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A notion of alternating timed automata is proposed. It is shown that such automata with only
one clock have decidable emptiness problem over finite words. This gives a new class of timed
languages which is closed under boolean operations and which has an effective presentation. We
prove that the complexity of the emptiness problem for alternating timed automata with one
clock is non-primitive recursive. The proof gives also the same lower bound for the universality
problem for nondeterministic timed automata with one clock. We investigate extension of the
model with epsilon-transitions and prove that emptiness is undecidable. Over infinite words, we
show undecidability of the universality problem.

Categories and Subject Descriptors: F.1.2 [Theory of Computation]: Modes of Computa-
tion—Alternation and nondeterminism; F.4.3 [Theory of Computation]: Formal Languages—
Decision problems

General Terms: Languages, Theory
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1. INTRODUCTION

Timed automata is a widely studied model of real-time systems. It is obtained
from finite nondeterministic automata by adding clocks which can be reset and
whose values can be compared with constants. In this paper we consider alternating
version of timed automata obtained by introducing universal transitions in the same
way as it is done for standard nondeterministic automata. From the results of Alur
and Dill [Alur and Dill 1994] it follows that such a model cannot have decidable
emptiness problem as the universality problem for timed automata is not decidable.
In the recent paper [Ouaknine and Worrell 2004] Ouaknine and Worrell has shown
that the universality problem is decidable for nondeterministic automata with one
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clock, over finite timed words. Inspired by their construction, we show that the
emptiness problem for alternating timed automata with one clock is decidable as
well. We also prove not primitive recursive lower bound for the problem. The proof
implies the same bound for the universality problem for nondeterministic timed
automata with one clock, thereby answering the question posed by Ouaknine and
Worrell [Ouaknine and Worrell 2004]. To complete the picture we also show that
an extension of our model with ε-transitions has undecidable emptiness problem.
Furthermore, we prove undecidability of the universality problem for one-clock
nondeterministic automata over infinite timed words.

The crucial property of timed automata models is the decidability of the empti-
ness problem. The drawback of the model is that the class of languages recognized
by timed automata is not closed under complement and the universality question
is undecidable (Π1

1-hard) [Alur and Dill 1994]. One solution to this problem is to
restrict to deterministic timed automata. Another, is to restrict the reset operation;
this gives the event-clock automata model [Alur et al. 1999]. A different ad-hoc
solution could be to take the boolean closure of the languages recognized by timed
automata. This solution does not seem promising due to the complexity of the uni-
versality problem. This consideration leads to the idea of using automata with one
clock for which the universality problem is decidable. The obtained class of alter-
nating timed automata is by definition closed under boolean operations. Moreover,
using the method of Ouaknine and Worrell, we can show that the class has decid-
able emptiness problem. As it can be expected, there are languages recognizable
by timed automata that are not recognizable by alternating timed automata with
one clock. More interestingly, the converse is also true: there are languages recog-
nizable by alternating timed automata with one clock that are not recognizable by
nondeterministic timed automata with any number of clocks.

Once the decidability of the emptiness problem for alternating timed automata
with one clock is shown, the next natural question is the complexity of the problem.
We show a non-primitive recursive lower bound. For this we give a reduction of
the reachability problem for lossy channel systems [Schnoebelen 2002]. The reduc-
tion shows that the lower bound holds also for purely universal alternating timed
automata. This implies non-primitive recursive lower bound for the universality
problem for nondeterministic timed automata with one clock. We also point out
that allowing ε-transitions in our model permits to code perfect channel systems
and hence makes the emptiness problem undecidable.

All this applies to automata over finite timed words. In the case of infinite words,
we prove undecidability of the universality problem of nondeterministic automata
with one clock, by the reduction of the halting problem. This immediately implies
undecidability of the emptiness problem for alternating one-clock automata.

Related work. Our work is strongly inspired by the results of Ouaknine and Wor-
rell [Ouaknine and Worrell 2004]. Techniques similar to our decidability proof and
to insights of [Ouaknine and Worrell 2004] have been developed eariler in [Abdulla
and Jonsson 1998; 2001].

Except for [Dickhöfer and Wilke 1999], it seems that the notion of alternation in
the context of timed automata was not studied before. The reason was probably
undecidability of the universality problem. The alternating automata introduced
ACM Transactions on Computational Logic, Vol. V, No. N, September 2006.
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in [Dickhöfer and Wilke 1999] run over infinite timed trees and were used to show de-
cidability of model checking for TCTL. Emptiness for these automata is apparently
undecidable, even under one-clock restriction, in view of our result for one-clock
automata over infinite words. On the other hand, emptiness for nondeterministic
timed tree automata is decidable [Torre and Napoli 2001].

Some research (see [Asarin et al. 1998; Cassez et al. 2002; Bouyer et al. 2003;
Alur et al. 2004; Bouyer et al. 2004] and references within) was devoted to the
control problem in the timed case. While in this case one also needs to deal with
some universal branching, these works do not seem to have direct connection to our
setting.

Furthermore, let us mention that restrictions to one clock (and two clocks) have
been already considered in the context of TCTL model-checking of timed sys-
tems [Dima 2000; Laroussinie et al. 2004], leading to a lower complexity in some
cases. Finally, in [Alur et al. 1993] the parametric variant of emptiness problem
was shown decidable under restriction to one clock (similarly as in our setting) and
undecidable for three clocks; the two-clock case is left as an open question.

Similar results to ours were obtained independently by Ouaknine and Wor-
rell [Ouaknine and Worrell 2005] and by Abdulla et al [Abdulla et al. 2005]. The
former paper defines alternating timed automata, in a slightly different way than
ours, and applies these automata to prove decidability of model-checking for Metric
Temporal Logic. The non-primitive recursive lower bound is also established. In
the latter paper, the undecidability result for the universality problem over infinite
words is proved.

Organization of the paper. In the next section we define alternating timed au-
tomata; we discuss their basic properties and relations with nondeterministic timed
automata. In Section 3 we show decidability of the emptiness problem for alter-
nating timed automata with one clock. In the following two sections we show a
non-primitive recursive lower bound for the problem, and then the undecidability
result for an extension of our model with ε-moves. In Section 6 we investigate
automata over infinite words.

A preliminary version of this article appeared as [Lasota and Walukiewicz 2005].

2. ALTERNATING TIMED AUTOMATA

In this section we introduce the alternating timed automata model and study its
basic properties. The model is a quite straightforward extension of the nondeter-
ministic model. Nevertheless some care is needed to have the desirable feature that
complementation corresponds to exchanging existential and universal branchings
(and final and non-final states). As can be expected, alternating timed automata
can recognize more languages than their nondeterministic counterparts. The price
to pay for this is that the emptiness problem becomes undecidable, in contrast to
timed automata [Alur and Dill 1994]. This motivates the restriction to automata
with one clock. With one clock alternating automata can still recognize languages
not recognizable by nondeterministic automata and moreover, as we show in the
next section, they have decidable emptiness problem.

For a given finite set C of clock variables (or clocks in short), consider the set
ACM Transactions on Computational Logic, Vol. V, No. N, September 2006.
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Φ(C) of clock constraints σ defined by

σ ::= x < c | x ≤ c | σ1 ∧ σ2 | ¬σ,

where c stands for an arbitrary nonnegative integer constant, and x ∈ C. For
instance, note that tt (always true), or x = c, can be defined as abbreviations.
Each constraint σ denotes a subset [σ] of (R+)C , in a natural way, where R+ stands
for the set of nonnegative reals.

