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Alternaria is an important fungus to study due to their different life style from saprophytes

to endophytes and a very successful fungal pathogen that causes diseases to a number

of economically important crops. Alternaria species have been well-characterized for the

production of different host-specific toxins (HSTs) and non-host specific toxins (nHSTs)

which depend upon their physiological and morphological stages. The pathogenicity of

Alternaria species depends on host susceptibility or resistance as well as quantitative

production of HSTs and nHSTs. These toxins are chemically low molecular weight

secondary metabolites (SMs). The effects of toxins are mainly on different parts of

cells like mitochondria, chloroplast, plasma membrane, Golgi complex, nucleus, etc.

Alternaria species produce several nHSTs such as brefeldin A, tenuazonic acid, tentoxin,

and zinniol. HSTs that act in very low concentrations affect only certain plant varieties

or genotype and play a role in determining the host range of specificity of plant

pathogens. The commonly known HSTs are AAL-, AK-, AM-, AF-, ACR-, and ACT-

toxins which are named by their host specificity and these toxins are classified into

different family groups. The HSTs are differentiated on the basis of bio-statistical and

other molecular analyses. All these toxins have different mode of action, biochemical

reactions and signaling mechanisms to cause diseases. Different species of Alternaria

produced toxins which reveal its biochemical and genetic effects on itself as well as on

its host cells tissues. The genes responsible for the production of HSTs are found on the

conditionally dispensable chromosomes (CDCs) which have been well characterized.

Different bio-statistical methods like basic local alignment search tool (BLAST) data

analysis used for the annotation of gene prediction, pathogenicity-related genes may

provide surprising knowledge in present and future.

Keywords: Alternaria species, secondary metabolites, host-specific toxins, non-host specific toxins, conditionally

dispensable chromosomes, pathogenicity

INTRODUCTION

Fungal kingdom is very interesting in both useful and harmful point of view, which includes more
than 1.5 million species, but only 100,000 species have been described, out of them 15,000 species
cause disease in plants (Maharshi and Thaker, 2012). Due to increasing plants and fungal diversity,
the complexity of pathogenic mechanism also increases between them on the morphologically level
by forming a highly specialized structure of infections (Hawkswort, 1991; Horbach et al., 2011).
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Fungi produce various secondary metabolites (SMs) which affect
their host plants at different stages of pathogenesis (Berestetskiy,
2008; Friesen et al., 2008a,b; Meena et al., 2015). The fungal
pathogenic SMs are regarded as not essential for life, but their
roles are quite versatile (Stergiopoulos et al., 2013; Pusztahelyi
et al., 2015; Meena et al., 2016a). The genetically coded
possibilities for the production of secondary metabolites, stimuli
and the various phytotoxins generally predict the fungal-host
plant interactions and pathogenic behavior of fungi.

The plant pathogenic fungi are divided into biotrophic,
hemibiotrophic, and necrotrophic pathogens. These different
pathogenic life styles require different molecular weaponry.
Necrotrophic fungi infect and kill host tissue and extract
nutrients from dead host cells. Biotrophic fungi colonize living
host tissue and obtain nutrients from living tissue; whereas
hemibiotrophic fungi display two phases during the infection
process; first is an initial biotrophic phase followed by a
necrotrophic stage (Lo Presti et al., 2015). Necrotrophic and
hemibiotrophic fungal species basically show the contrasting
mechanistic process of promoting disease, and many HSTs and
proteins are the examples of effectors which fundamentally
overlap (Condon et al., 2013). These life styles of plant pathogenic
fungi provide general information about their interaction with
the host, although the distinction between biotrophic and
hemibiotrophic mode of action is still not so clear.

Alternaria species have shown different life styles i.e., from
saprophytes to endophytes to pathogen (Thomma, 2003; Dang
et al., 2015). They are very successful pathogenic genus that
causes disease in large number of economically important
plants, including apple, broccoli, cauliflower, potato, tomato,
citrus, pear, strawberry, tobacco, etc. (Meena et al., 2016a).
Alternaria creates large economic losses due to their host range
and their worldwide distribution. Approximately, 300 species
of genus Alternaria have been identified worldwide which
includes Alternaria alternata, Alternaria tenuissima, Alternaria
arborescense, Alternaria brassicicola, Alternaria infectoria, and
Alternaria solani (Lee et al., 2015). These Alternaria species have
been reported to cause diseases in nearly 400 plant species, in
which A. alternata infects almost 100 plant species. It is also
responsible for post-harvested diseases in various crops (Coates
and Johnson, 1997; Woudenberg et al., 2015; Meena et al.,
2017c; Sajad et al., 2017) causing asthma and infection of upper
respiratory tract in humans (Kurup et al., 2000). The reasons
behind pathogenicity are the production of diverse phytotoxins.

Alternaria mycotoxins have been frequently isolated and
reported in fruits and vegetables, such as tomatoes, citrus
fruits, Japanese pears, prune nectar, red currant, carrots, barley,
oats, olives, mandarins, melons, peppers, apples, raspberries,
cranberries, grape, sunflower seeds, oilseed rape meal, flax
seed, linseed, pecans, melon, lentils, wheat, and other grains
(Patriarca et al., 2007; Ostry, 2008; Logrieco et al., 2009;

Abbreviations: SMs, Secondary metabolites; HSTs, Host-specific toxins; nHSTs,

Non-host specific toxins; CDCs, Conditionally dispensable chromosomes; HGT,

Horizontal gene transfer; PCD, Programmed cell death; PCR, Polymerase chain

reaction; TCA, Tricarboxylic acid cycle; BLAST, Basic local alignment search tool;

NCBI, National center for biotechnology information.

