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Alternating Locking Ratios in Imperfect Phase Synchronization
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In periodically driven chaotic dynamical systems with a broad distribution of intrinsic time scales,
perfect phase synchronization cannot be reached. Long segments of evolution during which the phase
of a chaotic variable follows the phase of the driving force are interrupted by short segments of phase
drift. We demonstrate that this drift is another short-lived synchronized state; its onset is caused by the
passage near the long unstable periodic orbits whose frequencies are locked by external force in ratios
different from 1:1. [S0031-9007(99)09190-5]

PACS numbers: 05.45.Xt

Synchronized processes are widespread in nature and
in technical applications [1]; in recent years it has been
understood that coupling can synchronize not only peri-
odic, but also chaotic systems. Depending on the type
and strength of the coupling, several stages of chaotic syn-
chronization can be distinguished. The strongest one is
the complete synchronization when the states of coupled
systems converge, irrespective of the mismatch in initial
conditions [2]. In a wider context, the state of the driven
system is a function of the state of the driving one (“gen-
eralized synchronization” [3]).

Among the forms of chaotic synchronization, phase
synchronization is at the closest to the literal meaning
of the word: syn 1 chrónos (sharing the) common
time. This relatively weak form does not assume that the
amplitudes of motions in the interacting subsystems get
locked; intrinsic time scales of subsystems, however, be-
come commensurate [4]. In case of a periodically forced
chaotic system, phase synchronization adjusts character-
istic times of the chaotic motion to the force period; in
previously studied examples it was observed as a perma-
nent locking between the force phase and the suitably de-
fined phase of the chaotic motion [5,6]. To enable such
dynamics, the range of intrinsic time scales should be nar-
row. However, in a natural system these time scales can
differ strongly; this impedes maintainment of the constant
phase locking. Recently, studies on a human cardiorespi-
ratory system provided an example in which locking ra-
tios changed in the course of time [7]. In this Letter, we
describe the mechanism which enables the phase of the
driven system to switch back and forth between different
locking ratios. Analysis by means of unstable periodic
orbits shows that the seeming phase jumps are in fact seg-
ments of different kinds of synchronized motion, whose
alternation is caused by the overlap of Arnold tongues
with different winding numbers.

Since in phase space the attracting sets of dissipative
dynamical systems are bounded, a typical trajectory re-
peatedly returns to any selected region of the attractor.
It is often helpful to replace a continuous flow by the
Poincaré map which the flow induces on an appropri-
ate surface of section; dynamics of this map is com-

plemented by the dependence of return time on the
coordinates along the Poincaré surface. We denote the
part of the orbit between two returns onto the surface as
“orbit turn” and introduce the mean frequency of returns
as v ; 2p limT!` NsT dyT , where NsT d is the number
of returns within the time T . The next step leads to phase
F: each new orbit turn should add 2p to F. For the
long-time effects, details of the phase evolution within a
single turn are of little importance, and interpolation is
often sufficient. A finer definition would relate the in-
stantaneous phase to the Hilbert transform of the chaotic
variable [4,8], with instantaneous frequency being the
time derivative of this phase; as recently checked [5], in
situations typical for chaotic synchronization, application
of both definitions leads to practically the same results.

In many cases the variation of return times along the
Poincaré surface is modest; examples are provided by
attractors originating from the period-doubling scenario,
like the Rössler attractor. Here, a relatively weak forc-
ing with period close to the mean return time of the au-
tonomous system suppresses the variations and imposes
perfect phase synchronization so that the phase of the
chaotic motion follows the phase of the force [9,10].

One can expect a different picture in systems with large
variations of return times; these are inevitable, e.g., when
an attractor of an autonomous system includes a saddle
point. The latter situation is known from problems of
optics (Raman scattering, lasers with saturable absorbers,
optothermal devices [11]), thermal convection in certain
configurations [12,13], or reductions of weakly dissipative
1- and 2-dimensional complex Ginzburg-Landau equa-
tions [14]. Our example is the archetype of deterministic
chaos: the Lorenz equations [15]

Ùx  ss y 2 xd, Ùy  rx 2 y 2 xz ,

Ùz  xy 2 bz 1 E cossVtd

perturbed by a periodic external force with amplitude E

and frequency V; here, s  10, r  28, and b  8y3

are the original parameter values from [15].
Without forcing (E  0) a typical trajectory wanders

along two symmetric lobes of the attractor: large loops
around two saddle-focus points alternate in an irregular
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pattern. Chaotic orbits come arbitrarily close to the local
stable manifold of a saddle point at the origin, and the
return times on a Poincaré plane can be arbitrarily high.