Transition relation of a timed automaton [Alur and Dill 1994] is usually defined
by a finite set of rules δ of the form

δ ⊆ Q× Σ× Φ(C)×Q× P(C),

where Q is a set of locations (control states) and Σ is an input alphabet. A rule
〈q, a, σ, q′, r〉 ∈ δ means, roughly, that when in a location q, if the next input letter
is a and the constraint σ is satisfied by the current valuation of clock variables, the
next location can be q′ and the clocks in r should be reset to 0. Our definition
below uses an easy observation, that the relation δ can be suitably rearranged into
a finite partial function

Q× Σ× Φ(C) ·→ P(Q× P(C)).

The definition below comes naturally when one thinks of an element of the codomain
as a disjunction of a finite number of pairs (q, r). Let B+(X) denote the set of all
positive boolean formulas over the set X of propositions, i.e., the set generated by:

φ ::= X | φ1 ∧ φ2 | φ1 ∨ φ2.

Definition 2.1 Alternating timed automaton. An alternating timed automaton is
a tuple A = (Q, q0,Σ, C, F, δ) where: Q is a finite set of locations, Σ is a finite input
alphabet, C is a finite set of clock variables, and δ : Q×Σ×Φ(C) ·→ B+(Q×P(C))
is a finite partial function. Moreover q0 ∈ Q is an initial state and F ⊆ Q is a set
of accepting states. We also put an additional restriction:

(Partition). For every q and a, the set {[σ] : δ(q, a, σ) is defined} gives a (finite)
partition of (R+)C .

The (Partition) condition does not limit the expressive power of automata. We
impose it because it permits to give a nice symmetric semantic for the automata as
explained below. We will often write rules of the automaton in a form: q, a, σ *→ b.

By a timed word over Σ we mean a finite sequence

w = (a1, t1)(a2, t2) . . . (an, tn) (1)

of pairs from Σ × R+. Each ti describes the amount of time that passed between
reading ai−1 and ai, i.e., a1 was read at time t1, a2 was read at time t1+t2, and so on.
In Sections 4 and 5 it will be more convenient to use an alternative representation
where ti denotes the time elapsed since the beginning of the word. In this paper
we deal with finite timed words, except Section 6, where we will investigate timed
ω-words.

To define an execution of an automaton, we will need two operations on valuations
v ∈ (R+)C . A valuation v+t, for t ∈ R+, is obtained from v by augmenting value
ACM Transactions on Computational Logic, Vol. V, No. N, September 2006.
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of each clock by t. A valuation v[r := 0], for r ⊆ C, is obtained by reseting values
of all clocks in r to zero.

For an alternating timed automaton A and a timed word w as in (1), we define
the acceptance game GA,w between two players Adam and Eve. Intuitively, the
objective of Eve is to accept w, while the aim of Adam is the opposite. A play starts
at the initial configuration (q0,v0), where v0 : C → R+ is a valuation assigning 0 to
each clock variable. It consists of n phases. The (k+1)-th phase starts in (qk,vk),
ends in some configuration (qk+1,vk+1) and proceeds as follows. Let v̄ := vk+tk+1.
Let σ be the unique constraint such that v̄ satisfies σ and b = δ(qk, ak+1,σ) is
defined. Existence and uniqueness of such σ is implied by the (Partition) condition.
Now the outcome of the phase is determined by the formula b. There are three cases:

—b = b1 ∧ b2: Adam chooses one of subformulas b1, b2 and the play continues with
b replaced by the chosen subformula;

—b = b1 ∨ b2: dually, Eve chooses one of subformulas;
—b = (q, r) ∈ Q×P(C): the phase ends with the result (qk+1,vk+1) := (q, v̄[r := 0]).

A new phase is starting from this configuration if k+1 < n.

The winner is Eve if qn is accepting (qn ∈ F ), otherwise Adam wins.
Formally, a play is a finite sequence of consecutive game positions of the form

〈k, q,v〉 or 〈k, q, b〉, where k is the phase number, b a boolean formula, q a location
and v a valuation. A strategy of Eve is a mapping which assigns to each such
sequence ending in Eve’s position a next move of Eve. A strategy is winning if Eve
wins whenever she applies this strategy.

Definition 2.2 Acceptance. The automaton A accepts w iff Eve has a winning
strategy in the game GA,w. By L(A) we denote the language of all timed words w
accepted by A.

To show the power of alternation we give an example of an automaton for a
language not recognizable by standard (i.e. nondeterministic) timed automata
(cf. [Alur and Dill 1994]).

Example 2.3. Consider a language consisting of timed words w over a singleton
alphabet {a} that contain no pair of letters such that one of them is precisely one
time unit later than the other. The alternating automaton for this language has
three states q0, q1, q2. State q0 is initial. The automaton has a single clock x and
the following transition rules:

q0, a, tt *→ (q0, ∅) ∧ (q1, {x})
q1, a, x=1 *→ (q2, ∅)

q1, a, x,=1 *→ (q1, ∅)
q2, a, tt *→ (q2, ∅)

States q0 and q1 are accepting, q2 is not. In state q0, at each input letter, Adam
chooses either to stay in q0 either to to go to q1; In the latter case clock x is
reset. Furthermore, the automaton can only quit state q1 exactly one time unit
after entering it. Hence, Adam has a strategy to reach q2 iff the word is not in the
language, i.e., some letter is one time unit after some other.

As one expects, we have the following:

ACM Transactions on Computational Logic, Vol. V, No. N, September 2006.
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Proposition 2.4. The class of languages accepted by alternating timed automata
is effectively closed under all boolean operations: union, intersection and comple-
mentation. These operations do not increase the number of clocks of the automaton.

The closure under conjunction and disjunction is straightforward since we per-
mit positive boolean expressions as values of the transition function. Due to the
condition (Partition) the automaton ¬A for the complement is obtained from A
by exchanging conjunctions with disjunctions in all transitions and exchanging ac-
cepting states with non-accepting states.

Definition 2.5. An alternating timed automaton A is called purely universal if
the disjunction does not appear in the transition rules δ. Dually, A is purely
existential if no conjunction appears in δ.

Clearly, if A is purely universal (purely existential) then ¬A is purely existential
(purely universal). It is obvious that every purely existential automaton is a stan-
dard nondeterministic timed automaton. The converse requires a proof because of
the (Partition) condition.

Proposition 2.6. Every standard nondeterministic automaton is equivalent to
a purely existential automaton.

Proof. Transition relation of a nondeterministic timed automaton is usually
defined by a finite set δ of rules of the form 〈q, a, σ, q′, r〉 ∈ Q × Σ × Φ(C) × Q ×
P(C). Given such an automaton A, the corresponding purely existential alternating
automaton Â has the same set Q of states as A, plus one additional state qsink.
Automaton Â has the same initial state and accepting states as A, the same set
of clocks C, and the same input alphabet. The only essential difference is that δ is
replaced by δ̂ : Q× Σ× Φ(C) ·→ B+(Q× P(C)), defined as follows.

In fact, we prefer to define δ̂ equivalently as δ̂ : Q × Σ × Φ(C) ·→ P(Q × P(C)).
Let σ1 . . .σn be all clock constraints appearing in δ. The guards appearing in δ̂ will
be σX , for X ⊆ {1 . . . n}, defined by:

σX = ∧i∈Xσi ∧ ∧i/∈X¬σi.

