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%e joint feature selection problem can be resolved by solving a matrix l2,1-norm minimization problem. For l2,1-norm reg-
ularization, one of the most fascinating features is that some similar sparsity structures can be employed by multiple predictors.
However, the nonsmooth nature of the problem brings great challenges to the problem. In this paper, an alternating direction
multiplier method combined with the spectral gradient method is proposed for solving the matrix l2,1-norm optimization problem
involved with multitask feature learning. Numerical experiments show the effectiveness of the proposed algorithm.

1. Introduction

Because of its widespread application in high-dimensional
sparse learning, the feature selection problem has been
concerned widely by the machine learning community in
multitask feature learning and become a hot research field in
recent years. %e purpose of multitask feature learning is to
learn the shared information between related tasks, so as to
promote the learning effect. Learning multiple related tasks
simultaneously is much more efficient compared to single-
task learning particularly [1, 2]. For feature selection tasks in
multitask learning, using mixed l2,1-norm can produce joint
sparsity in the feature layer and task layer. In particular,
l2,1-norm is sometimes more advantageous because it often
leads to more sparse solutions. In multitask learning by
Obosinski et al. [3] and Argyriou et al. [4], the regularization
of l2,1-norm is introduced for the first time. In recent years, a
lot of research studies have been carried out on it. Multiple
predictors are encouraged to share similar parameter sparse
patterns from different tasks [3–5], which is a very attractive
feature of the l2,1-norm regularized problem. When the
objective function is convex, the l2,1-norm regularized
problem is convex and has a global optimal solution.
However, the optimization problem is difficult to solve
because of the nonsmoothness of l2,1-norm regularization.
%e method in Liu et al. [6] transforms the minimization

problem of l2,1-norm into two equivalent convex smooth
optimization problems and then minimizes them by Nes-
terov’s accelerated gradient method [7]. For the l2,1-norm
regularized problem, a proximal alternating direction
method was presented recently by Xiao et al. [8]. Hu et al. [9]
proposed inexact accelerated proximal gradient algorithms
to solve the l2,1-norm regularization.

%e training set of k tasks is given by

(aji , b
j
i ){ }mj

i�1(j � 1, 2, . . . , t), where for the j
th task, a

j
i ∈ Rn

denotes the ith sample, mj denotes the number of training

samples, b
j
i denotes the corresponding response, and the

total number of training samples ism � ∑tj�1mj. %e matrix

Aj � [a
j
1, . . . , a

j
mj
]T ∈ Rmj×n is the data for the jth task, and

bj � [b
j
1, . . . , b

j
mj
]T ∈ Rmj ,X

:,j ∈ Rn is the sparse feature for

the jth task. A � [A1, . . . , At] ∈ Rm×n, b � [b1, . . . , bt]T ∈
R
m, and X � [X

:,1, . . . , X:,t] ∈ Rn×t are the joint learning
features for the task in multitask learning. It is encouraged to
set elements of several rows inX to be zero to select features
globally. According to Argyriou et al. [4], the problem of
l2,1-norm minimization can be described as

min
X∈Rn×t

1

2
∑t
j�1

AjX:,j − bj
 22 + μ‖X‖2,1, (1)
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in which matrix ‖X‖2,1 is defined as

‖X‖2,1 �∑n
i�1

������
∑t
j�1
X2
i,j

√√
�∑n
i�1

Xi,:

 2, (2)

where Xi,: denotes the i
th row element of matrix X and X

:,j

denotes the jth column element of matrix X. %e first term
measures the loss caused by matrix X which is based on the
training data samples of A and b, and the second term is the
regularization term in (1), where μ> 0 is the regularization
parameter which can be used to keep a balance between the
two terms to minimize.

