
Alternating Automata and a Temporal Fixpoint
Calculus for Visibly Pushdown Languages

Laura Bozzelli

Università di Napoli Federico II , Via Cintia, 80126 - Napoli, Italy

Abstract. We investigate various classes of alternating automata for visibly push-
down languages (VPL) over infinite words. First, we show that alternating
visibly pushdown automata (AVPA) are exactly as expressive as their nondetermin-
istic counterpart (NVPA) but basic decision problems for AVPA are 2EXPTIME-
complete. Due to this high complexity, we introduce a new class of alternating
automata called alternating jump automata (AJA). AJA extend classical alternat-
ing finite-state automata over infinite words by also allowing non-local moves.
A non-local forward move leads a copy of the automaton from a call input posi-
tion to the matching-return position. We also allow local and non-local backward
moves. We show that one-way AJA and two-way AJA have the same expressive-
ness and capture exactly the class of VPL. Moreover, boolean operations for AJA
are easy and basic decision problems such as emptiness, universality, and push-
down model-checking for parity two-way AJA are EXPTIME-complete. Finally,
we consider a linear-time fixpoint calculus which subsumes the full linear-time
μ-calculus (with both forward and backward modalities) and the logic CARET

and captures exactly the class of VPL. We show that formulas of this logic can
be linearly translated into parity two-way AJA, and vice versa. As a consequence
satisfiability and pushdown model checking for this logic are EXPTIME-complete.

1 Introduction

An active field of research is model-checking of pushdown systems. These represent
an infinite-state formalism suitable to model the control flow of recursive sequential
programs. The model checking problem of pushdown systems against regular proper-
ties is decidable and it has been intensively studied in recent years leading to efficient
verification algorithms and tools (see for example [16,7,6,9]).

For context-free properties, the pushdown model checking problem is in general un-
decidable. However, algorithmic solutions have been proposed for checking interesting
classes of context-free properties [9,10,8,3,4,1]. In particular, the linear temporal logic
CARET, a context-free extension of LTL, has been recently introduced [3] which pre-
serves decidability of pushdown model checking. CARET formulas are interpreted on
infinite words over an alphabet (called pushdown alphabet) which is partitioned into
three disjoint sets of calls, returns, and internal symbols. A call denotes invocation of
a procedure (i.e. a push stack-operation) and the matching return (if any) along a given
word denotes the exit from this procedure (corresponding to a pop stack-operation).
CARET extends LTL by also allowing non-regular versions of the standard LTL tempo-
ral modalities: the abstract modalities can specify non-regular context-free properties

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 476–491, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Alternating Automata and a Temporal Fixpoint Calculus for VPL 477

which require matching of calls and returns such as correctness of procedures with re-
spect to pre and post conditions, while the (backward) caller modalities are useful to
express a variety of security properties that require inspection of the call-stack [9,10,8].
In [4], the class of nondeterministic visibly pushdown automata (NVPA) is proposed as
an automata theoretic generalization of CARET. NVPA are pushdown automata which
push onto the stack only when a call is read, pops the stack only at returns, and do not
use the stack on reading internal symbols. Hence, the input controls the kind of stack
operations which can be performed. The resulting class of languages (visibly pushdown
languages or VPL, for short) includes strictly the class of regular languages and that
defined by CARET and is robust like the class of regular languages. In particular, VPL
are closed under all boolean operations and problems such as universality and inclusion
that are undecidable for context-free languages are EXPTIME-complete for VPL.

Our contribution. We further investigate the class of VPL. We study various classes of
alternating automata for VPL and derive interesting connections between a special class
of two-way alternating finite-state automata and a fixpoint calculus for VPL with both
forward and backward modalities. Note that the introduction of backward modalities
in fixpoint logics can pose some difficulty in developing decision procedures for such
logics since the interaction of backward modalities with the other modalities can be quite
subtle. For example, while the standard modal μ-calculus has the finite-model property,
this does not hold for the modal μ-calculus extended with backward modalities [15].

Alternating automata [12], i.e. automata featuring nondeterministic as well as uni-
versal choices, are interesting for many aspects1 For example, boolean operations, in
particular complementation, are easy [12]. Moreover, alternating finite-state automata
over words or trees have been founded to be particularly useful to derive optimal deci-
sion procedures for various regular temporal logics.

In this paper, first, we consider the alternating version of visibly pushdown automata.
While unrestricted alternating pushdown automata on infinite words are more expres-
sive than their nondeterministic counterpart (in particular, emptiness is undecidable),
alternating visibly pushdown automata (AVPA) are exactly as expressive as NVPA: any
parity AVPA P can be translated into an equivalent Büchi NVPA whose size is doubly
exponential in the size of P . This double-exponential blowup cannot be avoided. In fact
we show that emptiness for parity or Büchi AVPA is 2EXPTIME-complete (recall that
emptiness for parity NVPA is in PTIME [4]). As a consequence the pushdown model
checking problem against AVPA-specifications is 2EXPTIME-complete.

Due to the high complexity of basic decision problems for AVPA, we introduce a
new class of alternating automata called alternating jump automata (AJA). AJA oper-
ate on infinite words over a pushdown alphabet, are closed under boolean operations,
and extend classical alternating finite-state automata by also allowing non-local moves.
A non-local forward move leads a copy of the automaton from a call position to the
matching-return position. We also allow local and non-local backward moves: by per-
forming a non-local backward move, a copy of the automaton jumps from the current
input position to the most recent unmatched call position. We show that one-way AJA

1 The notion of alternating automaton over words or trees as defined in [12] applies to all known
classes of nondeterministic automata such as pushdown automata or Turing machines.

478 L. Bozzelli

and two-way AJA have the same expressiveness and capture exactly the class of VPL.
Given a Büchi NVPA P , one can construct an equivalent one-way Büchi AJA whose size
is quadratic in the size of P . Moreover, any parity two-way AJA A can be translated into
an equivalent Büchi NVPA whose size is singly exponential in the size of A. Some ideas
in the proposed translation from two-way AJA to NVPA are taken from standard con-
structions for two-way finite-state automata [14,15]. However, due to the presence of
both (local and non-local) forward and backward moves in two-way AJA, we have to
face new non-trivial questions which require a more sophisticated approach.

Finally, we consider a fixpoint calculus, called VP-μTL, which subsumes CARET [3]
and captures exactly the class of VPL. VP-μTL extends the full linear-time μ-calculus
(with both forward and backward modalities) introduced in [14] by also allowing non-
local forward and backward modalities corresponding to the abstract-next and caller
modalities of CARET. We show that each VP-μTL sentence can be linearly translated
into an equivalent parity two-way AJA, and vice versa. As a consequence satisfiability
of VP-μTL is EXPTIME-complete and the pushdown model-checking problem against
VP-μTL is EXPTIME-complete (and PTIME-complete in the size of the pushdown sys-
tem), hence it is no more costly than that for weaker logics such as CARET. Note
that the backward modalities in VP-μTL do not add any expressive power since future
VP-μTL formulas correspond exactly to one-way AJA. However, many interesting prop-
erties which require for example inspection of the call-stack are much easier to express
using past operators.

