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Abstract: Enhanced backscattering (EBS), also known as weak lo-

calization of light, is derived using the Huygens–Fresnel principle and

backscattering is generally shown to be the sum of an incoherent baseline

and a phase conjugated portion of the incident wave that forms EBS. The

phase conjugated portion is truncated by an effective aperture described

by the probability function P(s) of coherent path-pair separations. P(s) is

determined by the scattering properties of the medium and so characteri-

zation of EBS can be used for metrology of scattering materials. A three

dimensional intensity peak is predicted in free space at a point conjugate to

the source and is experimentally observed.
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1. Introduction

Enhanced backscattering (EBS) or coherent backscattering refers to a peak observed in the an-

gular profile of diffusely scattered light centered on the retro-reflection angle. The phenomenon

is related to strong or Anderson localization that occurs in strongly disordered systems, but is

observed in weakly scattering media where light is not completely confined but merely con-

centrated, and so it is also referred to as weak localization of light. EBS has been studied in a

wide range of configurations. Previous reports on the observation of EBS in a converging or di-

verging beam configuration have demonstrated a corresponding broadening or narrowing of the

peak [1,2]. Detection of EBS along an arc in free space has been used to measure EBS at large

angles covering up to a hemisphere [3]. Others have studied phase conjugation of the back-

scattered wave that forms the peak [4, 5]. Study of the polarization state preservation in Low-

coherence Enhanced Backscattering Spectroscopy (LEBS) [6] can also be interpreted as phase

conjugation of the wavefront, since phase conjugation of a wavefront preserves the handedness

of the circular polarization state. Derivations of EBS are found in the literature using concepts

from condensed matter physics [7–9]. A physical optics perspective has also been discussed in

conjunction with a quantum mechanical description [10]. Some have described the effect using

diffraction [11], and others have studied EBS under partial spatial coherence [12, 13].

It is often useful to describe a phenomenon from alternate perspectives using different con-

ceptual starting points for the benefit of scientists with varying backgrounds. In this paper, we

present a derivation based on the Huygens–Fresnel principle applied to the waves exiting from

coherent path-pairs. We show that this description is analogous to phase conjugation of a por-

tion of the incident wave and diffraction from a virtual aperture, a description which will be

useful to the optics community and those with a background in imaging. This view is consis-

tent with previous observations of phase conjugation, diverging and converging beam behavior,

and the effect of partial spatial coherence on EBS. It predicts that a peak in intensity is formed

in free space at a point conjugate to any source and with a shape dictated by diffraction. We

present experimental observation of that peak, elegantly demonstrating weak localization in

three dimensions and show that an image of an extended source is formed in free space without

optics due to the EBS effect.

2. Concept and theory

In order to describe the EBS phenomenon using the Hugens–Fresnel principle, we must first

describe the complex amplitude exiting the medium. Conceptually, a wave incident on a scat-

tering medium is sampled at each scatterer and forms wavelets that can re-scatter many times,

eventually with some component in the backward direction. Since light transport is reversible,

the wave incident at the point of an exiting wavelet has a component that follows the same

path in the reverse direction. These two counter-propagating waves form a time-reversed path-

pair each with equal accumulated phase. This description can be used to represent any random

medium that multiply scatters light including discrete or continuous media. In the case of dis-

crete scatterers the paths are countable while in continuous media the paths are uncountable,
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Fig. 1. Diagram illustrating the notation used in the derivation. The incident wave has com-

plex amplitude Ui(x) at the plane of the x-axis which represents the boundary or surface of

the scattering medium. A time reversed path-pair begins and ends at points x1 and x2 with

black arrows following counter-clockwise propagation and gray arrows following clock-

wise propagation. The phase ε of the common path is acquired by both counter-propagating

waves. The exiting wavelets then propagate to the observation plane at distance z with co-

ordinate ξ .

but in all cases (including finite or layered) the medium can be characterized by the distribution

of paths as discussed later.