I.e., we consider conjunctions of arbitrary sets of guards σi. The value δ̂(q, a, σ) is
defined iff σ = σX for some X, hence δ̂ clearly satisfies the (Partition) condition.
The constraints σX satisfying [σX ] = ∅ can be safely omitted. We put:

δ̂(q, a, σX) = {(q′, r) : 〈q, a, σi, q
′, r〉 ∈ δ for some i ∈ X}.

If δ̂(q, a, σX) is empty, we put δ̂(q, a, σX) = {(qsink, ∅)}. And finally we put:
δ̂(qsink, a,σX) = {(qsink, ∅)}, for any a and σX .

It is routine now to check that languages accepted by A and Â coincide.

In the following sections, we consider emptiness, universality and containment
for different classes of alternating timed automata. For clarity, we recall definitions
here.

Definition 2.7. For a class C of automata we consider three problems:

—Emptiness: given A ∈ C is L(A) empty.
ACM Transactions on Computational Logic, Vol. V, No. N, September 2006.
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—Universality: given A ∈ C does L(A) contain all timed words.
—Containment: given A,B ∈ C does L(A) ⊆ L(B).

It is well known that the universality is undecidable for non-deterministic timed
automata [Alur and Dill 1994] with at least two clocks. As a consequence, all three
problems are undecidable for alternating timed automata with two clocks. This is
why, in the rest of the paper, we focus on automata with one clock only.

Proviso:. In the following all automata have one clock.

The automaton from Example 2.3 uses only one clock. This shows that one clock
alternating automata can recognize some languages not recognizable by nondeter-
ministic automata with many clocks. The converse is also true:

Theorem 2.8. Classes of languages recognizable by nondeterministic timed au-
tomata and by one-clock alternating timed automata are incomparable.

Proof. We show a language acceptable by a deterministic automaton with many
clocks but not acceptable by an alternating automaton with one clock.

Consider the timed language over the singleton alphabet {b} consisting of the
words containing appearances of the letter b at times t1 and t2, where 0 < t1 <
t2 < 1, no other b in between 0 and 1 and precisely one b between t1 + 1 and
t2 + 1. We will show that this language cannot be accepted by an alternating
timed automaton with one clock. Obviously it is accepted by a deterministic timed
automaton with two clocks.

For a preparation consider a deterministic untimed automaton B. A sequence
bk of k letters b determines a function fBk : QB → QB saying that if started in
the state q after reading bk the automaton will end in fBk (q). Clearly the number
of such functions is bounded if the number of states is fixed. Thus there are m
and l, depending only on the number of states, such that fBm = fBm+l. Moreover
fBm+i = fBm+l+i for all i > 0.

To arrive at a contradiction assume that our language is recognized by an ATA
A with n states. Suppose for a moment that all constants in the tests in transition
function of the automaton are integers. Let m and l be such that fBm+i = fBm+l+i

for all i > 0 and for all deterministic automata B with at most 222n

states.
Now consider two words w1 and w2. In w1 we have b at times 0.3, 0.7, 1.5 and

m b’s somewhere in the interval (1, 1.3) as well as m b’s somewhere in the interval
(1.7, 2). Word w2 is obtained from w1 by adding l b’s somewhere in the interval
(1.3, 1.7); but not at point 1.5 of course. We will show that if A accepts w1 then it
also accepts w2.

Consider the accepting run of A on w1. Look at the configurations in which the
automaton reaches at time 1. Let (q, v) be one of them. The value of the clock
v can be 0.3, 0.7 or 1. This is because there are only two letters till 1 and the
automaton can reset clock only when it reads a letter. We will analyse the three
cases one by one.

If v = 1 then it is easy to see that from a configuration (q, v) the automaton has
no use for the clock in the interval (1, 2). If not reset, the value of the clock in
this interval will be in (1, 2) and the automaton can compare the values only with
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integers. If the clock is reset then its value will stay in (0, 1) till the end of the
interval. Thus from the configuration (q, v) automaton A behaves as an alternating
automaton without a clock with additional flag telling whether there was a reset
or not. Because it has n states, it is equivalent to a deterministic automaton of at
most 222n

states. We have that if it accepts from q the string of 2m + 1 letters b
then it also accepts 2m + l + 1 letters b. Thus A has an accepting run from (q, v)
in w2 if it had one in w1.

If v = 0.7 then consider the run ofA from (q, v) till the time point 1.3. Automaton
A has no use of the clock till that point for the same reason as above. It arrives
at a set of configurations: some with the value of the clock 1 and some with the
value < 0.3. The later are possible because A could reset a clock. Consider the rest
of the computation starting from a configuration (q′, 1). Once again the clock will
not be useful to A in the rest of the word. Hence we will arrive to the same final
states on a1+m and a1+m+l. Similarly for all the configurations with the values of
the clock < .3.

If v = 0.3 then consider the run of A from (q, v) till the time point 1.7. Till that
time there was no use of the clock. We get a set of configurations with clock value 1
and the other with clock value < 0.7. The possible configurations with clock value
1 are the same no matter if we have made automaton run on w1 or on w2, for the
same reason as before. As the rest of w1 is the same as the rest of w2 we are done.
On the other hand, when comparing configurations with clock value < 0.7 in runs
over w1 and w2, the possible locations are the same but the clock values may differ.
But the clock value is irrelevant before time 2, hence again we are done.

In the argument we essentially use the assumption that we compare clocks only
with natural numbers. If we allowed to compare with rationals we can get an
example of the similar kind by using rescaling. Instead of intervals (0, 1) and (1, 2)
we would use smaller intervals that are of the size smaller than the smallest constant
used by the automaton.

More precisely, let c ,= 0 be the smallest positive rational such that the clock is
compared in A either to c or to 1−c or to 1+c. We define words w1 and w2 as
follows. In w1 we have b at times 0.3c, 0.7c, 1 + 0.5c and m b’s somewhere in the
interval (1, 1+0.3c) as well as m b’s somewhere in the interval (1+0.7c, 1+c). Word
w2 is obtained from w1 by adding l b’s somewhere in the interval (1+0.3c, 1+0.7c);
but not at point 1 + 0.5c. The whole proof works unchanged.

3. DECIDABILITY

The main result of this section is that the emptiness problem for one-clock alter-
nating timed automata is decidable. Due to closure under boolean operations, this
implies the decidability of the universality and the containment problems.

Theorem 3.1. The emptiness problem is decidable for one-clock alternating timed
automata.

Corollary 3.2. The containment problem is decidable for one-clock alternating
timed automata.

The rest of this section is devoted to the proof of Theorem 3.1. Essentially, we
have adapted the method of Ouaknine and Worrell [Ouaknine and Worrell 2004]
ACM Transactions on Computational Logic, Vol. V, No. N, September 2006.
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for our more general setting. We point out the differences below.
Fix a one-clock alternating timed automaton A = (Q, q0,Σ, {x}, F, δ). For read-

ability, assume w.l.o.g. that the boolean conditions appearing in rules of δ are all
in disjunctive normal form. In terms of acceptance games this means that each
phase consists of a single move of Eve followed by a single move of Adam. Consider
a labelled transition system T whose states are finite sets of configurations, i.e.,
finite sets of pairs (q,v), where q ∈ Q and v ∈ R+. The initial position in T is
P0 = {(q0,0)} and there is a transition P

a,t−→ P ′ in T iff P ′ can be obtained from
P by the following nondeterministic process:

—First, for each (q,v) ∈ P , do the following:
—let v′ := v+t,
—let b = δ(q, a, σ) for the uniquely determined σ satisfied in v′,
—choose one of disjuncts of b, say

(q1, r1) ∧ . . . ∧ (qk, rk) (k > 0),

—let Next(q,v) = {(qi,v′[ri := 0]) : i = 1 . . . k}.
—Then, let P ′ :=

⋃
(q,v)∈P Next(q,v).