Due to the lack of space, for the omitted details we refer the interested reader to a
forthcoming extended version of this paper.

Related work. As mentioned above, the class of NVPA over infinite words has been stud-
ied in [4]. In [4], it is also given a logical MSO-characterization of VPL and a character-
ization in terms of regular tree languages. Games on pushdown graphs against visibly
pushdown winning conditions are decidable and have been studied in [11]. In [5], the
results given in [4] are reformulated in terms of nondeterministic finite-state automata
(NFA) over nested words. A nested word is an infinite word augmented with a binary
relation over the set of positions which encodes the implicit nesting structure of calls
and returns. An NFA over nested words behaves like an NFA over ordinary words with
the difference that at a return, the next state depends on both the current state and the
state at the matching call. In [2], the notion of nested word is extended to trees in order
to allow the automata-theoretic specification of a class of branching-time context-free
properties. In particular, the authors introduce one-way alternating automata over nested
trees (AP-NTA): AP-NTA are strictly more expressive than their non-deterministic coun-
terpart and while their emptiness is undecidable, the related pushdown model checking
problem is instead EXPTIME-complete. Finally, an extension of the modal μ-calculus
on nested trees as expressive as AP-NTA has been studied in [2,1]. When interpreted
on infinite words over a pushdown alphabet, this logic corresponds exactly to future
VP-μTL. As for the modal μ-calculus, the pushdown model checking problem for this
new logic is EXPTIME-complete (even for a fixed formula). Satisfiability is instead
undecidable.

Alternating Automata and a Temporal Fixpoint Calculus for VPL 479

2 Preliminaries

Labelled trees. Let N be the set of natural numbers. A tree T is a prefix closed subset
of N

∗. Elements of T are called nodes and the empty word ε is the root of T . For x ∈ T ,
a child of x in T is a T -node of the form x · i with i ∈ N. A path of T is a maximal
sequence x0x1 . . . of nodes s.t. x0 = ε and for each i, xi+1 is a child of xi. For a set A,
an A-labelled tree is a pair r = 〈T, V 〉, where T is a tree and V : T → A maps each
T -node to an element in A. For x ∈ T , the subtree of r rooted at x is the A-labelled
tree 〈Tx, Vx〉, where Tx = {y ∈ N

∗ | x ·y ∈ T } and Vx(y) = V (x ·y) for each y ∈ Tx.

Positive boolean formulas and regular acceptance conditions. Throughout this paper,
we consider various classes of automata over infinite words equipped with parity or
Büchi acceptance conditions over the finite set of (control) states. Formally, for a finite
set Q, a parity condition over Q is a mapping Ω : Q → N assigning to each element in
Q an integer (called priority). The index of Ω is the cardinality of the set {Ω(q) | q ∈
Q}. A Büchi condition over Q is a subset F of Q. For an infinite sequence π = q0, q1 . . .
over Q, we say that π satisfies the parity condition Ω if the smallest priority of the
elements in Q that occur infinitely often along π is even. We say that π satisfies the
Büchi condition F if there is some q ∈ F that occurs infinitely often along π.

For a finite set X , B+(X) denotes the set of positive boolean formulas over X built
from elements in X using ∨ and ∧ (we also allow the formulas true and false).
A subset Y of X satisfies θ ∈ B+(X) iff the truth assignment that assigns true to
the elements in Y and false to the elements of X \ Y satisfies θ. The set Y exactly
satisfies θ if Y satisfies θ and every proper subset of Y does not satisfy θ. The dual ˜θ of
formula θ is obtained from θ by exchanging ∨ with ∧ and true with false.

Visibly pushdown languages. A pushdown alphabet Σ is an alphabet which is parti-
tioned in three disjoint finite alphabets Σc, Σr, and Σint, where Σc is a finite set of
calls, Σr is a finite set of returns, and Σint is a finite set of internal actions.

A Büchi nondeterministic visibly pushdown automaton (Büchi NVPA) [4] on infinite
words over a pushdown alphabet Σ = Σc ∪Σr ∪ Σint is a tuple P = 〈Q, q0, Γ, Δ, F 〉,
where Q is a finite set of (control) states, q0 ∈ Q is the initial state, Γ is the finite stack
alphabet, Δ ⊆ (Q × Σc × Q × Γ) ∪ (Q × Σr × (Γ ∪ {⊥}) × Q) ∪ (Q × Σint × Q)
is the transition relation (where ⊥ /∈ Γ is the special stack bottom symbol), and F ⊆ Q
is a Büchi condition over Q. A transition of the form (q, a, q′, B) ∈ Q × Σc × Q × Γ
is a push transition, where on reading the call a the symbol B �= ⊥ is pushed onto
the stack and the control changes from q to q′. A transition of the form (q, a, B, q′) ∈
Q×Σr ×(Γ ∪{⊥})×Q is a pop transition, where on reading the return a, B is popped
from the stack and the control goes from q to q′. Finally, on reading an internal action
a, P can choose only transitions of the form (q, a, q′) which do not use the stack. Thus,
P pushes onto the stack only on reading a call, pops the stack only at returns, and does
not use the stack on internal actions. Hence, the input controls the kind of operations
permissible on the stack, and thus the stack depth at every position [4].

A configuration of P is a pair (q, β), where q ∈ Q and β ∈ Γ ∗ · {⊥} is a stack
content. For w ∈ Σω, w(i) denotes the i-th symbol of w. A run of P over w is an
infinite sequence of configurations r = (q′0, β0)(q′1, β1) . . . such that β0 = ⊥, q′0 is

480 L. Bozzelli

the initial state, and for each i ≥ 0: [push] if w(i) is a call, then ∃B ∈ Γ such that
βi+1 = B · βi and (q′i, w(i), q′i+1, B) ∈ Δ; [pop] if w(i) is a return, then ∃B ∈ Γ s.t.
(q′i, w(i), B, q′i+1) ∈ Δ and either βi = βi+1 = B = ⊥, or B �= ⊥ and βi = B · βi+1;
[internal] if w(i) is an internal action, (q′i, w(i), q′i+1) ∈ Δ and βi = βi+1. The run is
accepting iff its projection over Q satisfies the Büchi condition F . The language of P ,
L(P), is the set of w ∈ Σω s.t. there is an accepting run of P over w. A language L over
Σ is a visibly pushdown language (VPL) if there is a Büchi NVPA P s.t. L(P) = L.