It should be noted that any path light follows as it scatters into the backward direction will

have a time-reversed component associated with it. This path-pair can be represented by rays

that connect the scattering points as light waves travel in each direction along the path. The first

and last scatterers correspond to two exit positions of a path-pair, but there are generally many

possible paths that share the same start and end point. The phase of each of these paths may

be different, but upon exit, the sum of waves following these various paths results in a single

effective phase and amplitude associated with that pair of exit points. We will hence refer to the

sum of all paths sharing a common pair of exit points a path-pair. Since the counter-propagating

waves exiting a path-pair have the same accumulated phase, the two exit points can be treated

as a double pinhole and will result in classic diffraction patterns. However, the medium is made

up of many path-pairs with varying orientation and separations, and consequently varying inter-

ference fringe spacing. For a single random ensemble, the result of interference of all possible

path-pairs produces speckle. However, averaging over many ensembles of the medium (i.e.

Brownian motion, spinning sample, etc.) requires treatment of the superposition of different

path-pairs as incoherent. The sum of intensities is used, eliminating speckle and resulting in

an intensity peak at the retro-reflection angle where the phase is equal for light that traverses

each path-pair in opposite directions. The amplitude and phase of each independent path-pair

is random, but with ensemble averaging, statistical parameters dominate.

2.1. Phase conjugation

Given the concept of time reversed path-pairs, one might expect that phase conjugation is in-

volved. Assuming scalar waves, this can be shown by starting with an incident complex dis-

turbance Ui(x) = Ai(x)e
iφi(x). If the path-pair samples this wavefront at two points x1 and x2,

the phase exiting the medium will be given by the sum of the incident phase and the phase ε
of the common path, φe(x1) = φi(x2)+ ε and φe(x2) = φi(x1)+ ε . Likewise, the amplitude will

be proportional to the incident amplitude at the opposite point and also a factor α̃ , that varies

randomly for each path-pair. We factor out a constant ei(φi(x1)+φi(x2)+ε) = eic and use Dirac delta

functions to represent the sampling operation.
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Ae(x)e
iφe(x) = α̃δ (x− x1)Ai(x2)e

i(φi(x2)+ε) + α̃δ (x− x2)Ai(x1)e
i(φi(x1)+ε)

= α̃eic[δ (x− x1)+δ (x− x2)]Ai(x1 + x2 − x)e−iφi(x)
(1)

If the incident amplitude is uniform, Ai(x1 +x2 −x) = Ai(x) then the exiting complex ampli-

tude for each path-pair is proportional to Ui(x)
∗. This can be regarded as phase conjugation of

a filtered or sampled portion of the wavefront.

2.2. Diffraction from a virtual aperture

Next, we apply the Huygens–Fresnel integral to propagate the complex amplitude to the plane

of observation a distance z from the medium [14]. The complex amplitude for a single path-

pair at point ξ in plane z is Uz(ξ ;x1,x2). Integration over x invokes the sifting property of δ (x)
leaving the sum of two spherical waves centered at x1 and x2.

Uz(ξ ;x1,x2) =
α̃eicz

iλ

[

Ai(x2)
eik
√

z2+(ξ−x1)2−iφi(x1)

z2 +(ξ − x1)2
+Ai(x1)

eik
√

z2+(ξ−x2)2−iφi(x2)

z2 +(ξ − x2)2

]

(2)

The contribution of all path-pairs can be calculated by integrating over x1 and x2, which results

in a random signal since each path-pair has random phase and amplitude α̃eic. Observation

of EBS requires ensemble averaging, either by averaging independent observations or by inte-

grating over time while the sample changes due to Brownian motion or rotation. If we assume

that the phase of different path-pairs is uncorrelated, the ensemble average intensity is equal

to the sum of the average intensity from each path-pair,
∫∫ 〈Uz(ξ ;x1,x2)U

∗
z (ξ ;x1,x2)〉dx1dx2,

and the random phase eic cancels. The ensemble average of the remaining random parameter

〈α̃2〉 corresponds to the probability distribution P(s) of path-pair separation, s = |x2 −x1|. This

distribution P(s) is the defining characteristic of the random medium. In general, no analytical

solution exists for P(s), but this distribution can be obtained using approximations (i.e. the dif-

fusion approximation), or by numerical methods such as Monte Carlo simulation. We can also

employ the Fresnel approximation when z ≫ ξ − x so the denominator in Eq. (2) becomes z2

and radical in the exponent becomes z +(ξ − x)2/(2z). The entire operation of backscattering

from a random medium is then written as Eq. (3).

