = 2 and 3, Lee and Hamming distance coincide. For m > 3, the

Lee distance between two n-tuples is greater than or equal to the Hamming

distance between them. �

Let Zq[x] denotes the ring of polynomials in the variable x over Zq , where q is

a prime power p. Let p(x) be a monic polynomial of degree h, irreducible over

Zp. We have that f (x) is also irreducible over Zq . Let R = Zm[x]
〈f (x)〉 denotes the

set of residue classes of polynomials in x over Zq , modulo the polynomial f (x).

This ring is a local commutative with identity and is called a Galois extension of

Zq of degree h. Let Gs , where s = ph − 1, be the maximal cyclic subgroup of

R∗ such that gcd(s, p) = 1.

Definition 3.2. [8] Let η = (α1, α2, . . . , αn) be the locator vector consisting

of distinct elements of Gs . Now define matrix H as

H =




1 1 · · · 1

α1 α2 · · · αn

α2
1 α2

2 · · · α2
n

...
...

. . .
...

αr−1
1 αr−1

2 · · · αr−1
n




,

where r is a positive integer. Then H is the parity-check matrix of a shortened

BCH code C(n, η) of length n ≤ s over Zq . �

Thus, a word c = (c1, c2, · · · , cn) ∈ Z
n
q is in C(n, η) if and only if it satisfies

the following r parity-check equations over R:

n∑
j=1

cjα
l
j = 0, l = 0, 1, . . . , r − 1.

The codes C(n, η) for which n = ph − 1 will be called primitive. In this case, η

is unique, up to permutation of coordinates.

Given a transmitted word c = (c1, c2, . . . , cn) ∈ C(n, η) and a received word

b ∈ Z
n
q , the error vector is defined by e = b − c. The number of Lee errors

is given by wL(e), that is, the number of Lee errors is the smallest number of

additions of ±1 to the coordenates of the transmitted codeword c which yields

Comp. Appl. Math., Vol. 22, N. 2, 2003



A.A. ANDRADE, J.C. INTERLANDO and R. PALAZZO JR. 245

the received word b. Since the Lee weight satisfies the triangle inequality, using

a code of minimum Lee distance dL allows one to correct any pattern of up to

(dL − 1)/2 Lee errors.

Given a locator vector η = (α1, α2, . . . , αn) of a code C(n, η) and a word

b = (b1, b2, . . . , bn) ∈ Z
n
q , we define the locator polynomial associated with b

as the polynomial

σ(x) =
n∏

j=1

(1− αjx)wL(cj ).

We define the syndrome values sl of an error vector e = (e1, e2, . . . , en) by

sl =
n∑

j=1

ejα
l
j , l ≥ 0.

The formal syndrome series S(x) is defined by

s(x) =
∞∑

j=1

slx
l.

Given a codeword c ∈ C(n, η), following the approach in Roth and Siegel [8],

we define the word c+ = (c+1 , c+2 , . . . , c+n ) by

c+j =
{

cj if cj ∈
{

1, 2, . . . ,
[q

2

]}
0 otherwise,

and let c− = c+ − c. That is, c+ is equal to c at the late positive entries, and

is zero otherwise, whereas the entries of c− take the Lee values of the negative

entries of c, leaving the other locations zero.

In the next Proposition, a lowerbound for the minimum Lee distance is obtained

when wL(c+) 
= wL(c−).

Proposition 3.1. [8] If c ∈ C(n, η) and wL(c+) 
= wL(c−) then wL(c) ≥ q.

Proof. Since cHT = 0, we have that c+HT = c−HT . The first equation in this

last equality reads wL(c+) = wL(c−)(mod q), that is, wL(c+) = wL(c−)± lq,

for some integer l. Therefore, wL(c) = wL(c+)+ wL(c−) ≥ q. �
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Example 3.1. The polynomial f (x) = x3 + x + 1 is irreducible over Z4.

Thus the finite commutative ring R = Z[x]
〈f (x)〉 is a Galois extension of Z4. Let α

be a root of f (x). We have that β = α8 generates a cyclic group Gs of order

s = 23 − 1 = 7 in R∗. Letting η = (1, β, β2, β3, β4, β5, β6) and r = 2, we

have an BCH code C(7, η) over Z4. Let

H =
[

1 1 1 1 1 1 1

1 β β2 β3 β4 β5 β6

]

be the parity-check matrix. We have that c = (3102101) ∈ C(7, η) and

wL(c+) = 5, wL(c−) = 1 and wL(c) = 6 > 4. �
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