In order to model formal verification problems of pushdown systems M using finite
specifications (such as NVPA) denoting VPL languages, we choose a suitable pushdown
alphabet Σ = Σc ∪ Σr ∪ Σint, and associate a symbol in Σ with each transition
of M with the restriction that push transitions are mapped to Σc, pop transitions are
mapped to Σr, and transitions that do not use the stack are mapped to Σint. Note that M
equipped with such a labelling is a Büchi NVPA where all the states are accepting. The
specification S describes another VPL L(S) over the same alphabet, and M is correct iff
L(M) ⊆ L(S). Given a class C of specifications describing VPL over Σ, the pushdown
model checking problem against C-specifications is to decide, given a pushdown system
M over Σ and a specification S in the class C, whether L(M) ⊆ L(S).

3 Alternating Visibly Pushdown Automata

In this section we study the class of alternating visibly pushdown automata (AVPA). We
show that any parity AVPA P can be translated into an equivalent Büchi NVPA whose
size is doubly exponential in the size of P . This double-exponential blowup cannot
be avoided. In fact we show that emptiness for this class of automata is 2EXPTIME-
complete (recall that emptiness for parity or Büchi NVPA is in PTIME [4]).

As NVPA, an AVPA P pushes onto (resp., pops) the stack only when it reads a call
(resp., a return), and does not use the stack on internal actions. However, at any instant
P can choose nondeterministically to split in many copies, each of them moving to the
next input symbol. Formally, a parity AVPA over a pushdown alphabet Σ is a tuple P =
〈Q, q0, Γ, δ, Ω〉, where Q, q0, and Γ are defined as for NVPA, Ω is a parity condition
over Q, and δ : Q × Σ × (Γ ∪ {⊥}) → B+(Q) ∪ B+(Q × Γ) is the transition function
satisfying: (i) δ(q, a, B) ∈ B+(Q) if a is not a call, (ii) δ(q, a, B) ∈ B+(Q × Γ) if a is
a call, and (3) δ(q, a, B) = δ(q, a, B′) if a is not a return.

Given a word w ∈ Σ∗ ∪ Σω, a state q, and stack content β ∈ Γ ∗ · {⊥}, a (q, β)-
run of P over w is a Q × Γ ∗ · {⊥}-labelled tree r = 〈T, V 〉, where each node x of
T labelled by (q′, β′) describes a copy of P in state q′ and stack content β′ reading
the symbol w(|x|). Moreover, we require that V (ε) = (q, β) and for each x ∈ T with
V (x) = (q′, B ·β′), there is a set H = {p0, . . . , pm} exactly satisfying δ(q′, w(|x|), B)
(note that H ⊆ Q × Γ if w(|x|) is a call, and H ⊆ Q otherwise) such that x has
children x · 0, . . . , x · m and for all 0 ≤ i ≤ m, the following holds: [Push] If w(|x|)
is a call, pi = (qi, Bi) and V (x · i) = (qi, Bi · B · β′); [Pop] If w(|x|) is a return,
V (x · i) = (pi, β

′) if B �= �, and V (x · i) = (pi, ⊥) otherwise; [Internal] If w(|x|)
is an internal action, V (x · i) = (pi, B · β′). The run r = 〈T, V 〉 is memoryless if for
all x1, x2 ∈ T such that |x1| = |x2| and V (x1) = V (x2), the subtrees of r rooted
at x1 and x2 coincide (i.e., fixed a position along w, the behaviour of P depends only

Alternating Automata and a Temporal Fixpoint Calculus for VPL 481

on the current state and stack content, and is independent on the past choices). If w is
infinite, the run r is accepting if for each infinite path π = x0x1 . . . of r, the projection
of V (x0)V (x1) . . . over Q satisfies the parity condition Ω. The ω-language L(P) of P
is the set of w ∈ Σω such that there is an accepting (q0, ⊥)-run of P over w.

Remark 1. For w ∈ Σω, we can associate in a standard way [12] to P and w an infinite-
state parity game, where player 0 plays for acceptance, while player 1 plays for rejec-
tion. Winning strategies of player 0 correspond to accepting runs of P over w. Since the
existence of a winning strategy in parity games implies the existence of a memoryless
one, we can restrict ourselves to consider only memoryless runs of P . Moreover, by
[12] the dual automaton (AVPA) ˜P = 〈Q, q0, Γ, ˜δ, ˜Ω〉 of P , where ˜δ(q, a, B) is the dual
of δ(q, a, B) and ˜Ω(q) = Ω(q) + 1 for all q ∈ Q, accepts the complement of L(P).

From parity AVPA to Büchi NVPA. Fix a parity AVPA P = 〈Q, q0, Γ, δ, Ω〉 over Σ.
Let n be the index of Ω and [n] = {0, . . . , n}. W.l.o.g. assume that for each q ∈ Q,
0 ≤ Ω(q) ≤ n and δ(q, a, B) /∈ {true,false}. We will construct a Büchi NVPA
accepting L(P). Our approach is a generalization of the technique of “summaries” used
in [4] to show that NVPA are closed under complementation.

A finite word w ∈ Σ∗ is well-matched if inductively or (1) w = ε, or (2) w = aw′,
a ∈ Σint and w′ is well-matched, or (3) w = acw

′arw
′′, ac ∈ Σc, ar ∈ Σr, and w′

and w′′ are well-matched. The set Lmwm of minimally well-matched words is the set of
words of the form acwar where ac ∈ Σc, ar ∈ Σr, and w is well-matched.

Let P ⊆ Q × [n]. For a finite run r = 〈T, V 〉 of P over w ∈ Σ∗, r is consistent
with P if for each (q, i) ∈ Q × [n]: (q, i) ∈ P iff there is a path π = x0 . . . xk (note
that k = |w|) of r with V (xj) = (qj , βj) for all 0 ≤ j ≤ k such that qk = q and
i = min{Ω(qj)}0≤j≤k.

Let H = Q × 2Q×[n]. A summary for a well-matched word w ∈ Σ∗ is a nonempty
set S ⊆ H such that for all (q, P) ∈ S, there is a memoryless (q, β)-run of P over w
for some stack content β which is consistent with P . Intuitively, each (q, P) ∈ S keeps
track of the meaningful information associated with some (q, β)-run r of P over w; in
particular, for each path π of r, P keeps track of the smallest priority of the states visited
by π and of the last state along π (since w is well-matched, the stack content associated
with such a state is still β and the initial stack content β is not modified along the run
r). Given a memoryless run r of A over an infinite word w′, the notion of summary is
used to capture the meaningful information of the portions of r associated with well-
matched subwords w of w′. Note that for such a subword w, fixed a state q, there can
be different portions of r associated with w corresponding to finite (q, β)-runs of P
over w whose initial stack contents are distinct. Since the local choices of P depend
also on the stack content, a summary must keep track for each state q of distinct sets
P1, . . . , Pn ⊆ Q × [n], which are consistent with different finite (q, β)-runs over w.