As described in [10], the alternate direction multiplier
method (ADMM) is a natural method in the field of large-
scale data distribution machine learning and big data-related
optimization because it can process the objective function
separately and synchronously, and it has aroused widespread
attention in the past few years. ADMM method is widely
used in a lot of fields, such as image restoration [11], ma-
chine learning [12], and compressed sensing [13]. %is
widespread application has sparked a strong interest in
further understanding the theoretical nature of the ADMM
(see [14–17]).

Barzilai and Borwein in [18] first proposed the spectral
gradient method to solve the strict convex quadratic min-
imization problems. Due to efficiency and computational
cheapness, BB method has caused wide attention in the area
of optimization. Raydan [19] developed this method to solve
general unconstrained optimization problems. Recently, the
BB method has been successfully extended for solving the
nonsmooth convex optimization problem [20].

In this paper, an ADMM with the spectral gradient
method is proposed to solve the l2,1-norm regularization
problem in the area of multitask learning. We first add a new
auxiliary variable to the augmented Lagrangian form of (1),
then iteratively minimize the augmented Lagrangian func-
tion in which an exact method is used to solve one sub-
problem, and the spectral gradient method is employed to
solve the other subproblems. Experimental results show that
the proposed ADMM-BB method is competitive, fast, and
efficient.

%e rest of the paper is arranged as follows. Section 2
introduces the ADMM method for solving (1). Section 3
explains how to find the solution to the subproblems gen-
erated by each iteration and gives a practical ADMM using
the spectral gradient algorithm. Section 4 gives the nu-
merical results of the simulation data set and the real data set
and compares them with other methods. Finally, Section 5
summarizes and concludes this article.

2. ADMM for l2,1-Norm Minimization

%e l2,1-norm matrix minimization problem has the fol-
lowing standard form:

min
X∈Rn×t

1

2
‖A(X) − b‖22 + μ‖X‖2,1, (3)

where A : R
n×t⟶ R

m is a mapping defined based on
matrix vector multiplication for each learning task, i.e.,
A(X) � [A1X:,1, . . . , AtX:,t] ∈ Rm. By introducing auxil-
iary variable Y, problem (3) is equivalently transformed into
a linearly constrained convex programming problem:

min
X∈Rn×t

1

2
‖A(Y) − b‖22 + μ‖X‖2,1

s.t. X − Y � 0.

(4)

%e augmented Lagrangian function of problem (4) is
defined as

Lc(X,Y, Z) �
1

2
‖A(Y) − b‖22 + μ‖X‖2,1

− 〈Z, X − Y〉 + c
2
‖X − Y‖2,

(5)

where c> 0 is the penalty parameter, 〈·〉means the standard
trace inner product, 〈X, Y〉:� Tr(XTY) forX andY inRn×t,
symbol “Tr” represents the trace, i.e., the sum of the diagonal
elements of a squared matrix which is also equal to the sum
of the eigenvalues. For any matrixX ∈ Rn×t, ‖·‖ is defined as
the Frobenius norm:

‖X‖ �‖X‖Fr �

��������
∑n
i�1
∑t
j�1
x2i,j

√√
, (6)

where xi,j is the (i, j)th element of matrix X so that

‖X‖ �
������
〈X,X〉

√
. For solving (5), the iterative scheme of the

alternating direction method of multipliers is

Xk+1 � arg min
X∈Rn×t

μ‖X‖2,1 − 〈Zk,X〉+
c

2
X − Yk
 2{ }, (7)

Yk+1 � arg min
Y∈Rn×t

‖A(Y) − b‖22 +〈Z
k,Y〉+ c

2
Xk+1 − Y
 2{ },

(8)

Zk+1 �Zk − c Xk+1 − Yk+1( ), (9)

where Zk ∈ Rn×t is the Lagrange multiplier.
%e alternating direction multiplier method for solving

problem (4) can be expressed as follows.

Algorithm 1. ADMM for l2,1-norm minimization problem.

