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Alternating Copolymerization of Propylene Oxide 

and Cyclohexene Oxide with Tricyclic Anhydrides: 

Access to Partially Renewable Aliphatic Polyesters 

with High Glass Transition Temperatures 

Maria J. Sanford,‡ Leticia Peña Carrodeguas,§ Nathan J. Van Zee,†,‡ Arjan W. Kleij,*,§ and 

Geoffrey W. Coates*,‡ 

‡Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, 

NY 14853-1301, USA 

§Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, 

Spain  

ABSTRACT: Renewable, biodegradable polymers, such as aliphatic polyesters, based on 

sustainable sources have attracted considerable interest as alternatives to petroleum based 

polymers. One limiting factor in the development of aliphatic polyesters as replacements for 

these materials has been their relatively low glass transition temperatures (Tg). For example, 

commercially available poly(lactic acid) has a Tg of approximately 60 °C. Epoxide/anhydride 

copolymerizations offer an alternative to the ring-opening polymerization of lactones for the 

synthesis of aliphatic polyesters, and allow for tuning of polymer properties through two distinct 
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2 

monomer sets. We synthesized six partially or fully renewable tricyclic anhydrides and 

copolymerized them with propylene oxide (PO) and cyclohexene oxide (CHO). By varying both 

the epoxide and the anhydride we were able to tune the Tg of the resulting polymers over a nearly 

120 °C range from 66 °C to an exceptionally high 184 °C. Polymers produced with PO had a 

lower range of Tg values (66–108 °C) and higher molecular weights up to 32.2 kDa, while those 

produced with CHO had higher Tg values (124–184 °C) and lower molecular weights, showing 

the profound influence of both monomer sets. To the best of our knowledge, these are the highest 

Tg values reported for entirely aliphatic polyesters. 

 

As society has become more dependent on plastics, the sustainability of these materials has 

become an increasingly important issue. Polymers that are produced from sustainable feedstocks 

such as biomass and those that are biodegradable have attracted considerable interest as 

alternatives to fossil fuel-based polymers.1 In particular, aliphatic polyesters are appealing 

because of their numerous renewable sources,1b,1d,2 facile hydrolytic degradation to benign 

products,
2b,3

 and general biocompatibility.4 These features have led to aliphatic polyesters being 

utilized in applications ranging from specialized biomedical devices to bulk packaging.4,5  

The most common route to produce aliphatic polyesters is the ring-opening polymerization 

(ROP) of lactones and lactide.6 Numerous initiators have been used for lactone polymerization, 

including organocatalysts, metal alkoxides, and various metal complexes.4 However, the ROP of 

lactones can be limited by detrimental side reactions such as transesterification, especially at 

high conversion. The resulting polymers also have a limited range of properties, because of the 

limited functional diversity of the substrate scope and lack of post-polymerization 
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3 

functionalization on the resulting polyesters.4,6 There has been interest in developing higher Tg 

aliphatic polyesters, since commercially available poly(lactic acid) (PLA) has a relatively low Tg 

(approximately 60 °C). Efforts to improve the Tg of aliphatic polyesters have mainly focused on 

using polysaccharide derived diols,7 and lactide8 or mannitol9 derivatives. However, the resulting 

polymers either show modest improvements over PLA (Tg up to 68 °C),7a,9 or require long 

reaction times at low temperatures (-20 °C) to reach moderate conversion.8 An alternative 

synthetic route to aliphatic polyesters is the alternating copolymerization of epoxides and cyclic 

anhydrides (Scheme 1).6 The use of two monomers allows for more facile tuning of properties, 

and many of the resulting polyesters can be easily functionalized by post-polymerization 

modification.6,10 There is a diverse array of metal complexes reported to catalyze the 

copolymerization, including zinc,11 magnesium,11d,11f,12 chromium,11f,13 cobalt,11f,13b,13d-f,13i,14 

manganese,13b,13i,15 and aluminum13b,13e,13f,13i,16 complexes, including a wide range of salen- and 

porphyrin-type complexes which  generally show markedly improved activity with the addition 

of a nucleophilic co-catalyst such as bis(triphenylphosphine)iminium chloride ([Ph3P–N=PPh3]Cl 

or [PPN]Cl). 