This construction is very similar to the translation from alternating to nonde-
terministic automata over (untimed) words: we just collect all universal choices
in one set. Compared to [Ouaknine and Worrell 2004], the essential difference is
that we have to deal with both disjunction and conjunction, while in [Ouaknine
and Worrell 2004] only one of them appeared. We treat conjunction similarly to
determinization in [Ouaknine and Worrell 2004]. On the other hand, we leave the
existential choice, i.e., nondeterminism, essentially unaffected in T .

In what follows we will derive from T a finite-branching transition system H,
suitable for the decision procedure. Like in [Ouaknine and Worrell 2004], the degree
of the nodes of H will not be bounded but nevertheless finite. This is sufficient for
our purposes.

A state {(q1,v1), . . . , (qn,vn)} of T is called bad iff all control states qi are ac-
cepting (qi ∈ F ). The following proposition characterizes acceptance in A in terms
of reachability of bad states in T . It is enough to consider reachability because A
accepts only finite words.

Lemma 3.3. A accepts a timed word w iff there is a path in T , labelled by w,
from P0 to a bad state.

Let T̂ be a labelled transition system obtained from T by erasing time information
from transition labels, i.e., there is a transition P

a−→ Q in T̂ iff there is P
a,t−→ Q

in T , for some t ∈ R+. Now we cannot talk about particular timed words but still
we have the following:

Lemma 3.4. L(A) is nonempty if and only if there is a path in T̂ from P0 to a
bad state.

Thus, the (non)emptiness problem for A is reduced to the reachability of a bad
state in T̂ . The last difficulty is that even if each state of T̂ is a finite set, there
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are uncountably many states. The following definition allows to abstract from the
precise timing information in states.

Let cmax denote the biggest constant appearing in constraints in δ. Let set reg
of regions be a partition of R+ into 2 · (cmax+1) sets as follows:

reg := {{0}, (0, 1), {1}, (1, 2), . . . , (cmax−1, cmax), {cmax}, (cmax,+∞)}.

For v ∈ R+, let reg(v) denote its region; and let fract(v) denote the fractional
part of v. Below we work with finite words over the alphabet Λ = P(Q × reg)
consisting of finite sets of pairs (q, r), where q ∈ Q is a control state and r ∈ reg is
a region.

Definition 3.5. For a state P of T̂ we define a word H(P ) from Λ∗ as the one
obtained by the following procedure:

—replace each (q,v) ∈ P by a triple 〈q, reg(v), fract(v)〉 (this yields a finite set
of triples)

—sort all these triples w.r.t. fract(v) (this yields a finite sequence of triples)
—group together triples that have the same value of fract(v), ignoring multiple

occurrences (this yields a finite sequence of finite sets of triples)
—forget about fract(v), i.e., replace each triple 〈q, reg(v), fract(v)〉 by a pair

(q, reg(v)) (this yields a finite sequence of finite sets of pairs, a word in Λ∗).

Example 3.6. To illustrate transformation H, consider P = {(q1, 0.5), (q2, 1.2),
(q3, 2.2)}, where q1, q2, q3 are locations.

Let cmax = 2. Denote regions by r0 = {0}, r0,1 = (0, 1), . . . , r2 = {2}, r2,+∞ =
(2,+∞). First, P is transformed into the set

{〈q1, r0,1, 0.5〉, 〈q2, r1,2, 0.2〉, 〈q3, r2,+∞, 0.2〉}.

We make it into a sorted sequence 〈q2, r1,2, 0.2〉〈q3, r2,+∞, 0.2〉〈q1, r0,1, 0.5〉. Then
we group together triples with the same fractional part, obtraining a sequence of
length two:

{〈q2, r1,2, 0.2〉, 〈q3, r2,+∞, 0.2〉}, {〈q1, r0,1, 0.5〉}.

Finally we remove the fractional parts and obtain

H(P ) = {(q2, r1,2), (q3, r2,+∞)}, {(q1, r0,1)}.

Definition 3.7. Let H be the transition system whose states are words H(P ) for
P a state of T̂ ; a transition W1

a−→ W2 is in H if there is a transition P1
a−→ P2 in

T̂ with H(P1) = W1, H(P2) = W2. The initial state in H is W0 = H(P0).

Example 3.8. Assume that the automation from previous example has a rule:

q3, a, x>2 *→ (q1, x) ∨ ((q2, ∅) ∧ (q3, ∅)).

Imagine a transition P
a−→ P ′ in T̂ corresponding to P

a,0.6−→ P ′ in T derived
from the above rule. There are two possibilities: P ′ = {(q1, 1.1), (q2, 1.8), (q1, 0)}
or P ′ = {(q1, 1.1), (q2, 1.8), (q2, 2.8), (q3, 2.8)}. Accordingly, there are two tran-
sitions H(P ) a−→ W ′ in H, for W ′ = {(q1, r0)}{(q1, r1,2)}{(q2, r1,2)} or W ′ =
{(q1, r1,2)}{(q2, r1,2), (q2, r2,+∞), (q3, r2,+∞)}. In each case W ′ = H(P ′). Hence,
ACM Transactions on Computational Logic, Vol. V, No. N, September 2006.
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transitions in H can “simulate” transitions in T̂ . On the other hand, H(P ) has
also a transition

H(P ) −→ {(q1, r0)}{(q1, r1,2)}{(q2, r1,2), (q2, r2,+∞), (q3, r2,+∞)}

that simulates a posible transition of P̄ = {(q1, 0.5), (q2, 1.2), (q3, 2.2), (q3, 6.2)}.
Hence, roughly speaking, transitions of H(P ) correspond to the union of all the
transitions of all P̄ such that H(P̄ ) = H(P ).

If P is bad and H(P ) = H(P ′) then P ′ is bad as well. Hence it is correct to call a
state W in H bad if W = H(P ) for a bad state P .

Lemma 3.9. L(A) is nonempty iff a bad state is reachable in H from W0.

Proof. By Lemma 3.4 we only need to show: a bad state is reachable in T̂ from
P0 iff a bad state is reachable in H from W0.

Consider a transition system T ′ obtained from T by imposing one additional re-
striction on transitions: whenever v1 and v2 are in the same region, then Next(q,v1) =
Next(q,v2). By T̂ ′ and H′ denote the transition systems obtained from T ′ instead
of T . They have the same states as T̂ and H, respectively, but fewer transitions.
Clearly, the additional restriction has no impact on acceptance, i.e., on reachability
of a bad state. Hence we have: a bad state is reachable in T̂ from P0 iff a bad state
is reachable in T̂ ′ from P0. And also: a bad state is reachable in H from W0 iff a
bad state is reachable in H′ from W0.