An indication of phase synchronization would be the
vanishing difference between the mean frequency v and
the frequency of the driving force V within the range
of the values of V [4]. Indeed, a certain plateau in
the plot of v 2 V vs V appears (Fig. 1; here, E  6);
however, this plateau is neither horizontal nor lies at
zero. (For comparison we show the perfectly horizontal
plateau centered around V  24.92, calculated for r 

210, E  3. At high values of r the attractor of the
autonomous Lorenz equations does not include a saddle
point [16], return times are confined within a narrow gap,
and dynamics can be easily synchronized already by weak
forcing [17]).

Similar approximate plateaus are observed for the other
values of the amplitude E . 2.4. According to numerical
data, here in the chaotic orbit long segments, in which
its phase follows the phase of the force, alternate with
short intervals where the two phases go apart. Typical
evolution of difference between the phases of the system
and the force is presented in Fig. 2. The “staircase” built
of long “stairs” connected by abrupt “jumps,” summarizes
12 300 orbit turns. Each stair corresponds to a phase-
synchronized state; departures from horizontal lines caused
by crudeness in determination of phase annihilate in the net
effect. Transitions between the stairs look like occasional
phase slips. At the start the system and the force share
the same phase value; within the first stair they remain
roughly in-phase; within the second stair the force has a
phase lag of 2p , or, in other words, of one period; within
the third stair the time lag makes two periods of the force,
and so on. In the course of time, not only 2p jumps but
also the rarer 4p jumps are observed. Each transition
is preceded by a sharp decline downwards; this means
that just before it the phase trajectory rotates slowly. In
the rough assumption that a transition happens within a
single turn, ´ ; jv 2 VjyV yields a ratio of the number
of nonsynchronized turns Nn to that of the synchronized
turns Ns: ´ > NnyNs. Smallness of ´ inside the plateau
confirms the prevalence of synchronized segments within
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FIG. 1. Perfect and imperfect phase synchronization; solid
line: r  28, E  6; dotted line: r  210, E  3.

a chaotic orbit and allows us to view the corresponding
states as “nearly” or “imperfectly” phase synchronized.

We explain the mechanism of this imperfection with
the help of unstable periodic orbits. Embedded into
chaotic sets as a kind of “skeleton,” these orbits allow
one to resolve fine details of dynamics [18,19], not only
in explicitly given maps and flows, but also in noisy
experimental data [20] and spatiotemporal patterns [21].

Also the distribution of return times can be character-
ized in these terms. For the orbit which has the period t

and closes after n returns onto the Poincaré plane (we call
n the “orbit length,” as in [9]), its individual frequency is
defined as vi  2pnyt.

In the presence of weak forcing, each periodic state can
be viewed as an individual periodically forced oscillator:
trajectories wind on the invariant 2-torus born from the
closed curve of the autonomous system. Since the latter
is unstable, the torus in the weakly driven system is also
unstable. In the parameter space, phase-locking regions
(Arnold tongues) correspond to rational ratios between the
driving frequency V and the individual frequency vi of
the periodic orbit; often only the main tongue V  vi

is relevant for the applications. Inside the tongue, two
closed orbits coexist on the surface of the torus: the
attracting “phase-stable” one and the repelling one; on
the edges of the tongue they disappear via the tangent
bifurcation. Outside the tongues the trajectories are dense
on the torus; the motion is not synchronized.

If the frequencies vi for different periodic orbits of
the autonomous system are close to each other, the main
Arnold tongues of these orbits overlap. If a domain
common to all tongues exists, all periodic motions are
locked there by the force in the same ratio; the per-
fect phase synchronization occurs. On their way over
the attractor, chaotic orbits repeatedly visit the neighbor-
hoods of tori. There they approach the respective phase-
stable solution and move along it until the instability of
the torus repels them to another torus. Just outside the
overlap domain, synchronized motions are interrupted by
phase slips, in a kind of intermittency which has been
called “eyelet,” since each violation of synchrony owes
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FIG. 2. Time growth of difference between the phase of
chaotic motion 2pNsTd and the phase of driving force VT ;
V  8.29, E  6.
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to a precise hitting of the small vicinity of a nonlocked
torus [6].

Figure 3 shows the frequency distribution for unstable
periodic orbits embedded into the attractor of autonomous
Lorenz equations. Among all the orbits of length n, the
highest vi is attained by the orbit which performs one
large turn on one of the attractor lobes and n 2 1 turns
on the opposite lobe. During the former, the orbit slows
down in the region of the saddle point; from here, it is
reinjected relatively close to the saddle-focus point where
the rate of rotations in the phase space is especially high.
Fast rotations counterbalance the initial slowdown, and
the return time averaged over the orbit remains low.