Scheme 1. Alternating copolymerization of epoxides and cyclic anhydrides, and simplified 

proposed reaction mechanism. 
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The Coates group has recently focused on the alternating copolymerization of epoxides and 

tricyclic anhydrides with aluminum salen complexes.16c,16d  Tricyclic anhydrides are appealing 

monomers that are easily synthesized via the Diels-Alder reaction. The wide range of 

commercially available, inexpensive, biosourced dienes and dienophiles offers ample 

opportunities for utilizing renewable feedstocks. Additionally, the rigid nature of the resulting 

polymers yields materials with high glass transition temperatures (Tg). Recently, we reported the 

chain-growth copolymerization of propylene oxide and a terpene based tricyclic anhydride, 

which yielded a completely amorphous aliphatic polyester with a Tg of 109 °C.16c Additionally, 

transesterification and epimerization could be suppressed even at high conversion through 

judicious choice of catalyst, the ratio of catalyst to cocatalyst, and the steric requirements of the 

monomers.16c,16d In addition to screening these (salen)AlCl catalysts for a wider range of 

monomers, we were also interested in exploring a geometrically more flexible17 iron 

aminotriphenolate complex because it has been shown to be active for copolymerization of 

epoxides and CO2,
18 and iron complexes have previously been used in epoxide/anhydride 

copolymerizations. Recently, Merna and coworkers reported the use of (salen)FeCl complexes 

for the copolymerization of cyclohexene oxide and phthalic anhydride,19 and Nozaki reported 

using an iron corrole complex for the alternating copolymerization of propylene oxide and 

glutaric anhydride.15a In general, iron complexes are of interest due to the high natural abundance 

of iron and its low toxicity. Because of the potential uses of aliphatic polyesters in biomedical 

applications, metal catalysts with low toxicity are of interest because of residual catalyst trapped 

in the polymer. Herein, we report an expansion of our previous work to six anhydrides and two 

epoxides to synthesize twelve partially renewable aliphatic polyesters with Tg values that are 

tunable from 66 °C to 184 °C. 
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5 

 

Scheme 2. Synthesis of renewable precursors for tricyclic anhydrides. 

 

 

On the basis of our previous work,16c,16d and the range of renewable dienes and dienophiles 

available, we chose to focus on tricyclic anhydrides due to their well-controlled polymerization 

behavior and typically higher Tg values due to rigidity of the anhydride unit.  We synthesized six 

partially or fully renewable anhydrides based on  α-terpinene, α-phellandrene, citraconic 

anhydride, and 2,5-dimethylfuran. Terpenes such as α-terpinene and α-phellandrene (Scheme 2) 

are part of a class of naturally occurring molecules synthesized through biosynthetic pathways, 

that have been extensively investigated as renewable building blocks.20 Dehydration and 

subsequent hydrogenolysis of carbohydrates leads to 2,5-dimethylfuran (Scheme 2) that has been 

investigated as a potential renewable liquid fuel.21 Citraconic anhydride (Scheme 2) is produced 

from the isomerization and dehydration of itaconic acid.22 This naturally occurring acid, which is 
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6 

commonly produced industrially by fermentation of carbohydrates,23 is one of the U.S. 