Now observe that the graph of H, i.e., the set of all pairs (P,H(P )), is a bisim-
ulation between T̂ ′ and H′. If P

a−→ P ′ then obviously H(P ) a−→ H(P ′). If
H(P ) a−→ W ′ then there exists P ′ such that P

a−→ P ′ and H(P ′) = W ′; we only
need to guess appropriate t and derive P ′ from transition P

a,t−→ P ′ in T ′ (clearly
t need not be unique).

The bisimulation guarantees that a bad state is reachable in T̂ ′ from P0 iff a bad
state is reachable in H′ from W0. This completes the proof.

At this point, we have reduced emptiness of L(A) to the reachability of a bad
state in a countably infinite transition system H. The rest of the proof is quite
standard [Abdulla et al. 1996; Finkel and Schnoebelen 2001] and exploits the fact
that one can put an appropriate well-quasi- order (wqo in short) on states of H.
Unfortunately, we are obliged to redo the proofs as we could not find a theorem
that fits precisely our setting.

Definition 3.10. Let / denote the monotone domination ordering over Λ∗ in-
duced by the subset inclusion over Λ, defined as follows: a1 . . . an / b1 . . . bm iff
there exists a strictly increasing function f : {1, . . . , n}→ {1, . . . ,m} such that for
each i ≤ n, ai ⊆ bf(i).

Lemma 3.11 [Higman 1952]. Relation / is a wqo, i.e., for arbitrary infinite
sequence W1,W2, . . . of words over Λ, there exist indexes i < j such that Wi / Wj.

The decision procedure for reachability of bad states will work by an exhaustive
search through a sufficiently large portion of the whole reachability tree. Thus
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we need to know that an arbitrarily large part of that tree can be effectively con-
structed. Roughly, all time delays of an action a from W can be captured by a
finite number of cyclic shifts of W with an appropriate change of region.

Lemma 3.12. For each state W in H, its set of successors {W ′ ∈ Λ∗ : W
a−→

W ′ for some a} is finite and effectively computable.

Proof. Recall that a word W represents a finite set of pairs (q,v). The letters
are sorted according to the value of fract(v); moreover the letters represent finite
sets of pairs in fact, i.e., all the pairs with the same fract(v). Note that all
pairs with fract(v) = 0, if any, are represented by the first letter of W ; and the
corresponding region is of the form {i} (or (cmax,∞)) in this case.

Now imagine a transition W
a−→ W ′ in H. This corresponds to some transition

P
a,t−→ P ′ in T , for some t and some chosen set P of pairs (q,v). Importantly, the

same time delay t is applied to all the pairs (q,v). Denote by P̂ the set obtained
from P by time delay, i.e., by replacing each (q,v) with (q,v + t); consider this,
conceptually, for all t > 0. The corresponding word Ŵ in H is obtained from W
by an operation similar to a cyclic shift, to the right, repeated as many times as
needed. This operation modifies W as follows. Note that the first letter of W
contains either only pairs of the form (q, {i}), either only the pairs of the form
(q, (i, i + 1)) (and perhaps (cmax,∞) as well). In the first case, change each region
{i} in the first letter of W to (i, i + 1) (or to (cmax,∞), if i = cmax). In the second
case, remove the right-most letter and put it as the first letter in the word, and
change each region (i, i + 1) to {i + 1}.

Hence, the set {W ′ ∈ Λ∗ : W
a−→ W ′ for some a} can be computed by applying

the operation defined above an arbitrary number of times (until all regions are
(cmax,∞)), yielding Ŵ ; and by calculating the effect of performing any transition
a from Ŵ .

The following observation is proved in the same way as Lemma 15 in [Ouaknine
and Worrell 2004].

Lemma 3.13. The inverse of / relation is a simulation: whenever W1 / W2

and W2
a−→ W ′

2, there is some W ′
1 such that W1

a−→ W ′
1 and W ′

1 / W ′
2.

Proof. Take W1 / W2 and suppose W2
a−→ W ′

2. By definition it means that
there is P2 with H(P2) = W2 such that there is a transition P2

a−→ P ′
2 and H(P ′

2) =
W ′

2. Since W1 / W2 it is easy to see that there is P1 ⊆ P2 such that W = H(P1);
P1 is obtained by removing from P2 the pairs that do not end up in W1 when
construction H is applied (cf. Definition 3.5). Now, directly from the definition of
the transition system T̂ we have P1

a−→ P ′
1 with P ′

1 ⊆ P ′
2. So W1

a−→ H(P ′
1). As

P ′
1 ⊆ P2, we have H(P ′

1) / W2 as required.

The next observation is more specific to our setting but fortunately very easy.

Lemma 3.14 Downward closedness of badness. Whenever W / W ′ and
W ′ is bad then W is bad as well.
ACM Transactions on Computational Logic, Vol. V, No. N, September 2006.
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Proof. Take a letter wi of W . We need to show that q ∈ F for every (q, r) ∈ wi.
By the definition of W / W ′ we have wi ⊆ w′j for some letter w′j of W ′. Hence,
(q, r) ∈ w′j and q ∈ F as W ′ is bad.

Now we are ready to prove the main lemma.

Lemma 3.15. It is decidable whether a bad state is reachable in H from W0.

Proof. The reachability tree is the unravelling of H from W0. The algorithm
constructs a portion t of the tree conforming to the following rule: do not add
a node W ′ to t in a situation when among its ancestors there is some W / W ′.
Lemma 3.11 guarantees that each path in t is finite. Furthermore, since the degree
of each node is finite, t is a finite tree.

We need only to prove that if a bad state is reachable in H from W0 then t
contains at least one bad state. Let W be such a bad state reachable from W0 in
H by a path π of the shortest length. Assume that W is not in t, i.e., there are
two other nodes in π, say W1 and W2 such that W1 is an ancestor of W2 in the
reachability tree and W1 / W2 (i.e., W2 was not added into t). Since the inverse
of / is a simulation by Lemma 3.13, the sequence of transitions in π from W2 to
W can be imitated by the corresponding sequence of transitions from W1 to some
other W ′ / W . W ′ is bad as well by Lemma 3.14. Moreover, the path leading to
W ′ is strictly shorter than π, a contradiction.

Theorem 3.1 follows immediately from Lemma 3.15 and Lemma 3.9.

Remark:. In fact, Ouaknine and Worrell showed decidability of containment ”
L(A) ⊆ L(B)” in a slightly more general case, namely when automaton A has
arbitrarily many clocks. Along the same lines one can adapt our proof, assumed
that A is an arbitrary nondeterministic timed automaton and B is a one-clock
alternating timed automaton. We sketch below the necessary modifications.

If we denote by B̄ a dual of B, i.e., an automaton accepting the complement of
L(B), then the containment reduces to emptiness of L(A) ∩ L(B̄). Compared to
the proof above, each state P of T needs to contain additionally information on
a configuration of A. Due to the fact that A is purely existential, P will contain
precisely one pair (q,v), where q is a state of A and v a valuation of all its clocks.
The transition relation P

a,t−→ P ′ is adapted so that the delay t before performing
an action a is the same in A and B. This guarantees that the facts analogous to
Lemma 3.3 and 3.4 hold; but now a state P is bad iff all states of both A and B
appearing in P are accepting.