For w ∈ Σω, there is a unique factorization w1w2 . . . of w such that for all i ≥ 1,
wi ∈ Σ ∪ Lmwm and if wi is a call, then there is no j > i such that wj is a return.
Let ̂Σ be the pushdown alphabet given by Σ ∪ (2H \ {∅}), where symbols in 2H \ {∅}
are internal actions. A pseudo-word ŵ is an infinite word over ̂Σ s.t. if ŵ(i) is a call,
then there is no j > i such that ŵ(j) is a return. Given w ∈ Σω, a pseudo-word of

482 L. Bozzelli

w is obtained by replacing each factor wi ∈ Lmwm in the factorization of w with a
summary of wi.

Let us consider the AVPA ̂P = 〈Q × {1, . . . , n}, (q0, Ω(q0)), Γ, ̂δ, ̂Ω〉 over ̂Σ where
(1) for all a ∈ Σ, ̂δ((q, i), a, B) is obtained from δ(q, a, B) by replacing each q′ ∈ Q

with (q′, Ω(q′)), (2) for all S ∈ 2H \ {∅}, ̂δ((q, i), S, B) =
∨

(q,P)∈S
∧

(p,h)∈P (p, h),

and (3) ̂Ω((q, i)) = i. For a word ŵ ∈ ̂Σω, ̂P simulates P over the Σ-letters of ŵ,
and on letters S ∈ 2H \ {∅} it updates the current state q by splitting in n copies
in states (q1, i1), . . . , (qn, in), respectively, such that (q, {(q1, i1), . . . , (qn, in)}) ∈ S.
By construction for every w ∈ Σω, P accepts w iff there is a pseudo-word of w that is
accepted by ̂P . Note that for a ((q0, Ω(q0)), ⊥)-run of ̂P over a pseudo-word, whenever
a return occurs, the current stack content is empty. Hence, we can construct a parity
alternating finite-state automaton A that simulates ̂P over pseudo-words and accepts
only pseudo-words (on reading a return, A simulates ̂P when the stack is empty). By
[13,15] one can construct a nondeterministic Büchi finite-state automaton APW with a
number of states exponential in |Q| that accepts L(A). Thus, we obtain the following:

Proposition 1. One can construct a nondeterministic Büchi finite-state automatonAPW

over ̂Σ whose number of states is exponential in the number of states of P such that for
each w ∈ Σω: w ∈ L(P) iff there is a pseudo-word of w that is accepted by APW .

The next step consists of computing the summary information associated with mini-
mally well-matched words.

Proposition 2. We can build in doubly exponential time a NVPA PS on finite words
over Σ with a special stack symbol ‘−’ and set of states containing 2H such that for
each w ∈ Σ∗, S ∈ 2H \ {∅}, and stack content β ∈ {−}∗.⊥: there is an accepting
(S, β)-run of PS over w iff w ∈ Lmwm and S is a summary of w. PS has a unique
accepting state qacc /∈ 2H (with no outgoing transitions).

Now, we are ready to construct a Büchi NVPA PN accepting exactly L(P). Let APW

be the Büchi nondeterministic finite-state automaton of Proposition 1 with states QPW ,
and let PS be the NVPA of Proposition 2 with states QS ⊇ 2H, accepting state qacc /∈
2H, and special stack symbol ‘−’. Given a word w ∈ Σω, PN guesses a pseudo word
ŵ of w and checks that it is in L(APW). The set of states of PN is QPW × QS .
At any step, PN either simulates APW on the first component of the state (and the
other one remains constant with value qacc) pushing onto the stack only the symbol
‘−’, or simulates PS on the second component (and the other one remains constant).
Whenever a call ac occurs and PN is in state (q1

PW , qacc), PN can guess that ac is the
first letter of a factor wm ∈ Lmwm of w and there is a summary S ∈ 2H of wm by
simulating a push move of PS with source state S, input symbol ac, and target qS , and

moving to state (q2
PW , qS) s.t. q1

PW
S−→ q2

PW is a transition of APW (by Proposition 2,
qS �= qacc). From (q2

PW , qS), PN simulates PS . If the guess was correct, then PN can
reach a state of the form (q2

PW , qacc), and the whole procedure is repeated. Otherwise,
PN will continue to simulate PS visiting only states of the form (q, q′) with q′ �= qacc.
Therefore, the accepting states of PN are of the form (q, qacc) where q is an accepting
state of APW . Thus, we obtain the following:

Alternating Automata and a Temporal Fixpoint Calculus for VPL 483

Theorem 1. Given a parity AVPA P , one can construct in doubly exponential time a
Büchi NVPA PN with size doubly exponential in the size of P s.t. L(PN) = L(P).

Decision problems for (parity) AVPA. First, we consider emptiness and universality.
Note that these problems are equivalent from the complexity point of view since the
dual automaton of a AVPA P has size linear in the size of P . Since emptiness of Büchi
NVPA is in PTIME, by Theorem 1, emptiness of AVPA is in 2EXPTIME. We can show
that the problem is also 2EXPTIME-hard (also for Büchi AVPA) by a reduction from
the word problem for EXPSPACE-bounded Turing Machines. For the pushdown model
checking problem, given a pushdown system M and an AVPA P , checking whether
L(M) ⊆ L(P) reduces to checking emptiness of L(M) ∩ L(˜PN), where PN is the
NVPA equivalent to the dual of P . By [4] and Theorem 1 this check can be done in time
polynomial in the size of M and doubly exponential in the size of P . The problem is at
least as hard as universality of AVPA. Thus, we obtain the following:

Theorem 2. Emptiness and universality of (parity or Büchi) AVPA are 2EXPTIME-
complete. Moreover, the pushdown model checking problem against AVPA specifica-
tions is 2EXPTIME-complete (and polynomial in the size of the pushdown system).

4 Alternating Jump Finite-State Automata

In this section we introduce the class of alternating jump (finite-state) automata (AJA)
operating on infinite words over a pushdown alphabet. AJA extend standard alternating
finite-state automata by also allowing non-local moves: when the current input symbol
is a call ac and the matching return ar of ac along the input word exists, a copy of the
automaton can move (jump) to the return ar. We also allow local and non-local back-
ward moves (details are given below). We show that one-way and two-way AJA have
the same expressiveness and capture exactly the class of visibly pushdown languages.
The main result is an algorithm for translating a given parity two-way AJA (2-AJA) A
into an equivalent Büchi NVPA whose size is singly exponential in the size of A. We
also study some decision problems for the considered class of automata.

Fix a pushdown alphabet Σ. Given an infinite word w ∈ Σω, we consider four
different notions of successor for a position i ∈ N along w:

– The forward local successor of i along w, written succ(↓, w, i), is i + 1.
– The backward local successor of i along w, written succ(↑, w, i), is i − 1 if i > 0,

and it is undefined otherwise (in this case we set succ(↑, w, i) = �).
– The abstract successor of i along w [3], written succ(↓a, w, i), is the forward local

successor if i is not a call position. If instead w(i) is a call, succ(↓a, w, i) points
to the matching return position of i (if any), i.e.: if there is j > i such that w(j) is
a return and w(i + 1) . . . w(j − 1) is well-matched, then succ(↓a, w, i) = j (note
that j is uniquely determined), otherwise succ(↓a, w, i) = �.