The values of vi are bounded from above by the
imaginary part of the Jacobian eigenvalues at the saddle
foci; this bound is unreachable for periodic orbits since
the saddle foci themselves lie outside the attractor. The
lowest vi can be arbitrarily small: an infinitesimal shift
of a parameter leads through the countable number of
homoclinic bifurcations [16], and the periods of closed
orbits born from these bifurcations can be arbitrarily large.
However, the proximity to bifurcations makes these orbits
extremely unstable and hardly relevant: the contribution
of a periodic orbit into dynamics is inversely proportional
to its positive Lyapunov exponent [19] which diverges at
the homoclinicity. As for the relevant periodic orbits of
short and moderate length, the band of their frequencies is
bounded from below. Nevertheless, the variations among
vi are strong: the distance between the extrema vmax and
vmin exceeds 12% of the mean value v  8.365 . . . (the
latter estimate is an average over 107 turns of a chaotic
orbit). This broad scattering of intrinsic times of the
autonomous system hampers synchronization by external
forcing.

Let us magnify a vicinity of a phase “jump” (Fig. 2
inset). Here, crosses denote intersections of the orbit with
the Poincaré plane; between them, the phase is interpolated
linearly. What seemed to be an instantaneous phase slip
proves to be a process which requires not less than a dozen
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FIG. 3. Individual frequencies of unstable periodic orbits
embedded into the Lorenz attractor at r  28; dashed line:
mean frequency of autonomous chaotic motion.

orbit turns. A long interval between two returns onto the
Poincaré plane at the very start of the transition indicates
a very slow turn. Several very short intervals follow; they
not only compensate the phase lag caused by the initial
slowdown but transport the system upwards to the next
stair. This scenario reminds us of the periodic orbits from
the upper branch of the frequency distribution (Fig. 3),
with their hoverings near the saddle origin, their fast
rotations around the saddle foci, and their high individual
frequencies.

This guess is supported by the structure of the Poincaré
section of the attractor; an appropriate coordinate is the
value of the force phase C at the moment of intersection
with the Poincaré plane [9]. Since C is cyclic, one
observes, in general, either an unbounded drift along C,
or, for the state of perfect phase synchronization, a pattern
localized in C [6,9,10]. In our case (Fig. 4 shows several
2p-periods of the pattern), the system spends most of the
time in densely populated central stripes; at times, it drifts
along the diffuse “whiskers” downwards.

To elucidate this drift, we identify inside the pattern
several phase-stable periodic orbits: the squares correspond
to one of the orbits of length 7, locked by external
force in the ratio 1:1, the circles denote the orbit of
length 15, and the crosses show the orbit of length 20.
The two latter orbits stem from the upper branch of the
distribution (Fig. 3); their vi in the autonomous case equal
8.978 and 9.028, respectively. Under the values of V

corresponding to imperfect synchronization, these orbits
are locked by the force in the ratio 14:15 and 18:20,
respectively. Calculation of further periodic orbits has
shown that the stripes are crowded by phase-stable orbits
locked in the ratio 1:1, whereas the whiskers are populated
by phase-stable orbits locked in the other ratios.
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FIG. 4. Unstable periodic orbits embedded into the attractor
of the forced system; V  8.29, E  6.
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FIG. 5. Locking regions for periodic orbits; solid lines: l  7

(ratio 1:1), dashed line: l  15 (ratio 14:15); dotted line:
l  20 (ratio 18:20).

For most of the time the trajectory on the attractor
wanders between unstable tori which are directly locked
to the frequency of the force, but now and then it visits
vicinities of tori which are locked in a ratio sl 2 1d:l.
In such locking, the orbit of length l closes after l 2 1

periods of the force. After the passage near such a torus
the system is transported one period down along C,
its phase, related to the force, runs ahead by 2p , and
a transition to a higher stair in the staircase of Fig. 2
occurs. To enable this, l should obey the inequality
l $ l0 ; vmaxysvmax 2 vmind; i.e., in our case, l $ 11.
(In fact, due to the broadening of Arnold tongues, l can
be lower than this estimate based on the frequencies of
the autonomous system.) Similarly, the phase gains of
4p proceed from rare passages near the tori locked in the
frequency ratio sl 2 2d:l; the respective estimate l $ 2l0

yields, in our case, l $ 20.
In Fig. 5 the relevant Arnold tongues for several peri-

odic orbits are shown. In the domain of imperfect phase
synchronization the short orbits (represented by nine orbits
of length 7) are locked in the ratio 1:1, whereas some of
the longer ones (we choose the same ones with the lengths
15 and 20 as in Fig. 4) are locked in the other ratios.

The discussed phenomenon is a “masked” form of
phase synchronization: although the condition v  V is
not fulfilled, dynamics remains synchronized for all the
time, but synchronized to different frequencies. In the
recent example of phase synchronization with noncon-
stant locking ratios in medical data [7] the switching
between the ratios was apparently caused by nonsta-
tionarity of the process. Our example shows that al-
ternation of locking ratios can happen in completely
stationary deterministic systems, provided the distribu-
tion of return times is broad enough. We found the
same mechanism of imperfect phase synchronization [17]
by adding periodic forcing to the equations of magneto-
convection [13] and the finite-dimensional reduction of
the Ginzburg-Landau equation near the boundary of the
modulational instability [14].
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