〈Iz(ξ )〉 =
∫∫

P(s)

λ 2z2

[

A2
i (x1)+A2

i (x2)+Ai(x1)Ai(x2)

×
(

ei k
2z ((ξ−x2)2−(ξ−x1)2)+iφi(x1)−iφi(x2) + e−i k

2z ((ξ−x2)2−(ξ−x1)2)−iφi(x1)+iφi(x2)
)]

dx1dx2

(3)

The assumptions made up to this point are the same as those made for Fresnel diffraction,

namely: (1) scalar waves, (2) z ≫ λ , and (3) z ≫ ξ −{x1 or x2}.

Some additional simplifications can be made if we assume illumination is uniform, Ai(x1) =
Ai(x2) = Ai. We can use Ai(x) = rect(x) to model a finite spot size, and for simplicity we assume

the spot size is much broader than the function P(s) so that
∫∫

A2
i P(s)dx1dx2 = aA2

i where a is

the area of the illumination. Next, we treat the special case of a diverging spherical wave from a

point source on the z-plane at ξ = 0, the incident phase is given by φi = kx2/(2z). Starting with

Eq. (3), the x2 terms of the exponent exactly cancel, and the equation can be written in cosine

form.

〈Iz(ξ )〉 =
2aA2

i

λ 2z2

[

1+
1

a

∫∫

Ai

P(s)cos(
k

z
ξ (x2 − x1))dx1dx2

]

(4)

Since P(s) is symmetric, the inner integral over x1 is a Fourier transform of P(s) about each

point x2, and the outer integral is then the sum of these Fourier transforms from each x2. If we

#139056 - $15.00 USD Received 20 Dec 2010; revised 28 Apr 2011; accepted 27 May 2011; published 6 Jun 2011

(C) 2011 OSA 20 June 2011 / Vol. 19,  No. 13 / OPTICS EXPRESS  11925



Relay
Objective

Source

Fiber

Beam
Splitter

Scattering
Sample

Virtual
Aperture

P
ea
k

Fourier
Lens

Collimating
Lens

Source

Fiber

Beam
Splitter

Scattering
Sample

P
ea
k

Virtual
Aperture

Fig. 2. Schematic of experimental setups for observation of EBS. Left: a typical config-

uration with a collimated beam and lens-detector system that measures angular intensity

distribution. Right: our system comprised of simply a source, beam-splitter, and detector.

Optionally, the peak is relayed to the detector using a microscope objective. In both cases,

the reflected wavefront can be represented as a diffuse background plus a superposition of

phase conjugated wavelets diffracted by the virtual aperture P(s) to form the intensity peak

at a point in space conjugate to the source.

again make use of the fact that the spot size is much larger than P(s) and ignore the effect of

the edge of the spot, the transform is independent of shift x2 and the outer integral reduces to a

factor of a.

〈Iz(ξ )〉 =
2aA2

i

λ 2z2

[

1+
∫

P(s)cos(
k

z
ξ s)ds

]

(5)

Ignoring edge effects, 〈Iz〉 is then proportional to 1 +F{P(s)}. The Fourier transform can be

thought of as representing diffraction by a virtual apodized aperture described by the function

P(s).