Andersen et al., 2015; Woudenberg et al., 2015; Meena et al.,
2016a,b). More than 70 phytotoxins produced by species of
Alternaria have been characterized, and include virulence factors
that have both non-specific and specific host interactions.
Several Alternaria SMs have been evaluated by the European
Food Safety Authority (EFSA) as potentially causing risks
to human health, including alternariol (AOH), alternariol
monomethyl ether (AME), tenuazonic acid (TeA), altenuene
(ALT), and tentoxin (TEN) [(EFSA Panel on Contaminants in
the Food Chain (CONTAM), 2011; Rychlik, 2013)]. Alternaria
produces host-specific toxins as well as non-host specific toxins
(nHSTs). Generally, non-host-specific toxins have relatively mild
phytotoxic effects, affect a broad spectrum of plant species and
are thought to be an additional factor of disease alongside,
for instance, penetration mechanisms and enzymatic processes.
Although, they generally act as virulence factors and intensify
disease symptom severity, they are not absolutely required for
establishing disease since they are also toxic to plant species
outside the host range of the pathogen. In Alternaria, many host-
specific toxins have been identified, although the precise action
of only a few has been studied in detail. Structures of different
toxins are given in Figure 1. Brefeldin A (dehydro-), curvularin,
tenuazonic acid, tentoxin, and zinniol are examples of non-host
specific toxins that are produced by several Alternaria species
(Thomma, 2003; Meena et al., 2017a,b).

PATHOGENICITY OF ALTERNARIA

SPECIES

The direct and indirect relationship hypothesis of pathogenicity
proposed by Andrew et al. (2009), in which he expected
that the genes of fungal genome database are responsible
for pathogenicity and geographical distribution. The intensive
study of disease pathogenesis via rDNA analysis has enabled
phylogenetic classifications and investigations into the extent
of DNA mutation (Lv et al., 2012). Further, there is no direct
correlation observed between rDNA variant distribution and
host-specific pathogenicity in toxins producing fungi (Koch et al.,
1991). However, the pathogenic specialization of A. alternata
might be controlled by some small number of genes which is
helpful in HSTs toxin biosynthesis. Repeated DNA sequencing
patterns of fungal supernumerary chromosomes suggest their
different evolutionary history from essential chromosomes in
the same genome and they may have been introduced into
the fungal genome through horizontal gene transfer (HGT)
from another species (Rosewich and Kistler, 2000). DNA-DNA
reassociation and 16S rRNA sequence analysis are successful
in bacterial taxonomy; therefore, these technologies are also
applying in fungal taxonomy (Bruns et al., 2003). DNA-
DNA analysis has suggested a close relationship between HSTs
producing Alternaria fungal species and non-pathogenic A.
alternata (Kuninaga and Yokozawa, 1987).

The question arises that how Alternaria does actually causes
disease, and which symptoms result? The fungus on the attack of
host plants secretes some hydrolytic enzyme during penetration
process to gain entry into plant tissue and at that time plants
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FIGURE 1 | Chemical structures of HSTs produced by Alternaria species.

also secrete some chemical compounds. In this way, there is
a generation of cell fragmentation of plants and fungi. These
oligosaccharides compounds can elicit broad host range defense
responses that slow pathogen ingress. Thus, the rapid elicitation
of plant’s defense responses mandates the successful pathogenic
fungi must have developed strategies to suppress the response or
avoid the host’s potential responses (Jackson and Taylor, 1996;
Knogge, 1996). The effect of these fungi is mainly on genetics,
mode of action, and biosynthesis. The low weight SMs have their
target on the biochemical pathway, and their action that can have
pleiotropic effects on host plant metabolism.

TOXIN PRODUCTION BY ALTERNARIA

SPECIES

Non-host Specific Toxins (nHSTs) by
Different Alternaria Species
Approximately, 30 nHSTs secondary metabolites are known and
characterized in which alternariol (AOH), alternuene (ALT),
zinniol, tenuazonic acid (TeA), alteriol monomethyl ether
(AME), brefeldin A (dehydro-), tentoxin (TEN), curvularin,
and alterotoxin (ATX) I, II, III, are some of the known
toxins produced by different Alternaria species (Andersen et al.,
2015; Lee et al., 2015). Fujiwara et al. (1988) suggested that
brefeldin A actions on Golgi-complex cause disassembly and
act as an inhibitor of its secretion, while curvularin inhibits
cell division by microtubule assembly disturbance (Robeson
and Strobel, 1981) and tenuazonic acid inhibits process of
protein synthesis (Meronuck et al., 1972). Zinniol disturbed

membrane permeabilization (Thuleau et al., 1988), and tentoxin
inhibits chloroplast photo-phosphorylation through binding
to ATP synthase resulting in the ATP hydrolysis and ATP
synthesis inhibition (Steele et al., 1978). Since, these toxins
often target basic cellular processes, so these are regarded as
potent mycotoxins. By UV/Vis and MS/MS spectra comparison,
alternarionic acid, dehydrocurvularin, pyrenochaetic acid, and
altechromone A were identified from species of Alternaria and
other fungal SMs. Most of these are derivatives of AOH and TEN
(Andersen et al., 2015).