– The caller of i along w [3], written succ(↑c, w, i), points to the last unmatched call
of the prefix of w until position i. Formally, if there is j < i such that w(j) is a
call and w(j + 1) . . . w(h) is well-matched (where h = i − 1 if i is a call position,
and h = i otherwise), then succ(↑c, w, i) = j (note that j is uniquely determined),
otherwise the caller is undefined and we set succ(↑c, w, i) = �.

484 L. Bozzelli

Let DIR = {↓, ↓a, ↑, ↑c}. A parity 2-AJA over Σ is a tuple A = 〈Q, q0, δ, Ω〉, where
Q, q0, and Ω are defined as for parity AVPA and δ : Q × Σ → B+(DIR × Q × Q)
is the transition function. Intuitively, a target of a move of A is encoded by a triple
(dir, q, q′) ∈ DIR × Q × Q, meaning that a copy of A moves to the dir-successor
of the current input position i in state q if such a successor is defined, and to position
i + 1 in state q′ otherwise. Note that the q′-component of the triple above is irrelevant
if dir = ↓ (we give it only to have a uniform notation). A 1-AJA is a 2-AJA whose
transition function δ satisfies δ(q, a) ∈ B+({↓, ↓a} × Q × Q) for each (q, a) ∈ Q × Σ.

A q-run of A over an infinite word w ∈ Σω is a N × Q-labelled tree r = 〈T, V 〉,
where a node x ∈ T labelled by (i, q′) describes a copy of A that is in q′ and reads
the i-th input symbol. Moreover, we require that r(ε) = (0, q) and for all x ∈ T with
r(x) = (i, q′), there is a set H = {(dir0, q

′
0, q

′′
0), . . . , (dirm, q′m, q′′m)} ⊆ DIR×Q×Q

exactly satisfying δ(q′, w(i)) such that the children of x are x · 0, . . . , x · m, and for
each 0 ≤ h ≤ m: V (x · h) = (i + 1, q′′h) if succ(dirh, w, i) = �, and V (x · h) =
(succ(dirh, w, i), q′h) otherwise. The run r is memoryless if for all nodes x, y ∈ T such
that V (x) = V (y), the (labelled) subtrees rooted at x and y coincide. The q-run r is
accepting if for each infinite path x0x1 . . ., the projection over Q of V (x0)V (x1) . . .
satisfies the parity condition Ω. The ω-language of A, L(A), is the set of words w ∈ Σω

such that there is an accepting q0-run r of A over w. A q0-run is called simply run.
As for AVPA, we can give a standard game-theoretic interpretation of acceptance in

AJA. In particular, by [12] the dual automaton ˜A = 〈Q, q0, ˜δ, ˜Ω〉 of an AJA A, where
for all (q, a) ∈ Q × Σ, ˜Ω(q) = Ω(q) + 1 and ˜δ(q, a) is the dual of δ(q, a), accepts the
complement of L(A). Moreover, the existence of an accepting run of A over w implies
the existence of a memoryless one. Since AJA are clearly closed under intersection and
union, we obtain the following result.

Proposition 3. 2-AJA and 1-AJA are closed under boolean operations. Moreover,
given a 2-AJA A, w ∈ L(A) iff there is an accepting memoryless run of A over w.

4.1 Relation Between Nondeterministic Visibly Pushdown Automata and AJA

In this subsection we present translations forth and back between NVPA and 2-AJA.

From parity 2-AJA to Büchi NVPA. Fix a parity 2-AJA A = 〈Q, q0, δ, Ω〉 over Σ. Let
n be the index of Ω and [n] = {0, . . . , n}. Without loss of generality we can assume
that for each q ∈ Q, 0 ≤ Ω(q) ≤ n and δ(q, a) /∈ {true,false}.

By Proposition 3, we can restrict ourselves to consider memoryless runs of A. For
a word w ∈ Σω, we represent memoryless runs of A over w as follows. For a set
H ⊆ Q × DIR × Q × Q, let Dom(H) = {q ∈ Q | (q, dir, q′, q′′) ∈ H}. A strategy
of A over w is a mapping St : N → 2Q×DIR×Q×Q satisfying: (i) q0 ∈ Dom(St(0)),
(ii) for each i ∈ N and q ∈ Dom(St(i)), the set {(dir, q′, q′′) | (q, dir, q′, q′′) ∈ St(i)}
exactly satisfies δ(q, w(i)), and (iii) for each (q, dir, q′, q′′) ∈ St(i), q′ ∈ Dom(St(h))
if succ(dir, w, i) = h �= �, and q′′ ∈ Dom(St(i + 1)) otherwise. Intuitively, St is
an infinite word over 2Q×DIR×Q×Q encoding a memoryless run r of A over w. In
particular, Dom(St(i)) is the set of states in which the automaton is (along r) when
w(i) is read, and for q ∈ Dom(St(i)), the set {(dir, q′, q′′) | (q, dir, q′, q′′) ∈ St(i)} is
the set of choices made by A on reading w(i) in state q.

Alternating Automata and a Temporal Fixpoint Calculus for VPL 485

���

source

�

ic
(call)

hc

(call) � �

�
��

the path continues visiting
only positions in [hc, hr[

� �

hr

(matching return)
ir

(matching return)

���

target

� � �� �� �

��

Fig. 1. Structure of a zig-zag prefix

A j-path γ of St is a sequence of pairs in N × Q of the form γ = (i1, q1)(i2, q2) . . .
where i1 = j and for each 1 ≤ h < |γ|: ∃(qh, dir, q′h, q′′h) ∈ St(ih) such that either
ih+1 = succ(dir, w, ih) and qh+1 = q′h, or succ(dir, w, ih) = �, ih+1 = ih + 1 and
qh+1 = q′′h . The path γ is forward (resp., backward) if ih+1 > ih (resp., ih+1 < ih)
for any h. For a finite path γ = (i1, q1) . . . (ik, qk), the index of γ is min{Ω(ql) | 1 ≤
l ≤ k} if k > 1, and n + 1 otherwise. In case ik = i1, we say that γ is closed. For
a finite path γ1 = (i1, q1), . . . , (ik, qk) and a path γ2 = (ik, qk)(ik+1, qk+1) . . ., let
γ1 ◦ γ2 be the path γ1(ik+1, qk+1) A path γ is positive (resp., negative) if γ is of
the form γ = γ1 ◦ γ2 ◦ . . ., where each γi is either a closed path, or a forward (resp.,
backward) path. A i-cycle of St is an infinite path γ that can be decomposed in the form
γ = γ1 ◦ γ2 ◦ . . ., where each γh is a closed i-path.

The strategy St is accepting if for each infinite path γ starting from (0, q0), the pro-
jection of γ over Q satisfies the parity condition Ω of A. Clearly, there is an accepting
memoryless run of A over w iff there is an accepting strategy of A over w.