2.3. Partial spatial coherence and extended sources

The use of an extended source as the illumination has the effect of introducing a finite spa-

tial coherence at the surface of the scattering medium. This can be treated in either of two

ways. The coherence function can be said to further limit the virtual aperture [multiplication

P(s)×C(s)], or equivalently, each point in the extended source can be thought to produce an

independent (incoherent) peak. The resulting peak is the convolution of the coherent peak with

the source function as shown by applying the superposition integral. The van Cittert–Zernike

theorem shows that when C(0) = 1, these two conceptualizations are mathematically equiva-

lent: 〈I(ξ )〉 ∝ 1+F{P(s)×C(s)} = (1+F{P(s)})∗F{C(s)}.

3. Experimental observation

A typical experimental setup for observation of EBS uses a collimated laser beam to illuminate

a random medium. The reflected light is focused by a lens that maps angles to positions on a

detector. The peak is conventionally described in angle space relative to the incident beam. It

could also be said that since the illumination is collimated, the source appears to be located

infinitely far from the sample and the peak will be localized at infinity. The peak can instead be

brought to focus on a detector by inserting a lens. An example of this geometry is shown on the

left in Fig. 2.

The derivation in this paper shows that no lenses are necessary, and that a source located a

finite distance from a random medium will produce an intensity peak in free space at any point

conjugate to the source due to phase conjugation. This method of observing the phenomenon
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Fig. 3. The peak is measured for two different fiber positions. The first peak is normalized

by the second resulting in a flat baseline, a true positive peak, and an inverted peak.

eliminates all lenses and elegantly demonstrates three dimensional weak localization of light.

This ‘lensless’ geometry is shown in the diagram on the right of Fig. 2.

Our experimental geometry is extremely simple. The source is a step index multimode optical

fiber with 50 µm diameter core and 0.22 Numerical Aperture (NA). Since the multi-mode fiber

scrambles the phase and polarization, any type of illumination may be used. We have observed

the peak using an arclamp, HeNe laser, or as with the experimental results shown here, a high-

brightness LED with peak wavelength 635 nm and 20 nm bandwidth (FWHM). The fiber is

tilted at an angle relative to the surface such that the no ray from the source is normally incident

on the sample, ensuring that the specular reflection is separated from the peak. The diverging

beam passes through the beam-splitter and illuminates the sample mounted on a stage to allow

scanning in the z-direction. Backscattered light is reflected by the beam-splitter and the peak is

formed at the point in space conjugate to the source.

Alignment of the detection plane is very simple since the peak is formed at the 3D location

conjugate to the source. An experimentalist can place an eye to the left of the beam-splitter

in Fig. 2 and observe the reflection of the source through the beam-splitter. The detector can

be seen through the beam-splitter and can be aligned so that the source is centered and at the

same depth as the detector. The peak may be observed directly at this plane, or the peak may be

relayed (with magnification) to the detector (VersArray 1024BFT) for convenience. The relay

lens used here is a 10× finite conjugate microscope objective with 0.25 NA (Newport M-10×).

The relay NA must be much larger than the angle subtended by the virtual aperture to avoid

additional diffraction of the peak. The relay NA should also be larger than the fiber NA to

ensure that it does not vignette beam and reduce the intensity, but this effect is less critical.

When a relay is used, alignment is similar, but a marker object (pinhead) can first be aligned

at the position of the source as above, and the relay/detector system can then be aligned and

focused on the reference object. If a square plate beam-splitter is used, it may be useful to rotate

the plate in its plane to reduce the effect of multiple reflections on the background even when

antireflection coatings are used.

Data are collected by taking two measurements of the peak for two different fiber positions.

Small translations of the fiber on the order of hundreds of microns have negligible effect on

the distribution of the diffusely scattered baseline, however, the peak shifts by exactly the same

distance as the fiber. In this manner, two peaks are collected as shown in the left of Fig. 3.