Step 1: find Xk+1 via

0 ∈ z μ Xk+1
 2,1( ) − Zk − c Xk+1 − Yk( )[ ], (10)

where z(·) represents the subgradient operator of the
convex function ‖·‖2,1.
Step 2: solve Yk+1 via
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〈Y − Yk+1,A∗ A Yk+1( ) − b( )+Zk − c Xk+1 − Yk+1( )〉≥0,
∀Y ∈Rn×t.

(11)

Step 3: compute the multiplier Zk+1 by (9).

%e following result shows that the optimal solution set
of l2,1-norm matrix minimization problem (3) is bounded
(see [9]).

Lemma 1. For each μ> 0, the optimal solution setX∗ of (3) is
bounded, and for any X∗ ∈ X, we have

‖X‖≤ χ. (12)

χ �
min

‖b‖22
(2μ), A

∗
AA
∗( )− 1b 2,1{ }, A is surjective,

‖b‖22
(2μ), otherwise.


(13)

%e global convergence property of Algorithm 1 holds
directly based on the results developed by Bertsekas and
Tsitsiklis [21], Chapter 3, p. 256 for general convex pro-
gramming problems.

Theorem 1. Let (Xk, Yk, Zk){ } be the sequence generated by
Algorithm 1 with limk⟶∞c

k � c∞ ≤∞. (en, (Xk, Yk, Zk){ }
is bounded, and every limit of (Xk, Yk){ } is an optimal so-
lution of equivalent problem (4).

3. ADMM-BB Method for
l2,1-Norm Minimization

Section 2 gives the theoretical alternating direction multi-
plier method of the l2,1-norm minimization problem.
However, a key issue has not yet been resolved: how to solve
subproblems (7) and (8) efficiently? %is problem is fun-
damentally important because if it is difficult to solve each
subproblem, this method will not be useful anyway. In this
paper, an exact method is used to solve (7), and the spectral
gradient method is employed to solve (8).

Given c> 0 and (Yk, Zk) ∈ (Rn×t,Rn×t), we have

Xk+1 � arg min
X∈Rn×t

Lc X,Y
k, Zk( )

� arg min
X∈Rn×t

μ‖X‖2,1 − 〈Zk, X − Yk〉

+ c
2
X − Yk
 2

� arg min
X∈Rn×t

μ‖X‖2,1

+ c
2
X − Yk + 1

c
Zk( )

2.

(14)

LetN � Yk + 1/cZk. Equation (14) has the solution of the
form

Xk+1 � arg min
X1,: ,...,Xn,:

∑n
i�1

μ Xi,:

 2,1 + c2 Xi,: − Ni,:

 2( ), (15)

which indicates that involved problem (15) can be broken
down into n independent t-dimensional subproblems:

min
Xi,:∈Rt

μ Xi,:

 2,1 + c2 Xi,: − Ni,:

 2, i � 1, 2, . . . , n. (16)

Clearly, the optimal solution X ∗i,: can be obtained in the
directionNi,:, and it has the form of the formula X∗i,: � aNi,:

in which a≥ 0 is a parameter. Based on developing a La-
grangian dual form, subproblem (16) has a closed-form
solution (see, e.g., [22, 23]) which can be explicitly expressed
as

X∗i,: � 1 − μ

c Ni,:

 2( )
+
Ni,:, i � 1, . . . , n, (17)

where (·)+ � max(·, 0). %erefore, the closed-form solution
of (10) is given as follows:

Xk+1 �

1 − μ

c Yk + 1/cZk( )
1,:

 2
  + Yk + 1

c
Zk( )

1,:

1 − μ

c Yk + 1/cZk( )
2,:

 2
  + Yk + 1

c
Zk( )

2,:

· · ·

1 − μ

c Yk + 1/cZk( )
n,:

 2
  + Yk + 1

c
Zk( )

n,:





.