Definition of H is precisely as before, but it needs a preprocessing: the pair (q,v)
corresponding to A is split into a number of triples (q,vx, x), one for each clock x
of A. The triples are identical on the first component, and vx is the value of clock
x. Observe that the number of such triples is the same in each state of H, and
equal to the number of clocks in A. An analog of Lemma 3.9 holds: L(A) ∩ L(B̄)
is nonempty iff a bad state is reachable in H.

Finally, Lemma 3.12 and 3.14 hold as well, and the proofs are similar. The proofs
of Lemma 3.13 and 3.15 rest unchanged.
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4. LOWER BOUND

In this section we prove the following lower bound result.

Theorem 4.1. The complexity of the emptiness problem for one-clock purely
universal alternating timed automata is not bounded by a primitive recursive func-
tion.

Since emptiness and universality are dual in the setting of alternating automata,
as a direct conclusion we get the following:

Corollary 4.2. The complexity of the universality problem for one-clock purely
existential alternating (i.e., nondeterministic) timed automata is not bounded by a
primitive recursive function.

This answers the question posed by Ouaknine and Worrell [Ouaknine and Worrell
2004].

The rest of this section contains the proof of Theorem 4.1. The proof is a reduc-
tion of the reachability problem for lossy one-channel systems [Schnoebelen 2002].

Definition 4.3 Channel system. A channel system is given by a tuple S = (Q, q0,
Σ,∆), where Q is a finite set of control states, q0 ∈ Q is an initial state, Σ is a
finite channel alphabet and ∆ ⊆ Q× ({!a : a∈Σ}∪ {?a : a∈Σ}∪ {ε})×Q is a finite
set of transition rules.

A configuration of S is a pair (q, w) of a control state q and a channel content
w ∈ Σ∗. Transition rules allow the system to pass from one configuration to another.
In particular, a rule 〈q, !a, q′〉 allows in a state q to write to the channel and to pass
to the new state q′. Similarly, 〈q, ?a, q′〉means reading from a channel and is allowed
in state q only when a is at the end of the channel. The channel is a FIFO, and by
convention S writes at the beginning and reads at the end. Finally, a rule 〈q, ε, q′〉
allows for a silent change of control state, without reading or writing.

Formally, there is a (perfect) transition (q, w) γ−→ (q′, w′) if one of the following
conditions is satisfied:

—γ = 〈q, ε, q′〉 and w = w′, or
—γ = 〈q, !a, q′〉 for some a∈Σ, and w′ = aw, or
—γ = 〈q, ?a, q′〉 for some a∈Σ, and w = w′a.

The initial configuration is (q0, ε), i.e., execution of S starts with the empty chan-
nel. For technical convenience, we assume w.l.o.g. that there is no rule returning
back to the initial state: for each rule 〈q, x, q′〉 ∈ ∆, q′ ,= q0.

A lossy channel system differs from the perfect one in only one respect: during
the transition step, an arbitrary number of messages stored in the channel may be
lost. To define lossy transitions, we need the subsequence ordering on Σ∗, denoted
by 2 (e.g., tata 2 atlanta). We say that there is a lossy transition from (q, w) to
(q′, w′), denoted by (q, w) γ=⇒ (q′, w′), iff there exists u, u′ ∈ Σ∗ such that u 2 w,
(q, u) γ−→ (q′, u′) and w′ 2 u′.

By a lossy computation of a channel system S we mean a finite sequence:

(q0, ε)
γ1=⇒ (q1, w1)

γ2=⇒ (q2, w2) . . .
γn=⇒ (qn, wn). (2)

ACM Transactions on Computational Logic, Vol. V, No. N, September 2006.



Alternating Timed Automata · 15

Definition 4.4. Lossy reachability problem for channel systems is: given a channel
system S and a configuration (qf , wf ), with qf ,=q0, decide whether there is a lossy
computation of S ending in (qf , wf ).

Theorem 4.5 [Schnoebelen 2002]. The lossy reachability problem for chan-
nel systems has non-primitive recursive complexity.

The result of [Schnoebelen 2002] was showed for a slightly different model. Namely,
during a single transition, a finite sequence of messages was allowed to be read
or written to the channel. Clearly, reachability problems in both models are
polynomial-time equivalent.

In the sequel we describe a reduction from the lossy reachability for channel
systems to the emptiness problem for one-clock purely universal alternating timed
automata. Given a channel system S = (Q, q0,Σ,∆), and a configuration (qf , wf ),
we effectively construct a purely universal automaton A with a single clock x,
and the input alphabet Σ = Q ∪ Σ ∪ ∆. The construction will assure that A
accepts precisely correct encodings of lossy computations of S ending in (qf , wf ).
A computation as in (2) will be encoded as the following word over Σ:

qnγnwn qn−1γn−1wn−1 . . . q1γ1w1 q0, (3)

where qi ∈ Q, γi ∈ ∆, wi ∈ Σ∗. Let S be fixed in this section.
It will be convenient here to write timed words in a slightly different way than

before. From now on, whenever we write a word w = (a1, t1)(a2, t2) . . . (an, tn) we
mean that the letter ai appeared ti time units after the beginning of the word. In
particular, ai+1 appeared ti+1 − ti time units after ai. Clearly this is correct only
when ti+1 ≥ ti, for i = 1 . . . n−1.

Before the formal definition of encoding of a computation by a timed word we
outline shortly the underlying intuition. We will require that the letter qn appears at
time 0 and then that each letter qi appears at time n− i. Hence, each configuration
will be placed in a unit interval. To ensure consistency of the channel contents
at consecutive configurations we require that if a message survived during a step
i (it was neither read nor written nor lost) then the distance in time between its
appearances in the sequences wi and wi−1 should be precisely 1.

We will need a new piece of notation : by (w + 1) we mean the word obtained
from w by increasing all ti by one time unit, i.e., (w + 1) = (a1, t1 + 1)(a2, t2 +
1) . . . (an, tn + 1).

Definition 4.6. By a lossy computation encoding ending in (qf , wf ) we mean any
timed word over Σ of the form:

(qn, tn)(γn, t′n)vn (qn−1, tn−1)(γn−1, t
′
n−1)vn−1 . . . (q1, t1)(γ1, t

′
1)v1 (q0, t0),

where each vi = (a1
i , u

1
i ) . . . (ali

i , uli
i ) is a timed word over Σ. Additionally we

require that for each i ≤ n and j = 1, . . . , li, the following conditions hold:

(P1). Structure:

qi ∈ Q, γi ∈ ∆, aj
i ∈ Σ, γi = 〈qi−1, x, qi〉, qn = qf and a1

n . . . aln
n = wf .

(P2). Distribution in time:

n−i = ti < t′i < u1
i < u2

i < . . . < uli
i < ti+1 = n−i+1.
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(P3a). Epsilon move: if γi = 〈qi−1, ε, qi〉 then (vi + 1) 2 vi−1.
(P3b). Write move: if γi = 〈qi−1, !a, qi〉 then either vi = (a, u1

i )v′ and v′ + 1 2
vi−1, or (vi + 1) 2 vi−1.

(P3c). Read move: if γi = 〈qi−1, ?a, qi〉 then vi−1 = v′(a, t)v′′ for some timed
words v′, v′′ and t ∈ R+, such that (vi + 1) 2 v′.

Lemma 4.7. S has a computation of the form (2) ending in (qn, wn) = (qf , wf )
if and only if there exists a lossy computation encoding ending in (qf , wf ) as in
Definition 4.6.