Department of Energy’s top twelve value added chemicals derived from biomass.24 

 

Scheme 3. Synthesis of partially renewable tricyclic anhydrides from a) terpenes, b) citraconic 

anhydride, c) 2,5-dimethylfuran, and d) completely renewable tricyclic anhydrides. 
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7 

cyclohexadiene has been synthesized though the metathesis of plant oils.25 The Diels-Alder 

adduct of maleic anhydride and 2,5-dimethylfuran undergoes a rapid retro Diels-Alder reaction 

in the presence of Lewis acidic catalysts, so it was saturated via catalytic hydrogenation to access 

an anhydride stable enough for polymerization. We also synthesized a completely renewable 

anhydride through the Diels-Alder reaction of citraconic anhydride and α-phellandrene. This 

reaction yielded an inseparable mixture of structural isomers in a 54:46 ratio (1f, Scheme 3d). 

This mixture of isomers may aid in achieving the desired rigid, completely amorphous polymer 

backbone. Other Diels-Alder reactions between combinations of renewable dienes and 

dieneophiles that would have yielded completely renewable anhydrides (e.g. citraconic 

anhydride and α-terpinene or 2,5-dimethylfuran) were not successful under routine conditions, 

likely due to steric bulk hindering the reaction.  
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We first polymerized all six anhydrides with propylene oxide (PO). Previous work showed that 

the copolymerization of 1a with PO yielded a polymer with a Tg up to 109 °C,16c leading us to 

believe that we could achieve similarly high Tg values with the other five anhydrides. Excess 

Table 1. Copolymerization of 1a–1f with propylene oxide (PO). 

         

 
 

Entry Anhyd. Complex trxn 

(h) 

Conv. 

(%)b 

Mn 
(kDa)c 

Đ
 c Tg (ºC)d % cis

e 

1 1a 2a 5 >99 29.2 1.10 108 >99 

2 1a 2c 6 >99 15.3 1.13 103 >99 

3 1b 2b 10 >99 30.0 1.12 91 >99 

4 1b 2c 6 >99 17.2 1.10 91 >99 

5 1c 2a 3.5 >99 32.2 1.07 79 >99 

6 1c 2c 6 >99 11.1 1.14 74 >99 

7 1d 2a 4 >99 28.1 1.12 86 >99 

8 1d 2c 8 >99 10.5 1.11 66 >99 

9 1e 2b 18 >99 29.8 1.10 92 >99 

10 1e 2c 5.5 >99 10.4 1.28 86 36 

11 1f 2a 3.5 >99 18.7 1.10 100 >99 

12 1f 2c 7 >99 11.3 1.11 90 >99 

a [PO]:[1]:[2]:[(PPN)Cl] = 1500:300:1:0.9 b Conversion of cyclic anhydride, determined by 1H NMR spectroscopy. c Determined by 

GPC in THF, at 30 °C, calibrated with polystyrene standards. d Determined by DSC; reported Tg values are from the second heat.    
e Determined by 1H NMR spectroscopy of the mixture of diols obtained from the reductive degradation of the polymer with LiAlH4. 
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epoxide was used because it is easier to remove from the polymer than solid anhydride and 

allowed the polymerizations to be run neat, increasing the polymerization rate. Since both 

catalytic systems had previously shown high selectivity for polyester16c,d or polycarbonate18 

formation, we could use  excess epoxide without favoring homopolymerization. 

With PO, the six anhydrides gave perfectly alternating copolymers with Tg values ranging from 

66 to 108 °C (Table 1). The resulting polymers exhibited molecular weights up to 32.2 kDa and 

Đ values below 1.15, with the exception of poly(PO-alt-1e) synthesized with 2c (Table 1, Entry 

10), which had a broader dispersity (Đ = 1.28). Consistent with our previous work,16d we found 

that an electron-withdrawing complex (2b) was necessary for the less bulky anhydrides (1b, 1e) 

in order to avoid side-reactions at high conversion. Bulkier anhydrides (1a, 1c, 1d, 1f) could be 

copolymerized using 2a without significant side reactions; these anhydrides required much 

longer reaction times when using complex 2b. We found that in general 2c gave lower molecular 

weights than either 2a or 2b, and that both systems gave bimodal GPC traces. We propose this 

could be due to the presence of adventitious water which can react with anhydrides to form 