(18)
Next, we analyze another subproblem (8). For fixed c> 0,

let

θ(Y) ≔Lc X
k+1, Y, Zk( ). (19)

Now, we investigate how to use the spectral gradient
method to solve the corresponding problem:

min
Y∈Rn×t

θ(Y). (20)

%e function θ(Y) is convex and everywhere differen-
tiable with

∇θ(Y) � A
∗(A(Y) − b) + Zk − c Xk+1 − Y( ). (21)

In order to distinguish the superscript in Algorithm 1,
we apply the subscripts in the iteration of this subproblem.
Spectral gradient method is defined by

Yj+1 � Yj − αj∇θ Yj( ), (22)

where αj is given by
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αj �
sTj− 1uj− 1

uTj− 1uj− 1
, (23)

where sj− 1 � Yj − Yj− 1 and uj− 1 � ∇θ(Yj) − ∇θ(Yj− 1).
Now, the spectral gradient method for (20) can be de-

scribed as given in Algorithm 2.

Algorithm 2. %e spectral gradient method.

Step 0: given Y0 � Yk, ϵ ∈ (0, 1), α0 � 1, and j: � 0.
Step 1: termination criterion: stop if Yj satisfies ter-
mination condition ‖∇θ(Yj)‖< ϵ. Otherwise, go to the
next step.

Step 2: compute αj by (23) if j> 0. Let
Yj+1 � Yj − αj∇θ(Yj).
Step 3: let j: � j + 1 and go to Step 1.
Finally, by adopting a relaxation factor c, the multiplier

update formula in Algorithm 1 is replaced by

Zk+1 � Zk − cc Xk+1 − Yk+1( ), 0< c<
�
5

√
+ 1
2

. (24)

Glowinski in [24] first suggested the instruction of c, and
it has shown better performance in numerical experiments
[25].

Now, a practical ready-to-implement version of the
ADMM (7)–(9) can be described as follows.

Algorithm 3. ADMM-BB for the l2,1-norm minimization
problem.

Step 0: let c0 and κ> 1 be given. Let Y0 be arbitrary. Let
Z0 be the initial estimated Lagrange multipliers. Let
k: � 0.
Step 1: when the stopping criterion holds, then stop;
otherwise, continue.

Step 2: compute Xk+1 by (18).

Step 3: compute Yk+1 by solving the following problem
with the spectral gradient method:

min
Y∈Rm×n

θ(Y). (25)

Step 4: compute Zk+1 by (24).

Step 5: let k ≔ k + 1 and go to Step 1.
Based on the conclusions of Bertsekas and Tsitsiklis

([21], Chapter 3, Proposition 4.2) and Glowinski ([24],
Chapter VI, %eorem 5.1), for Algorithm 3, the following
convergence conclusion holds.

Theorem 2. Suppose that Lc has a saddle point X,Y, Z{ }.
Let (Xk, Yk, Zk) be the sequence generated by Algorithm 3
with c> 0 and c ∈ (0,

�
5

√
+ 1/2). (en,

lim
k⟶∞

Xk, Yk( ) �(X,Y),
lim
k⟶∞

Zk+1 − Zk( ) � 0,
Zk is bounded.

(26)

Moreover, if Z∗ is a weak cluster point of Zk{ }, then
X,Y, Z∗{ } is a saddle point of Lc.

4. Experiments

In this section, we will give the numerical experimental
results of ADMM-BB to solve matrix l2,1-norm minimiza-
tion problem (3). %e experiments are carried out by
MATLAB R2018b running on a computer with 2.8GHz Intel
Pentium CPU and 8GB of low voltage memory.

Based on simulated data and real data, we conducted two
types of numerical experiments to study the performance of
the ADMM-BB method. In the test, we compared the
ADMM-BB method with the IADM-MFL method [8] be-
cause the IADM-MFL method is well known and gives a
feasible way to find a solution to the joint feature selection
problem in the area of multitask learning. For each test
function, starting with the origin point, when the distance
between adjacent iteration points is less than a given con-
stant tol, the algorithm stops, i.e.,

RelChg �
Xk − Xk− 1
 F

Xk− 1
 F ≤ tol. (27)

We choose c � 0.01/mean(|b|) in the following series of
experiments.