Host-Specific Toxins by Different Alternaria
Species
On the basis of scientific observation, there are seven HSTs
have been identified from A. alternata. These HSTs are
families of closely related diverse group low molecular weight
natural compounds (Tsuge et al., 2013). These families are: (1)
Epoxy-decatrienoic acid (EDA)—AK-, AF-, and ACT- are the
known toxic compound in this family, (2) Cyclic depsipeptide
(cyclic tetrapeptide)—AM toxin also known as alternariolide,
(3) Amino pento/polyketide (these are sphinganine analog
compound)—AAL-toxin, and (4) Polyketide—ACR-toxin (syn.
ACRL-toxin).

Interestingly, another HSTs is HC-toxin (a cyclic
tetrapeptide), a well-known produced toxin by the plant
pathogenic fungus Cochliobolus carbonum, has also been
discovered in the species of Alternaria jesenskae, pathotype of
Fumana procumbens, and the gene responsible for this toxin
is AjTox2 identified by genomic sequencing. Culture filtrate
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confirmed HC-toxin production through reverse phase HPLC
and TLC assay (Wight et al., 2013), while its taxonomic identity
confirmed by sequencing of ITS regions (Labuda et al., 2008).

These toxins are involved in the development of few
destructive diseases. Alternaria pathotypes produce HSTs which
are diverse ranged chemical compounds ranging from low
molecular weighted peptides to cyclic peptides. Wolpert et al.
(2002) reported that HSTs were biologically produced on their
diverse specific plants species, so that it determines the host range
of toxin-producing pathogens. Often, not all genotypes of a host
plant species are sensitive to the toxin, and similarly, not all
isolates of a pathogen species produce the toxin. Table 1 showing
host-specific toxins (HSTs) produced by different species of
Alternaria.

These HSTs produced several effects on a narrow species
that serve as host to the fungi and are necessary for disease. In
contrast to the HSTs, the dominant properties of less virulent
small-spored species of Alternaria producing host-specific toxins
are mainly due to strong selection pressure corresponding from
modern monocrop agriculture and newly developed susceptible
genotypes (Chou andWu, 2002). Till now, 13 HSTs are identified
by the different variants of Alternaria species and most of these
variants are considered as A. alternata pathotypes (Table 1). In
HSTs producing and nHSTs producing Alternaria species, all
pathogenic species have some extra chromosomes, while these
extra chromosomes are not carried by non-pathogenic species
(Akamatsu et al., 1999; Akamatsu, 2004). The extra chromosomes
are not required for normal growth but have an adaptive
advantage in some habitats to the individual species. These are
referred as conditionally dispensable chromosomes (CDCs).

Mode of Action and Role of Host-Specific
Toxin
The plant pathogen fungi undergo several complex and crucial
processing steps of pathogenesis viz. attachment to the plant
surface, germination and formation of infectious structures,
penetration, and colonization into host cell, which are crucially
important steps to cause disease. Generally, plasma membrane,
chloroplast, mitochondria, and some important enzymes are the
inhibitory sites for the action of HSTs ofA. alternata but the other
target sites are ER, nucleus, vacuole, and Golgi bodies (Tsuge
et al., 2013). All target sites are identified on the basis of different
scientific studies (Tsuge et al., 2013; Meena et al., 2016a; Zhang
et al., 2016). HSTs produce their effects on different targeted
cell organelles and induce cell death in hosts (Figure 2). HSTs
generally cause suppression of defense responses of genotype
and also disturb other metabolic signaling pathway. HSTs have
both properties such as necrosis and suppression of defense
process of susceptible hosts (Wolpert et al., 2002). Kohmoto
et al. (1989) observed the differences between pathogenicity
and host cell death when interactions occur between AM-toxin
producing isolates with apple and AK-toxin producing isolates
with Japanese pear.

Alternaria HSTs play a vital role as an effector which
determines the pathogenicity. Many scientists have reported
that simultaneous treatment with HSTs and conidia of

non-pathogenic A. alternata strains lead to the initiation of
infection (Akimitsu et al., 1989; Yamagishi et al., 2006). The
controversial finding of many scientists states that the gene
silencing causing loss of HSTs production which leads to
pathogenicity disappearance (Harimoto et al., 2008; Miyamoto
et al., 2008). A hypothetical idea based on HST-receptor
mediated model of pathogenesis was given by Pringle and
Scheffer (1964). Before penetration fungal spp. produces a signal
molecule to recognize host, and after that release fungal HSTs
which specifically binds to host receptor site, and finally, these
suppress the host defense against fungus and leads to cell death
(Scheffer and Livingston, 1984; Kohmoto and Otani, 1991).

RELATION OF HSTs, CONDITIONALLY
DISPENSABLE CHROMOSOMES (CDCs),
AND PATHOGENICITY

The CDCs have some characteristic genes responsible for the
production of specific HSTs. Several small chromosomes having
HSTs genes and transposons like sequences in fungi which
have been identified as CDCs, and are present in several small-
spored Alternaria species (Hatta et al., 2002). Molecular studies
suggested that these HSTs biosynthetic gene clusters reside on
a single small chromosome which is <2 Mb in size (Akamatsu
et al., 1999; Tsuge et al., 2013). These HSTs genes are located on
CDCs as gene clusters and control the production of the toxins
viz. AM-toxin from apple, AF- toxin from strawberry, AK-toxin
from Japanese pear, ACT-toxin from tangerine, and AAL-toxin
from tomato pathotypes and so on (Hu et al., 2012).