For all measurements, the background is measured with black cloth covering the sample and is
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subtracted from the raw data to remove any light scattered from the beam-splitter. The right of

the figure shows the ratio of these two background-subtracted peaks. Since the diffuse baseline

component is the same in each peak, the result is a flat baseline and inverted peak. It should

be noted that the baseline has a broad shape with maximum intensity near the center that can

appear to be a peak with maximum value just to the lower right of the EBS peak in the upper

left panel of Fig. 3, however this shape does not change with fiber position, and has no affect

on the final measurement.
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Fig. 4. Monte Carlo simulations were used to determine the probability P(s) of path-pair

separations for 0.2 µm diameter polystyrene beads suspended in water. The rays exiting

the suspension were binned according to the exit radius from the entrance point and plotted

above. The empirical equation shown was fit to the simulation and used in the numerical

integration of Eq. (3).

To reduce noise, the peak is rotationally averaged out to some radius that falls between the

positive and inverted peak. The peak shape can then be studied as a function of sample dis-

tance, material scattering properties, etc. Figure 5 shows the measured peak along with inten-

sity values calculated by numerically integrating a two dimensional version of Eq. (3) for one

entrance point at x1= y1= 0 and applying an experimentally determined factor of 0.43 to the

peak to account for depolarization. The depolarization factor was obtained by taking the ratio

of measured peaks with and without a linear polarizer sheet covering the sample. P(s) was

obtained from Monte Carlo simulation [15] and an equation shown in Fig. 4 was empirically

fit to the simulated data. This Monte Carlo method uses random sampling of the probability

distribution of scattering angle (sometimes called phase function), determined in this case by

Mie theory. Rays are traced as they scatter in the medium and their exit locations are recorded

to provide a numerical simulation of P(s). We then fit a second order polynomial for use in the

analytical equation. Although polarization effects are significant for this particle size, we treat

polarization indirectly by rotationally averaging the exit locations to compute P(s) and com-

pare to unpolarized experimental results which include all polarization states. In this case, the

primary effect of the medium dependent depolarization is to increase the incoherent baseline

relative to the peak, and this is accounted for by the measured depolarization factor.

The coherence function was calculated assuming the fiber core was a uniform source with

radius of 25 µm a distance z0 away from the sample [16]. The numerical integration was per-

formed out to a radius twice the illumination area which accounts for an increase in the baseline

due to light that is returned without an associated path pair. By changing z0, the spatial coher-

ence length can be scanned, Lsc = z0/(kρ) for source radius ρ . The inset shows the dependence

of the peak on sample distance with enhancement increasing with Lsc. The scaling is due to the

change in the spatial coherence function, C(s), relative to P(s).
As a demonstration of weak localization of light in three dimensions, the peak was meas-

ured over a range of detector positions for a fixed source–sample distance. The detector was

scanned relative to the relay objective, and the corresponding object-space position relative to
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Fig. 5. Peak from 0.2 µm diameter microsphere suspension with transport mean free path

l′s = 100 µm. The baseline approaches one for all peaks, but small changes in intensity of

the two measurements cause variation in the baseline values on the order of a few percent.

The curves were therefore normalized to unity at a large radius for comparison. The simu-

lated peak agrees well with the experimental data aside from a scaling factor of 0.76 which

may be due to experimental error or simplifications in the theory (see conclusions). The

inset shows the change in enhancement as a function of fiber–sample distance. As z0 in-

creases, Lsc increases and C(s) broadens relative to P(s) resulting in greater enhancement.
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Fig. 6. Intensity through focus for a full spot size (left) and reduced spot size (right). The

energy is weakly localized in three dimensions as expected. The smaller spot size results

in a longer distribution along ∆z analogous to an increase in depth of focus from a reduced

NA. The line indicates the half-maximum contour.

the conjugate plane ∆z = z− z0 was calculated using the objective’s longitudinal magnification

and shown as ∆z in Fig. 6.