diacids, or chain shuttle with a metal alkoxide ultimately forming a diol, both of which can 

generate new, bifunctional, polymer chains giving rise to a second distribution which is double 

the molecular weight of Cl- initiated chains.26 This increase in the number of chains can depress 

the overall molecular weight. We found that 2c was intermediate in rate being slower than 2a for 

monomers 1a, 1c, 1d, and 1f and faster than 2b for monomers 1b and 1e. All of the polymers 

retained a high cis-diester contents (>99%) even at full conversion with the exception of 

poly(PO-alt-1e) synthesized with 2c, which had only 36% cis-diester linkages at full conversion 

(Table 1, Entry 10).  
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10 

The Tg values ranged from 66 °C for a low molecular weight sample of poly(PO-alt-1d) (Table 

1, Entry 8), to 108 °C for the higher molecular weight sample of poly(PO-alt-1a) (Table 1, Entry 

1). The highest Tg samples were made with the bulkiest anhydrides (1a and 1f) suggesting that 

increased bulk along the polymer backbone increased the Tg as expected. Poly(PO-alt-1a) and 

poly(PO-alt-1f) are of particular interest as they have Tg values higher than or comparable to that 

of widely used polystyrene (Tg = 100 °C), respectively. Although there were some differences in 

Tg between samples synthesized with the Al and Fe complexes, the differences in Tg are 

attributable to disparities in molecular weight. In general, the Al and Fe complexes gave similar 

reactivity, although the Fe complex gave lower molecular weight materials overall. 

One of the advantages of epoxide/anhydride copolymerizations is that polymer properties can 

be tuned not only through the anhydride, but also through the epoxide. Thus, while the polymers 

produced with PO had Tg values up to 35 °C higher than that of PLA, we hoped to further 

increase the Tg by switching to a bulkier, more rigid epoxide. Cyclohexene oxide (CHO) has 

been shown to give high Tg polycarbonates (Tg ~ 122 °C) when alternating copolymerized with 

CO2,
27 which made it a promising choice. A recent report on the copolymerization of a similar 

tricyclic anhydride and CHO found that the resulting polymer had a Tg up to 129 °C.10 

Additionally, while CHO is not currently considered renewable, it could potentially be 

synthesized from renewable sources through metathesis of plant oils to form 1,4-cyclohexadiene 

and subsequent epoxidation and hydrogenation.11f, 25 We screened all six anhydrides with CHO 

(Table 2) and observed a significant increase in Tg compared to the corresponding polymers 

synthesized with PO (Table 1). We found that reducing the amount of CHO from 1500 to 900 eq 

and replacing the volume with toluene led to higher molecular weights and narrower Đ values,28 

with Tg values ranging from 124 to 184 °C. Similar to the PO based polymers, poly(CHO-alt-1a) 
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11 

and poly(CHO-alt-1f) had the highest Tg values (Table 2, Entries 1-2 and 11-12; up to 184 °C 

and 165 °C respectively), which to the best of our knowledge are the highest reported Tg values 

for aliphatic polyesters synthesized through chain-growth polymerization. 
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12 

 The polymerization rates were significantly lower with CHO, likely due to the increased bulk 

of the epoxide, and the Al and Fe complexes in general had much more comparable rates with 

CHO than with PO. Complex 2b was markedly slower than 2a with CHO, and since no 

Table 2. Copolymerization of 1a–1f with cyclohexene oxide (CHO). 

 
 

Entry Anhyd. Complex trxn 

(h) 

Conv. 