PREDICTIONS OF CDCs GENES

Two methods are commonly used to predict the residential
CDCs genes function, (I) use of BLAST against national center
for biotechnology information (NCBI) non-redundant database,
Pfam (Bateman et al., 2004), and NCBI for functional domains
search (Marchler-Bauer et al., 2005), and (II) scanning to identify
transcription factors, pathogenicity related genes, PKS genes,
NRPS genes, and P450 transporters (Hu et al., 2012). Hu et al.
(2012) used marker assisted contigs identification in Alternaria
to identify CDCs genes which carrying two Alt1 and AaMSAS
cluster of toxin biosynthetic genes (Yamagishi et al., 2006).
Among 209 predicted proteins sequencing data, some CDCs
genes were identified and characterized, in which 31 having PKS
domains and 2 proteins have high modulator protein domains:
KS-AT-KR-ACP on CDC_141 and KS-AT-DH-ER-KR-ACP on
CDC_165 and remaining 29 PKS protein carrying over two
ACPs (Acyl carrier proteins) domains, 7 NRPS domains proteins
were predicted having 3 Enterobactin domains, 2 Bacitracin
domain, 1 Pyochelin domain and 1 CDA1 domain, 7 protein for
P450 monooxygenase, 24 for transcription factor and 37 were
identified for pathogenicity during plant-pathogen interactions
(Baldwin et al., 2006; Proctor et al., 2009; Hu et al., 2012).

Most recently, another method was applied to genome
annotation of Alternaria and comparison data has facilitated
functional genomics studies of the fungus in the context of plant
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FIGURE 2 | Schematic diagram of target sites of HSTs produced by Alternaria

species. Ch, chloroplast; ER, endoplasmic reticulum; GA, Golgi apparatus; Mt,

mitochondrion; Nu, nucleus; Pd, plasmodesma; Pm, plasma membrane; Vc,

vacuole.

and human pathogenicity (Dang et al., 2015). Dang et al. (2015)
also provided sequential genome’s annotation and comparisonal
data of 25 Alternaria species which were analyzed by using
multiple computational and comparisonal genomes incorporated
tools. Researchers analyzed the sequences through multiple
annotation modules including repetitive sequence annotation,
gene prediction, protein function and domain structure, while
whole genome alignment and homology analysis methods were
performed for comparative genomics (Koonin and Galperin,
2003; Bihon et al., 2016). They used InterPro database (Hunter
et al., 2012) and Pfam (Finn et al., 2013) for protein domain and
family annotation, Blast2GO (Gotz et al., 2008) and InterPro for
gene annotation, signal P (Bendtsen et al., 2004), WOLF-Psort
(Horton et al., 2007) and Phobius (Kall et al., 2007) for signal
peptides, TMHMM (Krogh et al., 2001) for trans-membrane
proteins, BLAST search against PHI-base (Winnenburg et al.,
2008) for pathogenicity-related candidate genes, CAZY database
(Cantarel et al., 2009) and dbCAN (Yin et al., 2012) for active
carbohydrates enzymes, BLAST based homology searches and
Allerdictor for the identity of allergens (Dang and Lawrence,
2014), batched BLAST search tools from MEROPS database
(Rawlings et al., 2012) for protease annotation and SMURF
were used for SMs (Khaldi et al., 2010). They reported
the Alternaria annotation and comparisonal genomes data
sequences to Ensembl database schema using a self-developed
tool (EnsImport). EnsImport supports multiple standard file
formats such as FASTA, AGP, GFF3, and XMFA, and outputs
from widely-used tools such as BLAST, InterPro, RepeatMasker,
OrthoMCL, and Blast2GO.

GENETICS OF ALTERNARIA ALTERNATA

PRODUCED HSTs

HSTs and nHSTs produced by Alternaria species play an
important role as virulence factors during plant pathogenesis.

Many known and unknown genes are responsible for the
production of these SMs (Dang et al., 2015). The gene sequences
identified as CDCs are known as extended families of transposon
like sequences (Hatta et al., 2006). The term commonly used
is HGT, which is the movement of genetic material without
any recombination (Syvanen, 1985). The fungal HGT, the
movement of plasmids, mycoviruses, gene clusters, transposable
elements and sometime whole chromosomes have expressed
between the individual species (Rosewich and Kistler, 2000).
HGT in Alternaria occurs frequently because of its wide host
range transportable pathogenicity of chromosome may increase
pathogens adaptation to the environment, asexual reproduction,
and loss of CDC in the absence of a host and cause reduction
of carrying extra genome content (Hu et al., 2012). The genetic
analysis observation indicated that the fungal toxin protein
virulence patterns expected to match with the host sensitive
proteins in some manner which is identified in some fungal
races (Friesen et al., 2007, 2008b). So, directly or indirectly both
the pathogen HST gene and a host susceptible gene interaction
between their genes products are required for disease, which
inverse situation of gene-for-gene interaction (Wolpert et al.,
2002). HSTs genes functions as virulence factors with largely
additive effects on disease development and used to influence
host plant physiology (Horbach et al., 2011).