Our aim is:

Lemma 4.8. A purely universal automaton A can be effectively constructed such
that L(A) contains precisely all lossy computation encodings ending in (qf , wf ).

The proof of this lemma will occupy the rest of this section. Automaton A will
be defined as a conjunction of four automata, each responsible for some of the
conditions from Definition 4.6:

A := Astruct ∧ Aunit ∧ Astrict ∧ Acheck.

All four automata will be purely universal and will use at most one clock. Au-
tomaton Astruct verifies condition (P1), automata Aunit and Astrict jointly check
condition (P2), and Acheck enforces the most involved conditions (P3a) – (P3c).

We omit an obvious definition of Astruct. We also omit the construction of the
automaton Aunit checking that letters from Q appear precisely at times 0, 1, . . . , n.
Automaton Astrict will accept a timed word iff the first letter is at time 0 and no
two consecutive letters appear at the same time. This can be easily achieved by
the following rules:

s0,Σ, x = 0 *→ (s, ∅) s,Σ, x > 0 *→ (s, {x}).

with s0 an initial state and both s0, s as accepting ones. For readability of notation,
when no clock is reset, as in the first rule above, we will omit writing it explicitly.
Moreover, for conciseness, we implicitly assume that the automaton fails to accept
from a state, if no rule is applicable in that state.

The above mentioned automata are not only purely universal but also purely
existential, i.e., deterministic. The power of universal choice will be only used in
the last automaton Acheck, that checks for correctness of each transition step of S.
While analysing definition of Acheck we will comfortably assume that an input word
meets all conditions verified by the other automata, otherwise the word is anyway
not accepted.

The transition rules of Acheck from the initial state s0 are as follows:

s0, q, tt *→ s0 ∧ (sstep, {x}), for q ∈ Q \ {q0}
s0, q0, tt *→ 5

s0,Σ ∪∆, tt *→ s0.

Intuitively, at each q ∈ Q, except at q0, an extra automaton is run from the state
sstep, in order to check correctness of a single step. Symbol 5 on the right-hand
side stands for a distinguished state that accepts unconditionally.
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Now the rules sstep, γ, . . . *→ . . . depend on γ = 〈q, x, q′〉. There are three cases,
corresponding to conditions (P3a), (P3b) and (P3c), respectively.

I. Case γ = 〈q, ε, q′〉:. sstep, 〈q, ε, q′〉, tt *→ schannel.

In state schannel, the automaton checks the condition (P3a), i.e., whether all
consecutive letters from Σ are copied one time unit later. This is done by:

schannel, a, tt *→ schannel ∧ (s+1
a , {x}), for a ∈ Σ

schannel, q, tt *→ 5, for q ∈ Q.

Hence, the automaton starts a check from s+1
a at every letter read. Note that this

is precisely here where the universal branching is essential. The task of s+1
a is to

check that there is letter a one time unit later:

s+1
a , a, x = 1 *→ 5

s+1
a ,Σ, x < 1 *→ s+1

a .

II. Case γ = 〈q, !a, q′〉:. sstep, 〈q, !a, q′〉, tt *→ s!a.

From state s!a the automaton is responsible for checking the correctness of the
operation !a, i.e., condition (P3b):

s!a, a, tt *→ schannel

s!a, b, tt *→ (s+1
b , {x}) ∧ schannel, for b ∈ Σ \ {a}

s!a, q, tt *→ 5, for q ∈ Q.

First rule reads simply the letter a and then starts the check from schannel. This is
the correct behaviour both when the written message was not forgotten, and when
after forgetting it the first message is still a. The second rule deals with the case
when the a written to the channel has been lost immediately. The last rule deals
with the case when not only the a has been lost, but moreover the channel is empty.

III. Case γ = 〈q, ?a, q′〉:. sstep, 〈q, ?a, q′〉, tt *→ s?a ∧ (stry?a, {x}).

The behaviour of s?a is very similar to schannel but additionally it will start a
new copy of the automaton in the state stry?a. The goal of stry?a is to check for the
letter a at the end of the present configuration.

s?a, b, tt *→ s?a ∧ (s+1
b , {x}) ∧ (stry?a, {x}), for b ∈ Σ

s?a, Q, tt *→ 5.

Note the clock reset when entering to stry?a. As we cannot know when the config-
uration ends we start stry?a at each letter read. If we realize that this was not the
end (we see another channel letter) then the check just succeeds. If this was the
end (we see a state) then the true check starts from the state scheck?a:

stry?a,Σ, tt *→ 5
stry?a, Q, tt *→ scheck?a.
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From scheck?a we look for some a that appears more than one time unit later:

scheck?a,Σ, x ≤ 1 *→ scheck?a

scheck?a, a, x > 1 *→ 5
scheck?a, b, x > 1 *→ scheck?a, for b ∈ Σ\{a}.

Automaton Acheck has no other accepting states but 5.
By the very construction, A satisfies Lemma 4.8. By Lemma 4.7, S has a com-

putation (2) ending in (qf , wf ) if and only if L(A) is nonempty. This completes the
proof of Theorem 4.1.

5. SILENT TRANSITIONS

In this section we point out that by extending the alternating timed automata model
with ε-transitions we lose decidability. It is known that ε-transitions extend the
power of nondeterministic timed automata [Alur and Dill 1994; Bérard et al. 1998].
Here we show some evidence that every extension of alternating timed automata
with ε-transitions will have undecidable emptiness problem.

It turns out that there are many possible ways of introducing ε-transitions to
alternating timed automata. To see the issues involved consider the question of
whether such an automaton should be allowed to start uncountably many copies of
itself or not. Facing these problems we have decided not discuss virtues of different
possible definitions but rather to show where the problem is. We will show that
the universality problem for purely existential automata with a very simple notion
of ε-transitions is undecidable.

Timed words are written here in the same convention as in previous section:
w = (a1, t1)(a2, t2) . . . (an, tn) means that the letter ai appeared at time ti since
the beginning of the computation.

We consider purely existential (i.e. nondeterministic) automata with one clock.
We equip them now with additional ε-transitions of the form q, ε,σ *→ b. The
following trick is used to shorten formal definitions.

Definition 5.1. A nondeterministic timed automaton with ε-transitions over Σ is
a nondeterministic timed automaton over the alphabet Σε = Σ ∪ {ε}.
For convenience, we want to distinguish an automaton A with ε-transitions over Σ
from the corresponding automaton over Σε; the latter will be denoted Aε. Given a
timed word v over Σε, by |v|ε we mean the timed word over Σ obtained from w by
erasing all (timed) occurrences of ε.

Definition 5.2. A timed word over Σ is accepted by a timed automaton A with
ε-transitions if there is a timed word v over Σε accepted by Aε such that w = |v|ε.
Note that according to the definition, an accepting run is always finite. The main
result of this section is:

Theorem 5.3. The universality problem for one-clock nondeterministic timed
automata with ε-transitions is undecidable.

The proof is by reduction of the reachability problem for perfect channel systems,
defined similarly as lossy reachability in Definition 4.4, but w.r.t. perfect compu-
tation of channel systems. Not surprisingly, a perfect computation is any finite
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sequence of (perfect) transitions:

(q0, ε)
γ1−→ (q1, w1)

γ2−→ (q2, w2) . . .
γn−→ (qn, wn),

Theorem 5.4 [Brand and Zafiropulo 1983]. The perfect reachability prob-
lem for channel systems is undecidable, assumed |Σ| ≥ 2.