Example 1. As [4], the simulation data sets are created by
using a 5-dimensional zero-meanGaussian distribution with
a covariance matrix that equals to diag {1, 0.64, 0.49, 0.36,
0.25}, which can be denoted by X

:,j. For all X:,j, expand it to
20 irrelevant dimensions by adding zero elements. %e
training data Aj are a random Gaussian matrix generated by
Matlab command randn(mj, n). Using Aj and X:,j, get the
outputs bj as

bj � AjX:,j + ω, (28)

where Gaussian noise ω is described by a mean of 0 and a
standard deviation of 1.e − 2. In each performed method,X∗
denotes the optimal solution of matrix l2,1-norm minimi-
zation problem (3). To measure the quality of X∗ to original
X, we set the relative error as follows:

RelErr �
X∗ − X
 F
‖X‖F

. (29)

We will analyze the performance of both methods with
different number of dimensions and tasks because they will
certainly affect the performance of each algorithm as an
important factor.%e numerical results are shown in Table 1,
which contains the CPU time required in seconds (TIME),
the total number of iterations (ITER), the total number of
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Table 1: Numerical results for the random problem.

b, X ADMM-BB IADM-MFL

(m, n, t) ITER TIME RelErr ITER TIME RelErr

(10000, 10, 100) 14 0.0506 2.87e − 03 32 0.1719 3.36e − 03
(20000, 10, 200) 15 0.2188 2.65e − 03 31 0.2813 2.97e − 03
(30000, 10, 300) 15 0.2344 2.98e − 03 31 0.2969 3.25e − 03
(10000, 15, 100) 18 0.0625 3.75e − 03 42 0.2500 3.49e − 03
(20000, 15, 200) 18 0.2969 3.55e − 03 41 0.3906 3.24e − 03
(30000, 15, 300) 19 0.3906 3.66e − 03 44 0.4219 3.47e − 03
(10000, 20, 100) 22 0.1406 4.78e − 03 51 0.4375 4.55e − 03
(20000, 20, 200) 22 0.3906 4.92e − 03 52 0.5613 4.27e − 03
(30000, 20, 300) 22 0.5938 5.43e − 03 54 1.3906 4.35e − 03
(10000, 25, 100) 27 0.2500 6.49e − 03 66 0.5938 4.94e − 03
(20000, 25, 200) 26 0.2969 6.40e − 03 64 0.7656 4.94e − 03
(30000, 25, 300) 26 0.7344 6.81e − 03 65 1.5156 5.11e − 03
(10000, 30, 100) 32 0.3594 9.04e − 03 80 0.7188 7.03e − 03
(20000, 30, 200) 31 0.6250 9.23e − 03 81 0.8750 6.27e − 03
(30000, 30, 300) 31 0.9688 8.47e − 03 81 1.7344 5.54e − 03
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Figure 1: Convergence performance of ADMM-BB and IADM-MFL.

Mathematical Problems in Engineering 5



tasks (t), the dimension of the test data (n), and the di-
mension of the outputs (m).

From the results in Table 1, it can be seen that although
both methods have successfully terminated, the number of
iterations and CPU time of the ADMM-BB method are
much less than IADM-MFL.

%en, the parameters involved in the methods are
specified as tol � 1e − 3, t � 300, n � 20, μ � 1e − 2, and
mj � 100(j � 1, 2, . . . , t). For each solving algorithm, we
evaluate the objective function values and test error rate, and
the convergence behavior of these algorithms is shown in
Figure 1. To visually compare the convergence speed of the
algorithms, the four subgraphs in Figure 1 show the change
of the function value and relative error with the number of
iterations and CPU time for both ADMM-BB and IADM-
MFL algorithms. We present the relative error and the
objective function values plotted against the number of it-
erations in the first row in Figure 1 and present the relative
error and the objective function values plotted against the
computational time in the second row. Figure 1 shows that
although both ADMM-BB and IADM-MFL algorithms
generate decreasing sequences and converge to the same
function value as well as relative error, the performance of
ADMM-BB is better than IADM-MFL in terms of iteration
numbers and CPU time.