HSTs producing A. alternata fungus becomes a good
model organism for fungal developmental studies due to its
characterized effects on the host plant. Each pathotype toxin and
disease on a particular host can be identified by its specificity and
can be distinguished by their necrotic symptoms that developed
after inoculation with the disease causing pathotype or after HSTs
treatment by pathotype (Izumi et al., 2012). Different studies have
suggested that RNA silencing and homologous recombination-
mediated gene destruction are essential for particular HSTs
productions and pathogenicity (Tanaka and Tsuge, 2000; Izumi
et al., 2012). Molecular assessment basis of HSTs have identified
the gene clusters for pathogenic specialization (Tsuge et al., 2013).

IMPORTANT HSTs PRODUCED BY
ALTERNARIA SPECIES

AAL-Toxin
AAL-toxins are chemically propane 1,2,3-tricarboxylic acid
(PTCA)which is esterified to 1-amino-11,15-dimethylheptadeca-
2,4,5,13,14-pentol. These are structurally sphingosine and
sphinganine analogs (Bottini and Gilchrist, 1981; Brandwagt
et al., 2001). The scientist identified five types of AAL-toxin
related molecules viz. sphingosine (TA), phytosphingosine
(TB), sphinganine (TC), tetra-acetyl-phytosphingosine N-
Lignoceroyl-d (TD), and L- sphinganine, each consisting with
two isomers (Caldas et al., 1994). TA and TB analogs of AAL-
toxins showing related specific action and showing 30–400
times higher activity than the other form analogs TC, TD, and
TE (Caldas et al., 1994). So, these two toxins are taken into
consideration and referred as AAL-toxins. These toxins are
produced by Alternaria alternata f. sp. lycopersici, a pathogen
causing stem canker in tomato (Lycopersicon esculentum) which
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exhibits high degree of host specificity and plays a major role
in pathogenesis by causing leaf necrosis (Prasad and Upadhyay,
2010). TA type of toxin is most active and highly produced
which has molecular mass of 522 kb. AAL-toxin sensitivity
and insensitivity to plant tissue have been revealed (Spassieva
et al., 2002). The necrotic symptoms of AAL-toxin can be
detected from a susceptible line of detached leaflets (Brandwagt
et al., 2001). Gilchrist (1997) assumed that AAL-toxin inhibits
the activity of aspartate carbamoyl transferase (ACTase) on
disruption of pyrimidine metabolism but it could not be
confirmed experimentally. AAL-toxins isolated from Alternaria
alternata f. sp. lycopersici inhibited ceramide synthase and
induced programmed cell death (PCD; Michaelson et al., 2016).

Kawaguchi et al. (1991) observed that ethanolamine (EA),
phosphoethanolamine (PEA) and five other related chemicals
accumulation occur in AAL-toxin treated leaves. It was also
found that cell free ACTase preparation of homozygous
susceptible and homozygous resistant genotypes of host and non-
host specific sources express differential AAL-toxin sensitivity.
Generally, AAL-toxins have its effect on mitochondria but
their exact target site is still uncertain. The possible AAL-toxin
biosynthetic pathway was in under investigation because EA
and PEA are primary and secondary intermediate metabolites of
biosynthetic pathways.

Orolaza et al. (1992) suggested that 14C labeling of
ethanolamine to susceptible AAL-toxin treated leaf discs have
shown strong inhibition of EA incorporated into phosphatidyl
ethanolamine (PtdEA). Therefore, phospholipid pathway
involved enzymes were suggested as potential biochemical
targets for AAL-toxins. AAL-toxins have structural similarities to
fumonisins because AAL-toxins have one PTCA and fumonisins
with two PTCA side chains esterified to aminopentol back
bones (Brandwagt et al., 2000). Gilchrist (1998) referred both
AAL-toxin and fumonisin collectively as sphinganine analog
mycotoxins (SAMS) due to their structural and functional
similarities, and toxicity to plant and mammalian cells. They also
show inhibitory action to sphingolipid biosynthesis and induced
PCD in both plant and mammalian cells (Abbas et al., 1994;
Spassieva et al., 2002, 2006; Tsuge et al., 2013). The sensitivity
and disease resistance in tomato to AAL-toxin are regulated
by Asc1 (Alternaria stem canker resistance gene 1) gene locus
which encodes a host recognition factor (Egusa et al., 2009).
These plant-pathogen interactions come under direct or indirect
interaction between AAL-toxin and Asc locus products in which
Asc action is linked to sucrose transport, ethylene biosynthesis,
pyrimidine metabolism, and cell death (Moussatos et al., 1994).

According to Zhang et al. (2011), AAL-toxin induced PCD in
tomato leaves is promoted by both jasmonic acid and ethylene
by disrupting sphingolipid metabolism. While, the experimental
finding of Akamatsu et al. (1997) states that AAL-toxin deficient
REMI mutants are non-pathogenic to sensitive tomato plants.
AAL-toxins also induce apoptotic-like responses. The induced
PCD was taken place by DNA laddering, TUNEL-positive cells
and the formation of apoptotic like bodies (Tsuge et al., 2013).
AAL-toxin induced PCD involves ceramide signaling and cell
cycle disruption (Wolpert et al., 2002). The physiological effects
of AAL-toxins represent development of necrotic lesions on

fruits and leaves, inhibition of in-vitro development of calli,
pollen, roots and shoots, and also reduce the viability of
protoplasts and suspension cells (Ismaiel and Papenbrock, 2015).