Now, we have to face the problem that the infinite paths γ of St can use backward
moves. If γ is positive, then the idea is to collapse the closed subpaths (in the de-
composition of γ) in a unique move and to keep track of the associated meaningful
information by finite local auxiliary structures. However, there can be infinite paths that
are not positive. Fortunately, also for this class of paths, it is possible to individuate a
decomposition that is convenient for our purposes. This decomposition is formalized as
follows. A zig-zag i-path is an infinite i-path γ inductively defined as follows:

– (Positive prefix) γ = γp ◦γs, where γp is a finite non-empty positive i-path leading
to position h ≥ i, and γs is a zig-zag h-path visiting only positions in [h, ∞[.

– (Zig-zag prefix) w(i) is a call and γ = γi,ir ◦ γir ,hr ◦ γhr,hc ◦ γs, where γi,ir is a
path from i to the matching return position ir, γir ,hr is a negative path from ir to
the return position hr ∈]i, ir[, γhr ,hc is a path from hr to the matching-call position
hc ∈]i, ir[, and γs is a zig-zag hc-path visiting only positions in [hc, hr[.

– (terminal Zig-zag): γ = γp ◦ γs, where γs is a h-cycle, and either γp is empty and
h = i, or γp = γi,ir ◦ γir ,h, where: γi,ir is a path from the call position i to the
matching return position ir, and γir ,h is a negative path from ir to h ∈]i, ir[.

The structure of a zig-zag prefix is illustrated in Figure 1. Note that an infinite positive
path is a special case of zig-zag path. The following holds.

Proposition 4. An infinite i-path visiting only positions in [i, ∞[is a zig-zag i-path.

486 L. Bozzelli

Our next goal is to keep track locally for each position i of the meaningful informa-
tion associated with closed i-paths. In case w(i) is a return with matching-call w(ic),
we also need to keep track in a finite way of the ic-paths (resp., i-paths) leading to i
(resp., ic). Thus, we give the following definition. A path summary of A is a triple of
mappings (Δ, Δa, Δc) where Δ : N → 2Q×[n+1]×Q and Δa, Δc : N × {down, up} →
2Q×[n+1]×Q. Such a triple is a path summary of the strategy St if it satisfies some clo-
sure conditions. Since there are many conditions, we do not formalize them here. We
only give their general form, to show (as we will see) that they can be checked by an
NVPA (using the stack): each condition has the form check(i, h) =⇒ Φ(i, h), where
(1) i, h ∈ N are implicitly universally quantified, (3) check(i, h) := succ(dir, w, i) =
h | succ(dir, w, i) = � ∧ h = i+1 (where dir ∈ DIR). (2) Φ(i, h) is a boolean for-
mula over propositions of the form (q, dir, q′, q′′) ∈ St(j) or (q, in, q′) ∈ F(j), where
j ∈ {i, h}, and F(j) ∈ {Δ(j), Δa(j, down), Δa(j, up), Δc(j, down), Δc(j, up)}.

The intended meaning for a path summary (Δ, Δa, Δc) of strategy St is as follows:

– (q, in, q′) ∈ Δ(i) if there is a closed i-path of St of index in from (i, q) to (i, q′).
– (q, in, q′) ∈ Δa(i, up) (resp., (q, in, q′) ∈ Δa(i, down)) if i = succ(↓a, w, h),

w(h) is a call, and there is a path of index in from (i, q) to (h, q′) (resp., from
(h, q) to (i, q′)).

– (q, in, q′) ∈ Δc(i, up) (resp., (q, in, q′) ∈ Δc(i, down)) if succ(↑c, w, i) = h and
there is a path of of index in from (i, q) to (h, q′) (resp., from (h, q) to (i, q′)).

By using the path summary (Δ, Δa, Δc) of St, we define a convenient representation
for zig-zag paths which can be simulated by NVPA. A forward (resp., backward) move
of St and (Δ, Δa, Δc) is a pair (i1, q1, in1) → (i2, q2, in2) of triples in N×Q× [n+1]
such that i2 > i1 (resp., i1 > i2) and: ∃(q1, in, q) ∈ Δ(i1) such that (i1, q)(i2, q2) is a
path of St and in1 = min{in, Ω(q)}. A downward path ρ of St and (Δ, Δa, Δc) is a
sequence ρ = (i1, q1, in1)(i2, q2, in2) (i3, q3, in3) . . . inductively defined as follows:

– (Forward move) (i1, q1, in1) → (i2, q2, in2) is a forward move and (i2, q2, in2)
(i3, q3, in3) . . . is a downward path visiting only positions in [i2, ∞[.

– (Zig-zag move) i1 < i2, w(i1) and w(i2) are calls with matching-return posi-
tions hr

1 and hr
2, there is a path (hr

1, q
r
1 , in

r
1) . . . (hr

2, q
r
2 , in

r
2) using only backward

moves s.t. (q1, in, qr
1) ∈ Δa(hr

1, down) and (qr
2 , in

′, q2) ∈ Δa(hr
2, up) for some

in, in′ ∈ [n], and ρ′ = (i2, q2, in2) (i3, q3, in3) . . . is a downward path visiting
only positions in [i2, h2

r[.
– (Terminal move) ρ = ρ′(i, q, in)(i, q′, in′), where (q, in, q′)∈Δ(i), (q′, in′, q′) ∈

Δ(i), and in′ ∈ [n]. Moreover, either ρ′ is empty or ρ′ = (ic, qc, inc), ic is
a call position with matching-return ir, i ∈]ic, ir[, and there are (qc, inc, qr) ∈
Δa(ir, down) and a path (ir, qr, inr) . . . (i, q, in) using only backward moves.

Note that a downward path is either infinite (and uses only forward moves) or is
finite and ends with a terminal move (corresponding to a cycle of St). Let Ω′ be the
parity condition over Q × [n + 1] defined as Ω′((q, in)) = in. A downward path ρ
is accepting if either (i) ρ is infinite and its projection over Q × [n + 1] satisfies Ω′

or (ii) ρ is finite and leads to a triple (i, q, in) such that in is even. The path summary
(Δ, Δa, Δc) of strategy St is accepting if each downward path starting from a triple of
the form (0, q0, in) is accepting. The following holds.

Alternating Automata and a Temporal Fixpoint Calculus for VPL 487

Proposition 5. For each w ∈ Σω, w ∈ L(A) iff A has a strategy St over w and an
accepting path summary of St.

Let Σext = Σ×(2Q×DIR×Q×Q)×(2Q×[n+1]×Q)5, where the partition in calls, returns,
and internal actions is induced by Σ. For w ∈ Σω, St ∈ (2Q×DIR×Q×Q)ω , and a path
summary (Δ, Δa, Δc) of A, the infinite word over Σext associated with w, St, and
(Δ, Δa, Δc), written (w, St, (Δ, Δa, Δc)), is defined in the obvious way.