Example 2. In this test, we demonstrate the performance of
the proposed algorithms on a real data set. dmoz is a text
categorization data set, in which every 10 tasks correspond
to subcategories of the arts category. %e dmoz data set can
be downloaded from http://www.dmoz.org/. In order to
learn the joint feature between tasks, we randomly select data
from each task for training and sample 20%, 30%, 40%, 50%,
60% and 70%, respectively, of the dmoz data set and then test
the two methods at the same time. Except for μ � 1e − 4, the
other parameters are the same as in the proceeding example
for both ADMM-BB and IADM-MFL methods. %e cor-
responding numerical results are summarized in Table 2.

From Table 2, we can see that ADMM-BB is an effective
method and works better on these problems.

5. Conclusion

%e convergence theory for the alternating direction mul-
tiplier method for the convex optimization problem has
been well established by Bertsekas and Tsitsiklis [21] and

Glowinski [24]. %e main purpose of this paper is to
demonstrate that this method is robust for the matrix
l2,1-norm regularized minimization problem. %e key ele-
ment is the practical efficiency of the alternating direction
multiplier method by using the spectral gradient method in
this paper. %e corresponding numerical results verify the
encouraging efficiency of the proposed method in solving
the joint feature selection problem.

Data Availability

%e data used to support the findings of this study are
available in tables in this paper and can also be obtained
from the corresponding author upon request.

Conflicts of Interest

%e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

%is work was supported by the Scientific Research Project
of Tianjin Education Commission (no. 2019KJ232).

References

[1] R. K. Ando and T.  hang, “A framework for learning pre-
dictive structures from multiple tasks and unlabeled data,”
Journal of Machine Learning Research, vol. 6, pp. 1817–1853,
2005.

[2] T. Evgeniou, C. A. Micchelli, and M. Pontil, “Learning
multiple tasks with kernel methods,” Journal of Machine
Learning Research, vol. 6, pp. 615–637, 2005.

[3] G. Obozinski, B. Taskar, andM. I. Jordan, “Multi-Task Feature
Selection,” Technical Report, University of California, Ber-
keley, CA, USA, 2006.

[4] A. Argyriou, T. Evgeniou, and M. Pontil, “Convex multi-task
feature learning,” Machine Learning, vol. 73, no. 3,
pp. 243–272, 2008.

[5] F. Nie, H. Huang, X. Cai, and C. Ding, “Efficient and robust
feature selection via joint l2,1-norms minimization,” in Pro-
ceedings of the Neural Information Processing Systems
Foundation, Vancouver, Canada, December 2010.

[6] J. Liu, S. Ji, and J. Ye, “Multi-task feature learning Via efficient
l2,1-norm minimization,” in Proceedings of the UAI 2009
Conference, Montreal, Canada, 2009.

[7] Y. Nesterov, Gradient Methods for Minimizing Composite
Objective Function, Center for Operations Research and
Econometrics (CORE), Louvain-la-Neuve, Belgium, 2007.

Table 2: Numerical results for the real problem.

Demo
b, X ADMM-BB IADM-MFL

(m, n, t) ITER TIME RelChg ITER TIME RelChg

20% (80, 500, 10) 178 1.34 9.95e − 04 365 2.47 9.97e − 04
30% (120, 500, 10) 282 2.23 9.98e − 04 412 2.54 9.93e − 04
40% (160, 500, 10) 266 2.33 9.96e − 04 415 2.73 9.92e − 04
50% (200, 500 10) 300 2.75 9.95e − 04 404 2.80 9.73e − 04
60% (240, 500, 10) 306 2.86 9.99e − 04 427 3.13 9.95e − 04
70% (280, 500, 10) 349 3.30 9.99e − 04 460 3.47 9.97e − 04

6 Mathematical Problems in Engineering

http://www.dmoz.org/


[8] Y. Xiao, S. Wu, S.-Y. Wu, and B.-S. He, “A proximal alternating
directionmethod for $\ell_{2, 1} $-norm least squares problem in
multi-task feature learning,” Journal of Industrial & Management
Optimization, vol. 8, no. 4, pp. 1057–1069, 2012.