AM-Toxin
AM-toxin is other type of HSTs, which is responsible for causing
Alternaria blotch on apple, a worldwide distributed disease. It
is cyclic depsipeptide of alternariolide (Ueno et al., 1975, 1977).
This type of cyclic depsipeptide chemical structural compound is
also found in other toxins of plant pathogens i.e., HC-toxin from
Cochliobolus carbonum race1 (Gross et al., 1982) and tentoxin
from Alternaria tenuis (Mayer et al., 2001). Cyclic peptides are
synthesized by non-ribosomal pathways by large multifunctional
enzymes called non-ribosomal peptide synthetase (NRPS), and
also by polymerase chain reaction (PCR) based cloning with
primers having highly conserved domains of fungal NRPS genes
(Keller et al., 2005; Tsuge et al., 2013). AMT1 and AMT2 are two
biosynthetic genes for AM-toxin (Johnson et al., 2000; Harimoto
et al., 2007). AMT1 encodes non-ribosomal peptide synthetase
attaching with four catalytic domains, which is responsible for
activation of each residue in AM-toxin whereas AMT2 encodes
an aldo-keto reductase enzyme required for biosynthesis of
2-hydroxy-isovaleric acid i.e., one of the AM-toxin residues
(Harimoto et al., 2007, 2008). Chloroplasts are the important
cellular organelles which serve as the primary site for AM-toxins.
On the basis of AM-toxin acting site and known pathogenesis,
it is identified that Alternaria alternata f. sp. mali pathogen may
secrete AM-toxins that act on the susceptible leaf cells causing
tissues damage (Zhang et al., 2015).

Alternaria alternata f. sp. mali (apple pathotype) has small
chromosomes having <1.9 Mb size which is not found in non-
pathogenic strains of A. alternata. It suggests strongly that AMT1
resides on small chromosome of 1.1–1.8 Mb of apple pathotype
strains (Johnson et al., 2001). The apple pathotype mutant strains
have 1.1 Mb CDCs encoding AMT genes which are responsible
for AM-toxin biosynthesis and its pathogenicity to susceptible
apple strains (Johnson et al., 2001). According to Covert (1998),
fungal supernumerary chromosomes are not required for growth
but it has advantages for colonizing certain ecological niches
(Harimoto et al., 2007).

EST (expressed sequence tag) analysis of AMT genes encoded
on 1.4 Mb chromosome in the apple pathotype strain IFO
8984 was performed to identify the structure, function, and
origin of Alternaria alternata, in which CDCs responsible for
HSTs biosynthesis (Harimoto et al., 2007). Harimoto et al.
(2007) generated a cDNA library from AM-toxin producing
culture and identified 80 unigenes from 40,980 clones with 1.4
Mb chromosome probe from 196 ESTs. The sequence analysis
of these genes showed that most of the small chromosomes
encoding these genes with unknown function and also most
of the genes expressed at remarkably low level under testing
condition. Comparison of the transcription levels of the genes in
toxin-producing and non-producing cultures identified 21 genes,
including AMT1 and AMT2, that were up-regulated (>10 fold)
in toxin producing cultures. Sequence analysis suggested that
the up-regulated genes include candidates for novel AM-toxin
biosynthetic genes. Disruption of three genes, AMT2, AMT3,
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andAMT4 also upregulated in toxin-producing cultures IFO8984
havingmultiple copies of the genes in the genome, and all showed
similarities in structures (Tsuge et al., 2013).

AF-Toxin
AF-toxins are other types of A. alternata produced HSTs toxins
having <2 Mb sized CDCs encoding AFT genes (Hatta et al.,
2002). AF-toxin produced by A. alternata has three related
molecular species types viz. AF-toxin I, II, and III. AF-toxin
I is highly toxic to both strawberry and pear (Nishimura and
Nakatsuka, 1989; Tsuge et al., 2013). Another, AF-toxin II is toxic
to only pear while toxin III is highly toxic to strawberry and
slightly to pear (Maekawa et al., 1984). AF-toxin I and III are
valine derivatives of 2,3-dyhydroxy-isovaleric acid and 2-hydroxy
isovaleric acid respectively, while AF II is an isoleucine derivative
of 2-hydroxy valeric acid (Tsuge et al., 2013).

Hatta et al. (2006) concluded structure of AF-toxin, on the
basis of 1.0 Mb chromosomal strain of NAF8 and found 2–7
copies of 20 AFT regions. They also found many transposon-
like sequences and most of which were inactive transposon
fossils. On cellular level, AF-toxin affects plasma membrane of
susceptible cells and causes a sudden increase in loss of K+ after
a few minutes of toxin treatment (Park and Ikeda, 2008). These
toxin-induced dysfunctions of plasma membrane which were
confirmed by microscopic study with no other cell organelles
(Tsuge et al., 2013). Electrophysiological studies of AF-toxin
showed that plasma membrane becomes irreversibly depolarised
(Namiki et al., 1986; Otani et al., 1989). A polarization occurs
mostly in the respiration-dependent component of membrane
potential which is sustained by H+ pump. AF-toxin possibly
affects the plasma membrane H+ATPase (Tsuge et al., 2013).
However, no direct effect of AF-toxin was observed on isolated
susceptible host cell plasmamembrane ATPase activity (Akimitsu
et al., 2013).