The ∆z-dependence of the peak is dominated by the effect of the illumination NA. As shown

earlier, the lateral shape of the peak is the result of diffraction by the virtual aperture. For

the geometry in the this experiment, the size of the virtual aperture extends a few hundred

microns. However, the illumination spot is comprised of many such virtual apertures, each

of which forms a peak convergent at the conjugate plane. The ∆z-dependence of the peak is

then analogous to depth of focus given the angular extent of the illuminated spot. This was

confirmed by taking measurements of the peak through ∆z for a full illumination spot and for
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Fig. 7. Peak formed by a pair of fibers at two different separations. On the right, direct

images of the fibers are shown. Scales are µm.

a reduced illumination spot where a black card with a small hole was placed over the sample

to reduce the NA, shown on the right side of Fig. 6. To predict the depth of focus, the peak

was approximated as Gaussian with 100 µm width and convolved with a rect() of width y that

results in half the maximum value at the center. The depth of focus is then dz ≈ y/NA. For the

full NA 0.22 (left), dz is estimated to be 900 µm and for the reduced NA of 0.15 (right), dz is

estimated to be 1300 µm, which agrees qualitatively with the result in Fig. 6 although noise

limited measurements for ∆z larger than the range shown.

As discussed before, the use of an extended incoherent source results in partial spatial coher-

ence. This can be treated by multiplying the virtual aperture by the coherence function (which

can be calculated by the van Cittert–Zernike theorem) or by superposition of the EBS peak with

the source function. This superposition can be demonstrated by using a pair of fibers for illu-

mination. Figure 7 shows EBS peaks formed by two different fiber pairs with different spacing.

The right panels show images taken at the same magnification of the illuminating fibers them-

selves. This highlights a consequence of phase conjugation, that a random scattering medium

can act as an imaging system producing an image of the source without any intervening optics.

The image formed is a convolution of the object with the Point Spread Function (PSF) of the

system, the effect of diffraction from the virtual aperture P(s).

4. Conclusions

We have presented an alternate theoretical description and geometry for observation of weak

localization of light and outlined a number of key physical concepts. The noteworthy physical

concepts are: (1) the ensemble average intensity of light backscattered from a random medium

can be described by an appropriate superposition of Huygens wavelets resulting in an incoher-

ent diffuse baseline and an EBS peak; (2) the EBS peak is the result of phase conjugation of

a portion of the incident wavefront; (3) the intensity peak can be represented as diffraction of

a virtual aperture function P(s) that describes the probability distribution of path-pair separa-
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tions; (4) an extended source forms a superposition of EBS peaks from each point in the source

and can be calculated in Fourier space by multiplying P(s) with the coherence function C(s).
There are some differences from the traditional configuration that may result in subtle ef-

fects that have not been investigated within the scope of this paper. First, the flat wavefront in

a collimated configuration matches the shape of the surface, whereas the in our case a diverg-

ing spherical wavefront illuminates a flat surface. This mismatch is expected to cause subtle

effects, i.e. amplitude falloff and an increase in the spatial coherence at the edge of the illumi-

nation compared to the center. This also leads to a degree of asymmetry in P(s) due to local

relative tilt between the wavefront and the sample surface at each location. Second, computa-

tional resources limited the integration of Eq. (3) plotted in Fig. 5 to a single entrance point

at the center of the spot. Evaluating the integral for all entrance points including those closer

to the edge of the spot may also reduce the peak enhancement. It is possible that these effects

contribute to the scaling error between the predicted peak and the observed peak in Fig. 5 and

further work will be needed to explore this.

The experimental configuration described in this paper has some practical advantages: (1)

simpler alignment and implementation; (2) fewer components reduces background and stray

light; (3) dependence of spatial coherence on the source-sample distance allows the scanning

of spatial coherence. The simplicity of the configuration and potential for miniaturization make

this geometry attractive for development as a portable instrument and for in vivo measurements

for biomedical applications like tissue characterization [15]. Phase conjugation also implies

that aberrations or phase errors introduced between the beam-splitter and the medium will not

degrade the peak shape. The theoretical description summarized by Eq. (3) offers a way to

numerically calculate values of backscattered intensity from a material described by P(s) that

can take into account realistic experimental parameters such as finite spot size. Finally, we

demonstrate the obvious but interesting consequence that a random medium can form an image

of any source without the use of lenses.
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