(%)b 

Mn 
(kDa)c 

Đ
 c Tg (ºC)d % cis

e 

1f 1a 2a 60 96 8.9 1.27 184 >99 

2 1a 2c 168 68 4.1 1.30 162 >99 

3 1b 2a 24 >99 12.2 1.40 156 >99 

4 1b 2c 20 >99 11.6 1.37 151 >99 

5 1c 2a 15 >99 10.9 1.46 149 >99 

6 1c 2c 20 >99 8.6 1.23 149 >99 

7 1d 2a 10 >99 9.4 1.40 162 >99 

8 1d 2c 23 >99 9.9 1.58 158 >99 

9 1e 2a 48 >99 7.3 1.46 128 >99 

10 1e 2c 20 >99 9.7 1.31 124 >99 

11 1f 2a 25 >99 9.5 1.24 165 >99 

12 1f 2c 15 >99 6.4 1.36 140 >99 

a [CHO]:[1]:[2]:[(PPN)Cl] = 900:300:1:0.9 b Conversion of cyclic anhydride, determined by 1H NMR spectroscopy. c Determined by 

GPC in THF, at 30 °C, calibrated with polystyrene standards. d Determined by DSC; reported Tg values are from the second heat.    
e Determined by 1H NMR spectroscopy of the mixture of diols obtained from the reductive degradation of the polymer with LiAlH4.     
f  Polymerization run at 70 °C. 
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epimerization was observed with 2a (Table 2), likely due to increased steric hindrance, 2a was 

used for all monomer sets.  With 1a, we were unable to reach high conversion using complex 2a 

at 60 °C, even at extended reaction times. We subsequently increased the reaction temperature to 

70 °C and were able to achieve 96% conversion (Table 2, Entry 1). 

A limitation of the CHO based polymers is their relatively low molecular weights; poly(CHO-

alt-1b) synthesized with complex 2a had the highest molecular weight at a modest 12.2 kDa 

(Table 2, Entry 3). Analysis by MALDI-TOF-MS for all samples in Table 2 revealed the 

complete absence of cyclic structures (Figure S26 and S27). In fact, all samples had the expected 

α,ω-Cl,OH end groups and did not contain any end groups consistent with transesterification 

such as cyclic structures or α,ω-Cl,Cl end groups.29 To our surprise, there was an additional set 

of signals in the spectra corresponding to polymers without the expected chloride end group. We 

propose that this could be due to a Meerwein–Ponndorf–Verley–Oppenauer (MPVO) type 

reaction occurring and generating CHO based alcohols that can initiate new polymer chains, as 

previously reported by Duchateau.13i,30 The resulting increase in the number of initiators would 

account for the lowered molecular weights compared to the PO based polymers. Additionally, if 

alcohol was being slowly generated throughout the polymerization, new chains would be 

generated over the course of the polymerization leading to generally higher Đ values for the 

CHO polymers (Table 2, Đ = 1.20–1.58).31 

In conclusion, we have synthesized six tricyclic anhydrides that were either partially (50–63% 

by weight) or fully renewably sourced and successfully used them in alternating 

copolymerizations with propylene oxide, an inexpensive, readily available monomer, and with 

cyclohexene oxide, which has the potential to be renewably sourced. By varying both the 

epoxide and the anhydride, we were able to tune the Tg of the resulting polymers over a nearly 
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120 °C range from 66 °C to an exceptionally high 184 °C. Polymers synthesized with PO had 

higher polymerization rates, narrower Đ values, and higher molecular weights, albeit with 

generally lower Tg values (66–108 °C). CHO containing polymers had significantly higher Tg 

values, (124–184 °C) although they had lower molecular weights, broader Đ values, and 

substantially decreased polymerization rates. To the best of our knowledge, these are the highest 

Tg values reported for entirely aliphatic polyesters. The high Tg values of these materials give 

them potential for use in a variety of higher temperature applications. In addition to exploring 

other potential renewable monomers, we are currently investigating further catalyst development 

to allow access to higher molecular weight CHO based polymers, as well as examining the 

physical and mechanical properties of these materials.  
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Đ values is elimination of Cl- from α,ω-Cl,OH terminated polymers. However, as further 

discussed in the SI, while we have not been able to definitively rule out the possibility of 

elimination, we believe that the MPVO reaction is more likely.  
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