AK-Toxin
AK-toxins are the esters of 9,10-epoxy 8-hydroxy 9-
methyldecatrienoic acid (EDA) produced by Japanese pear
pathotype of A. alternata and was first reported in the Japanese
pear black spot disease (Nakashima et al., 1985; Nakatsuka
et al., 1986; Tsuge et al., 2013). EDA is an intermediate for toxin
biosynthetic pathways. H3-labeled EDAwhen added in a growing
liquid culture of the Japanese pear pathotype strain, converted
to AK-toxin. Tanaka et al. (1999) used restriction mediated-
integration transformation (REMI) to isolate AK-toxin-minus
(or AK-toxin lack) mutant (Akimitsu et al., 2013). They observed
that mutants affected essential AK-toxin biosynthetic genes and
structural and functional analysis of clones containing tagged site
represented six AK-toxin biosynthetic genes i.e., AKT1, AKT2,
AKT3, AKT4, AKTR, and AKTS1 (Tanaka and Tsuge, 2000).
AKTR encodes transcription regulator having a zinc binuclear
cluster DNA binding domain, a protein type of fungal Zn(II)2
Cys6 family (Tanaka et al., 1999; Tanaka and Tsuge, 2000) and
other fungal genes encoding proteins showed similarity with
many enzymes (Tsuge et al., 2013). So, it acts as regulatory genes
for AK-toxin biosynthetic enzymes.

Japanese pear pathotype strains also have multiple copies
of functional or non-functional homologous of the AKT genes
(Tanaka et al., 1999; Tanaka and Tsuge, 2000). AKTS1 also
found unique in this pathotype in DNA blot analysis when these
techniques used to assess AKT homologous distribution in A.
alternata pathogen (Tanaka et al., 1999). These AKTS1 genes
were also present in the tangerine and strawberry pathotype
and all three pathotype share common genes required for EDA
biosynthesis.

REMI techniques used for AKT protein and AKT1 gene
tagging to mutagenize which is required for biosynthesis of
AK-toxin and pathogenicity of the Japanese pear pathotype
(Tanaka et al., 1999; Wolpert et al., 2002). Another experimental
observation of Masunaka et al. (2000) stated that AKT1 and
AKT2 were also present in tangerine and strawberry pathotype.
The two other AKT3 and AKTR genes are also required for
AK-toxin biosynthesis. AKT1, AKT2, AKT3, and AKTR and all
their homologous are present on a single chromosome (Tanaka
and Tsuge, 2000). Imazaki et al. (2010) reported that enzymes
of AK-toxin biosynthesis are localized in peroxisomes and
peroxisomal targeting signal type1 (PS1)- like tripeptides at their
C-terminal ends. Mutation in AaPEX6, which encodes a peroxin
protein required for peroxisome biogenesis from the Japanese
pear pathotype. Lack of this peroxisome function, AK-toxin
production and pathogenicity become loss completely.

ACR-Toxin (Syn. ACRL-Toxin)
ACR-toxin, a polyketide of long fatty acid (Gardner et al.,
1985a,b) causes rough lemon leaf spot disease. The target site
of this toxin is mitochondria which makes it dysfunctional
(Kohmoto et al., 1984; Akimitsu et al., 1989). ACR-toxin causes
uncoupling of oxidative phosphorylation and causes leakage of
NAD+ cofactor from tricarboxylic acid cycle (TCA) and loss of
membrane potential (Akimitsu et al., 1989).

The clustered biosynthetic genes of ACR-toxin have generally
occurred on <2 Mb small sized chromosomes (Ito et al., 2004;
Miyamoto et al., 2008, 2009, 2010; Ajiro et al., 2010; Izumi et al.,
2012). Masunaka et al. (2005) observed that lemon pathotype
strains also carried a small chromosome of ∼1.5 Mb which is
correlated with the toxin production and pathogenicity to rough
lemon.

To investigate the relationship of ACRS to sensitivity to
ACR-toxin and hence susceptibility to A. alternata rough lemon
pathotype, Ohtani et al. (2002) sequenced this region of the
mitochondrial genome from resistant cultivars and 13 species
of citrus and found that the regions in the resistant citrus
are identical to that of rough lemon (Ohtani et al., 2002).
However, examination of ACRS transcripts demonstrated that
sensitivity to the toxin is not controlled by the presence or
absence of ACRS but rather by post-transcriptional modification
of the ACRS transcripts (Figure 3). The peptide encoded by
ACRS was detected by immunoblotting only in rough lemon
mitochondria, but not in toxin-insensitive citrus mitochondria,
and the peptide appeared to consist of sodium dodecyl sulfate
(SDS)-resistant oligomers that have been reported for many
pore-forming transmembrane proteins (Figure 3; Ohtani et al.,
2002).
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FIGURE 3 | Mechanism of ACR-toxin sensitivity controlled by receptor

transcript processing in mitochondria.

ACRTS1 and ACRTS2 are the two genes required for ACR-
toxin production. Hutchinson and Fujii (1995) classifiedACRTS2
as types I enzyme, is a single large and multifunctional
polypeptide having all necessary enzymatic domains for multiple
cycles of condensation and β-keto processing. ACRTS1 has
more than three copies in the rough lemon pathotype genome.
However, combination of both homologous recombination-
mediated gene disruption and RNA silencing functionally
suppressed all paralogs. Therefore, this gene is required for
ACR-toxin biosynthesis and pathogenicity (Izumi et al., 2012),
but there are some limitations of homologous recombination-
mediated gene disruption. It is difficult to disrupt entire
duplicated and multiple paralog functional copies of genes. RNA
silencing solves this problems by knockdown all transcripts from
all functional copies in HST- producing A. alternata (Miyamoto
et al., 2008).