Theorem 3. Given a parity 2-AJA A, one can construct in singly exponential time a
Büchi NVPA PA with size exponential in the size of A such that L(PA) = L(A).

Proof. We first build a Büchi NVPA Pext
A over Σext that accepts (w, St, (Δ, Δa, Δc))

iff St is a strategy of A over w and (Δ, Δa, Δc) is an accepting path summary of St. The
desired automaton PA is obtained by projecting out the St and (Δ, Δa, Δc) components
of the input word. Pext

A is the intersection of two Büchi NVPA Pext
1 and Pext

2 .
Pext

1 checks that St is a strategy of A over w and (Δ, Δa, Δc) is a path summary of
St. These checks can be easily done as follows. Pext

1 keeps track by its finite control
of the caller (if any) of the current input symbol and of the previous input symbol. On
reading a call cext, Pext

1 pushes onto the stack the current caller and the call cext, and
moves to the next input symbol updating the caller information to cext. Thus, in case the
call cext returns (and the stack is popped), Pext

1 can check that the constraints between
cext and the matching return are satisfied. Moreover, on reading cext, Pext

1 either (i)
guesses that the matching return of cext does not exist and pushes onto the stack also
the symbol ‘NO’ (the guess is correct iff ‘NO’ will be never popped from the stack), or
(ii) guesses that the matching return of cext exists, pushes onto the stack also the symbol
‘YES’ and moves to a non-accepting state (the guess is correct iff ‘YES’ is eventually
popped). In the second case, before ‘YES’ is eventually popped, whenever a call cnew

occurs, the behaviour of Pext
1 is deterministic since the matching return of cnew must

exists if the guess was correct (in this phase the symbols ‘NO’ and ‘YES’ are not used).
Pext

2 checks that (Δ, Δa, Δc) is accepting. First we build a parity NVPA PC that ac-
cepts (w, St, (Δ, Δa, Δc)) iff there is a downward path of St and (Δ, Δa, Δc) that is not
accepting. Essentially, PC guesses such a path ρ and checks that it is not accepting. The
computation of PC is subdivided in phases. At the beginning of any phase, PC keeps
track by its finite control of the projection (q, in) of the current triple of the simulated
path ρ, and chooses to start the simulation of a forward move, or of a zig-zag move, or
of a terminal move. We describe the simulation of a zig-zag move (the other cases are
simpler) with source (q, in, i) where i is a call position. Then, PC guesses two triples
(q, in′, qr), (q2

r , in′′, q2
c) ∈ Q × [n] × Q. The first one must be in Δa(hr, down) where

hr is the matching return position of i, and the second one must be in Δa(h2
r, up), where

h2
r < hr and h2

r is the matching return of a call representing the target of the zig-zag
move. To check this PC pushes onto the stack the triple (q, in′, qr) (when (q, in′, qr) is
popped, PC can check that the constraint on it is satisfied) and moves to the next input
symbol in state (q2

r , in′′, q2
c). PC must also check that there is a finite path using only

backward moves from the return position hr in state qr to the return h2
r in state q2

r . This
part is discussed below. If the simulated move is the first zig-zag move along ρ, PC

pushes onto the stack also a special symbol ‘*’. Note that after the first zig-zag move,
for each call visited by the remaining portion of ρ, the matching return exists. Thus, PC

488 L. Bozzelli

must check the existence of the matching return only for the call associated with the
first zig-zag move (this reduces to check that ‘*’ is eventually popped).

PC will remain in state (q2
r , in′′, q2

c) (pushing some special symbol onto the stack
whenever a call occurs) until2 on reading a call cext, PC guesses that cext is the match-
ing call of position h2

r. Thus, PC pushes onto the stack the tuple ((q2
r , in′′, q2

c),
START) (recall that from this point, in state q2

c , the path ρ can visit only positions in
[i2, h2

r[, where i2 is the position of cext). When the tuple is popped, PC checks that the
constraint on (q2

r , in′′, q2
c) is satisfied and starts to simulate in reversed order backward

moves starting from state q2
r , until (on reading a return) a triple (q, in′, qr) is popped

from the stack. The zig-zag move have been correctly simulated iff the current state of
the guessed backward path is exactly qr. The size of PC is quadratic in the number of
states of A. The Büchi NVPA Pext

2 is obtained by complementating PC . By [4] the size
of Pext

2 is exponential in the number of states of A. This concludes the proof. ��

From Büchi NVPA to parity 2-AJA. For the converse translation, we can show that
Büchi 1-AJA are sufficient to capture the class of VPL.

Theorem 4. Given a Büchi NVPA P , we can build in polynomial time an equivalent
Büchi 1-AJA AP whose number of states is quadratic in the number of states of P .

4.2 Decision Problems for Alternating Jump Automata

First, we consider emptiness and universality of (parity) 1-AJA and 2-AJA. Since the
dual automaton of a 1-AJA (resp., 2-AJA) A has size linear in the size of A and accepts
the complement of L(A), emptiness and universality of 1-AJA and 2-AJA are equivalent
problems from the complexity point of view. For Büchi NVPA, emptiness is in PTIME

and universality is EXPTIME-complete [4]. Thus, by Theorems 3 and 4, it follows that
emptiness and universality of 1-AJA and 2-AJA are EXPTIME-complete.

For the pushdown model checking problem, given a pushdown system M and a
1-AJA (resp., 2-AJA) A, checking whether L(M) ⊆ L(A) reduces to checking empti-
ness of L(M) ∩ L(˜PA), where ˜PA is the NVPA equivalent to the dual of A (Theorem
3). This check can be done in time polynomial in the size of M and exponential in the
size of A. The problem is at least as hard as universality of 1-AJA (resp., 2-AJA), hence:

Theorem 5. Emptiness and universality of 1-AJA and 2-AJA are EXPTIME-complete.
Moreover, the pushdown model checking problem against 1-AJA (resp., 2-AJA) speci-
fications is EXPTIME-complete (and polynomial in the size of the pushdown system).

5 Visibly Pushdown Linear-Time μ-Calculus (VP-μTL)

In this section we consider a linear-time fixpoint calculus, called VP-μTL, which sub-
sumes CARET [3] and captures exactly the class of visibly pushdown languages.