[9] Y. Hu,  . Wei, and G. Yuan, “Inexact accelerated proximal
gradient algorithms for matrix l2,1-norm minimization
problem in multi-task feature learning,” Statistics, Optimi-
zation and Information Computing, vol. 2, no. 4, pp. 352–367,
2014.

[10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the al-
ternating direction method of multipliers,” Foundations and
Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[11] T. Goldstein and S. Osher, “%e split bregman method for L1-
regularized problems,” SIAM Journal on Imaging Sciences,
vol. 2, no. 2, pp. 323–343, 2009.

[12] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based
distributed support vector machines,” Journal of Machine
Learning Research, vol. 99, pp. 1663–1707, 2010.

[13] J. Yang and Y.  hang, “Alternating direction algorithms for
$\ell_1$-Problems in compressive sensing,” SIAM Journal on
Scientific Computing, vol. 33, no. 1, pp. 250–278, 2011.

[14] G. Banjac, P. Goulart, B. Stellato, and S. Boyd, “Infeasibility
detection in the alternating direction method of multipliers
for convex optimization,” Journal of Optimization (eory and
Applications, vol. 183, no. 2, pp. 490–519, 2019.

[15] D. Boley, “Local linear convergence of the alternating di-
rection method of multipliers on quadratic or linear pro-
grams,” SIAM Journal on Optimization, vol. 23, no. 4,
pp. 2183–2207, 2013.

[16] W. Deng and W. Yin, “On the global and linear convergence
of the generalized alternating direction method of multi-
pliers,” Journal of Scientific Computing, vol. 66, no. 3,
pp. 889–916, 2016.

[17] J. Jian, Y.  hang, and M. Chao, “A regularized alternating
direction method of multipliers for a class of nonconvex
problems,” Journal of Inequalities and Applications, vol. 193,
2019.

[18] J. Barzilai and J. M. Borwein, “Two-point step size gradient
methods,” IMA Journal of Numerical Analysis, vol. 8, no. 1,
pp. 141–148, 1988.

[19] M. Raydan, “%e barzilai and borwein gradient method for the
large scale unconstrained minimization problem,” SIAM
Journal on Optimization, vol. 7, no. 1, pp. 26–33, 1997.

[20] G. Yuan and  . Wei, “%e barzilai and borwein gradient
method with nonmonotone line search for nonsmooth
convex optimization problems,” Mathematical Modelling and
Analysis, vol. 17, no. 2, pp. 203–216, 2012.

[21] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed
Computation: Numerical Methods, Prentice-Hall, Englewood
Cliffs, NJ, USA, 1989.

[22] J. Duchi and Y. Singer, “Efficient online and batch learning
using forward backward splitting,” Journal of Machine
Learning Research, vol. 10, pp. 2899–2934, 2009.

[23] M. Kowalski, “Sparse regression using mixed norms,” Applied
and Computational Harmonic Analysis, vol. 27, no. 3,
pp. 303–324, 2009.

[24] R. Glowinski, Numerical Methods for Nonlinear Variational
Problems, pp. 168–179, Springer, New York City, NY, USA,
1984.

[25] B. He, S. L. Wang, and H. Yang, “A modified variable-penalty
alternating directions method for monotone variational in-
equalities,” Journal of Computational Mathematics, vol. 21,
no. 4, pp. 495–504, 2003.

Mathematical Problems in Engineering 7