RNA silencing method was first applied to tangerine
pathotype HST biosynthesis gene ACTT2, a polyketide synthase
(PKS) which is similar to rough lemon pathotypes. This is
silenced by transforming the pathotype strain with a plasmid
construct expressing hairpin ACRT2 RNA. The ACRT2-silenced
transformants in which ACRT2 transcripts were not detectable,
ACR-toxins were lost the production and pathogenicity,
indicating that this gene encodes a PKS essential for ACR-toxin
biosynthesis and hence pathogenicity (Izumi et al., 2012).

ACT-Toxin
Polyketides are the largest families of SMs synthesized by fungi,
microbes and plants (Anand et al., 2010). ACT-toxin is one of
the types of polyketides HSTs of tangerine pathotype.A. alternata
causes brown spot disease (Timmer et al., 2000; Miyamoto et al.,
2009). ACT-toxin action appears to be complex in the cell and
the primary site of action for this toxin is plasma membrane
(Kohmoto et al., 1993; Miyamoto et al., 2008). Kohmoto et al.
(1993) detected ACT-toxins ACTT1 and ACTT2 from purified
germinating conidia fluids of tangerine pathotype and expected
that it participates in the biosynthesis of ACT-, AK- and AF-
toxins due to their related common chemical structure (Tanaka
et al., 1999; Masunaka et al., 2000, 2005).

Molecular analysis by Masunaka et al. (2000, 2005) suggests
that both ACT-toxins are present on a single chromosome with
a size of 1.1–1.9 and ACTT2 toxins exists in the genome as
multiple copies form. Harimoto et al. (2008) used repeated round
of homologous recombination-mediated gene disruption which
is essential to knockout all copies of a particular target gene but it
is difficult to disrupt entire copies of ACTT1 genes. Homologous
gene disruption has some limitations like lack of selectable
marker for multiple transformants, low efficiency etc. Harimoto
et al. (2008) also overcome these limitations by RNA silencing
and beneficial to knock down all functional ACTT1 genes. Since,
RNA silencing induced double stranded RNA (dsRNA) post-
transcriptional gene silencing phenomenon. It is cleaved by
Dicer (a nuclease of the RNA III family) into small interfering
RNAs (siRNA) to a ribonucleo-protein complex [RNA-induced-
silencing-complex (RISC)] (Bernstein et al., 2001; Hammond
et al., 2001). RISC recognizes and degrades homologous mRNAs
by complementary base pairing (Elbashir et al., 2001). The RNA
silencing used vectors generate hairpin structure of RNA. This
structure have sense and antisense sequenced target gene with
an intron sequence-based hairpin head spacer which are effective
and relatively stable for sequencing, which will be useful for
HSTs genes function in the other pathotype of A. alternata as
well as other filamentous fungi producing HSTs (Liu et al., 2002;
Kadotani et al., 2003; Miyamoto et al., 2008).

RNA silencing has never been demonstrated in Alternaria
spp., so Isshiki et al. (2003) had constructed a vector for
generating hairpin RNA of the green fluorescent protein (GFP)
gene in A. alternata. The silencing genes were over-expressed
with green fluorescence protein for determining the gene
function. In addition, they analyzed the function of ACTT2 gene
in ACT biosynthesis. The ACTT2 gene having multiple copies
and high sequence identity were silenced by introducing a vector
generated ACTT2 hairpin RNA. The sequence identity of ACTT2
and ACTT1 is 98.8% while ACTT2 homologs identity from dual
toxin producing A. alternata strain also expressed similarity of
99% for ACTT2 and 98.9% ACTT3 (Miyamoto et al., 2008).

CONCLUSIONS

Genomic and transcriptomic comparisons are now taken in
use to obtain genetic features of fungal pathogen to survive
successfully in various stressful ecological habitats and to survive
itself in different pathogenic life styles. The deep knowledge of
the plant pathogen may be helpful for the production of new
resistant variety of plant cultivars against different biotic stresses.
Environmental factors such as heat or drought also affect the
plant-fungal interactions as well as SMs production.

Toxins are recognized as important determinant of
pathogenicity in different species of Alternaria. Host-specific
toxins of Alternaria spp. plant pathogens play an important
role in pathogenesis and could be applied as selective agents
in in-vitro selection at the cellular level for disease resistance.
The role of a toxin as a disease determinant is proved by the
occurrence of the toxin in infected plants and the ability of the
toxin alone to elicit at least part of the symptoms of the disease.
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Genome sequencing and genome analysis comparison of
pathogenic variation in the different species of Alternaria
have fascinated to understanding of its evolutionary
relationship with other fungi and identification of
pathogenicity associated candidate genes, and provide
important information for understanding its virulence
variation and mechanism under its interaction with the
host.

During last decades, the molecular events at an ever-
increasing rate applying to know the gene data history and
cellular processes responsible for the specific role of toxins.
In future, these combined analytical approaches with new
insight and revised concepts of new research in fungal genetics
and biochemistry will provide a surprising knowledge of SMs
corresponding biosynthetic genes and its effect on cellular
processes.
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