VP-μTL extends the full linear-time μ-calculus (with both forward and backward
modalities) introduced in [14] by allowing non-local forward and backward modalities:

2 If, in the meanwhile, a triple (q, in′, qr) is popped from the stack, PC rejects the input.

Alternating Automata and a Temporal Fixpoint Calculus for VPL 489

the abstract next modality allows to associate each call with its matching return (if any),
and the (backward) caller modality allows to associate each position with its caller (if
any). Thus, VP-μTL formulas are built from atomic actions over a pushdown alphabet
Σ using boolean connectives, the standard next temporal operator © (here, denoted by
©↓), the standard backward version ©↑ of ©, the abstract version ©↓a of ©, the caller
version ©↑c

of ©, as well as the least (μ) and greatest (ν) fixpoint operators.
W.l.o.g. we assume that VP-μTL formulas are written in positive normal form (nega-

tion only applied to atomic actions). Let V ar = {X, Y, . . .} be a finite set of variables
and Σ be a pushdown alphabet. VP-μTL formulas ϕ over Σ and V ar are defined as:

ϕ ::= a | ¬a | X | ϕ ∨ ϕ | ϕ ∧ ϕ | ©dirϕ | ¬©dir true | μX.ϕ | νX.ϕ

where a ∈ Σ, X ∈ V ar, and dir ∈ {↓, ↓a, ↑, ↑c}. VP-μTL formulas ϕ are interpreted
over words w ∈ Σω. Given a valuation V : V ar → 2N assigning a subset of N to each
variable, the set of positions along w satisfying ϕ under valuation V , written ‖ϕ‖w

V , is
defined as (we omit the clauses for atoms and boolean operators, which are standard):

‖X‖w
V = V(X)

‖©dirϕ‖w

V = {i ∈ N | succ(dir, w, i) �= � and succ(dir, w, i) ∈ ‖ϕ‖w
V}

‖¬©dir true‖w

V = {i ∈ N | succ(dir, w, i) = �}
‖μX.ϕ‖w

V =
⋂

{M ⊆ N | ‖ϕ‖w
V[X �→M] ⊆ M}

‖νX.ϕ‖w
V =

⋃

{M ⊆ N | ‖ϕ‖w
V[X �→M] ⊇ M}

where V [X �→ M] maps X to M and behaves like V on the other variables. If ϕ does not
contain free variables (ϕ is a sentence), ‖ϕ‖w

V does not depend on the valuation V , and
we write ‖ϕ‖w. The set of models of a sentence ϕ is L(ϕ) = {w ∈ Σω | 0 ∈ ‖ϕ‖w}.

We can show that parity 2-AJA are exactly as expressive as VP-μTL sentences.

Theorem 6. Given a VP-μTL sentence ϕ, one can construct in linear time a parity
2-AJA Aϕ such that L(Aϕ) = L(ϕ). Vice versa, give a parity 2-AJA A, one can
construct in linear time a VP-μTL sentence ϕA such that L(ϕA) = L(A).

By Theorems 6 and 5, we obtain the following result.

Corollary 1. The satisfiability problem of VP-μTL is EXPTIME-complete. Moreover,
the pushdown model checking problem against VP-μTL is EXPTIME-complete (and
polynomial in the size of the pushdown system).

6 Conclusion

We have investigated various classes of alternating automata over infinite structured
words which capture exactly the class of visibly pushdown languages (VPL) [4]. First,
we have shown that basic decision problems for alternating visibly pushdown automata
(AVPA) are 2EXPTIME-complete. Second, we have introduced a new class of alternating
finite-state automata, namely the class of 2-AJA, and we have shown that basic decision
problems for 2-AJA are EXPTIME-complete. Finally, 2-AJA have been used to obtain

490 L. Bozzelli

exponential-time completeness for satisfiability and pushdown model checking of a
linear-time fixpoint calculus with past modalities, called VP-μTL, which subsumes the
linear-time μ-calculus and the logic CARET [3].

We believe that 2-AJA represent an elegant and interesting formulation of the theory
of VPL on infinite words. In particular, boolean operations are easy and basic decision
problems are equivalent from the complexity point of view and EXPTIME-complete.
Moreover, 2-AJA represent an intuitive extension of standard alternating finite-state au-
tomata on infinite words. Finally, and more importantly, 2-AJA make easy the tem-
poral reasoning about the past, and linear-time context-free temporal logics with past
modalities such as CARET and the fixpoint calculus VP-μTL can be easily and linearly
translated into 2-AJA. Note that we have not considered (one-way or two-way) nonde-
terministic jump automata, since we can show that they capture only a proper subclass
of the class of VPL (we defer further details to the full version of this paper).

References

1. Alur, R., Chaudhuri, S., Madhusudan, P.: A fixpoint calculus for local and global program
flows. In: Proc. 33rd POPL, pp. 153–165. ACM Press, New York (2006)

2. Alur, R., Chaudhuri, S., Madhusudan, P.: Languages of nested trees. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 329–342. Springer, Heidelberg (2006)

3. Alur, R., Etessami, K., Madhusudan, P.: A Temporal Logic of Nested Calls and Returns.
In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 467–481. Springer,
Heidelberg (2004)

4. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. 36th STOC, pp. 202–211.
ACM Press, New York (2004)

5. Alur, R., Madhusudan, P.: Adding nesting structure to words. In: Developments in Language
Theory, pp. 1–13 (2006)

6. Ball, T., Rajamani, S.: Bebop: a symbolic model checker for boolean programs. In: Havelund,
K., Penix, J., Visser, W. (eds.) SPIN Model Checking and Software Verification. LNCS,
vol. 1885, pp. 113–130. Springer, Heidelberg (2000)

7. Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pushdown Automata: Ap-
plication to Model-Checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997.
LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

8. Chatterjee, K., Ma, D., Majumdar, R., Zhao, T., Henzinger, T.A., Palsberg, J.: Stack size
analysis for interrupt-driven programs. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp.
109–126. Springer, Heidelberg (2003)

9. Chen, H., Wagner, D.: Mops: an infrastructure for examining security properties of software.
In: Proc. 9th CCS, pp. 235–244. ACM Press, New York (2002)

10. Esparza, J., Kucera, A., Schwoon, S.: Model checking LTL with regular valuations for push-
down systems. Information and Computation 186(2), 355–376 (2003)

11. Loding, C., Madhusudan, P., Serre, O.: Visibly pushdown games. In: Lodaya, K., Mahajan,
M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 408–420. Springer, Heidelberg (2004)

12. Muller, D.E., Schupp, P.E.: Alternating Automata on Infinite Trees. Theoretical Computer
Science 54, 267–276 (1987)

Alternating Automata and a Temporal Fixpoint Calculus for VPL 491

13. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondeterministic au-
tomata: new results and new proofs of the Theorems of Rabin, McNaughton and Safra. The-
oretical Computer Science 141(1-2), 69–107 (1995)

14. Vardi, M.Y.: A temporal fixpoint calculus. In: Proc. 15th Annual POPL, pp. 250–259. ACM
Press, New York (1988)

15. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G., Skyum, S.,
Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)

16. Walukiewicz, I.: Pushdown processes: Games and Model Checking. In: Alur, R., Henzinger,
T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74. Springer, Heidelberg (1996)

	Alternating Automata and a Temporal Fixpoint Calculus for Visibly Pushdown Languages
	Introduction
	Preliminaries
	Alternating Visibly Pushdown Automata
	Alternating Jump Finite-State Automata
	Relation Between Nondeterministic Visibly Pushdown Automata and AJA
	Decision Problems for Alternating Jump Automata

	Visibly Pushdown Linear-Time -Calculus (VP-TL)
	Conclusion