Given a channel system S = (Q, q0,Σ,∆) and a configuration (qf , wf ), we effectively
construct a one-clock nondeterministic timed automaton with ε-transitions A′ over
Σ. Automaton A′ will accept precisely the complement of the set of all perfect
computation encodings ending in (qf , wf ), defined by:

Definition 5.5. A perfect computation encoding ending in (qf , wf ) is defined as
in Definition 4.6, but with the conditions (P3a) – (P3c) replaced by:

(P3a). if γi = 〈qi−1, ε, qi〉 then (vi + 1) = vi−1,
(P3b). if γi = 〈qi−1, !a, qi〉 then (vi + 1) = (a, t)vi−1, for some t ∈ R+.
(P3c). if γi = 〈qi−1, ?a, qi〉 then (vi(a, t) + 1) = vi−1, for some t ∈ R+.

Since each perfect computation encoding is a lossy one, A′ will be defined as a
disjunction, A′ := ¬A ∨ Â, of the complement of the automaton A from the
previous section and another automaton Â. As automaton ¬A takes care of all
timed words that are not lossy computation encodings, it is enough to have:

Lemma 5.6. Automaton Â accepts precisely these lossy computation encodings
ending in (qf , wf ) that are not perfect computation encodings.

This will be enough for correctness of our reduction: A′ will accept precisely the
complement of the set of all perfect computation encodings.

In the rest of this section we sketch the construction of the automaton required
by Lemma 5.6.

When defining the behaviour of Â we can conveniently assume that the input
word is already a lossy computation encoding. The aim of Â is to find a loss of a
message in the channel. This will be achieved, roughly, via an ε-rule trying to guess
a moment t in time such that there is no message occurrence at time t but there
is one at time t+1. Of course, Â (and hence A′ as well) will have a single clock x
and the input alphabet is Σ = Q ∪ Σ ∪∆.

The transition rules of Â from the initial state s0 are:

s0, q, tt *→ s0 ∨ sstep for q ∈ Q \ {q0}
s0,Σ ∪∆, tt *→ s0.

Intuitively, at each q ∈ Q, except at q0, Â chooses either to check correctness of
this single step or to skip it. Â will have no accepting states but 5 that we will use
later.

Now the rules sstep, γ, . . . *→ . . . for state sstep depend on γ = 〈q, x, q′〉. There
are three cases, corresponding to conditions (P3a), (P3b) and (P3c), respectively.
As the rules follow a similar pattern to that in Section 4, we present only the
simplest case when γ = 〈q, ε, q′〉.

sstep, 〈q, ε, q′〉, tt *→ (schannel, {x}).
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In state schannel, the automaton searches for a message loss. Here we need ε-
transitions to choose the right moment to move to state s+1:

schannel, ε, x > 0 *→ (s+1, {x})
schannel,Σ, tt *→ (schannel, {x})

The task in state s+1 is to wait precisely one time unit and then check for a letter,
similarly as state s+1

a in Section 4. Transition from schannel to s+1 is only possible
when x > 0. As x is reset at each letter read, this ensures a positive delay between
any letter and an ε-move.

s+1,Σ, 0 < x < 1 *→ s+1

s+1,Σ, x = 1 *→ 5

The only way of accepting from s+1 is to consume a number of letters while 0 < x <
1 and finally find a letter at x = 1. Note strictness of the left-hand side inequality
in 0 < x < 1. It is crucial here and excludes x = 0, that would mean that some
letter occurred in the input word at the moment of the ε-move that entered into
s+1.

This completes our description of the construction of the automaton Â as required
by Lemma 5.6. Having it we have the automaton A′ which shows Theorem 5.3.

6. INFINITE WORDS

In this section we consider one-clock alternating timed automata over infinite words
with Büchi acceptance condition. The acceptance game is defined similarly as in
Section 2, but it is played over an ω-word

(a1, t1)(a2, t2) . . . ,

where t1 < t2 < . . .. Hence each play (q0,v0), (q1,v1), . . . is infinite. The winner is
Eve iff an accepting state appears infinitely often, i.e., qi ∈ F for infinitely many
indices i. We do not explain the details since we will only consider nondeterministic
automata in this section (i.e., only Eva plays). We prove the following result.

Theorem 6.1. The universality problem for one-clock nondeterministic Büchi
timed automata is undecidable.

As a direct corollary, emptiness problem of one-clock alternating Büchi automata
is undecidable as well.

To prove Theorem 6.1 we code the halting problem of a Turing machine. We can
assume that the Turing machine starts the empty tape and accepts by reaching a
unique accepting state qacc. Furthermore, we assume that the machine is determin-
istic, i.e., we have a transition function δ specifying for each control state q and tape
symbol a a triple δ(q, a) = (d, q′, b) consisting of a head direction d ∈ {←, ·,→},
new state q′ and letter b to be written onto the tape in place of a.

The idea of the reduction is based on the fact that instead of considering a
computation that just stops in an accepting state we will encode existence of a
computation that after reaching an accepting state clears the tape with blanks and
restarts. Thus the accepting computation is rather a repetitive accepting com-
putation. As the machine is deterministic, the same execution will be essentially
replayed infinitely often.
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We code a sequence of configurations as before, each configuration should fit in
a unit interval. We make our simulation in such a way that the first configuration
is already of length sufficient for the whole computation, hence in the simulation of
machine steps we will never have to add or remove tape positions.

The nondeterministic automaton we are going to construct will accept the se-
quences that are not encodings of the repetitive accepting computation of the ma-
chine. With one clock we can check that there is a cheating, i.e., letter a in one
configuration is changed to b in the next although it should have not. We can also
check that a letter disappeared (it was in one configuration and not in the next).
What we cannot check directly is that there are new letters in the next configura-
tion, i.e., there can appear new tape positions that were not there before. But if this
kind of inserts happen infinitely often then we can find a sequence of tape symbols
appearing at times t1 < t2 < . . . such that the sequence fract(t1), fract(t2), . . . is
either strictly increasing or strictly decreasing. This can be checked by a nondeter-
ministic Büchi automaton with one clock. Hence, we can construct an automaton
that does not accept the sequences where there are no cheatings, no disappearances
and only finitely many inserts. In such a sequence we have, from some position on,
a correct and accepting computation of the Turing machine. Thus, the nondeter-
ministic automaton will not accept some word iff the machine halts, i.e., accepts
from the empty tape.

Now we will make all these intuitions more formal. Let M be a fixed Turing
machine in the rest of this section; by Q and Σ let us denote the set of control
states and tape alphabet of M, respectively. Assume that a blank symbol B is in
Σ. Given M, we will effectively construct a nondeterministic Büchi automaton A
with a single clock x over the input alphabet Σ = Q∪Σ∪Σ×{H}. A letter 〈a, H〉, for
a ∈ Σ, represents a tape symbol a with the head over it. We put ΣH = Σ∪Σ×{H}.

The configuration of M is a pair (q, w) consisting of a control state q ∈ Q and
a word w ∈ ΣH

∗ representing the tape content. The transition function δ of M
gives rise to a relation between configurations, describing the single step of M. We
will denote this by qw −→ q′w′, to say that a single step from configuration (q, w)
yields a new configuration (q′, w′) and that w and w′ are of the same length. So
we will model computation that does not go outside w with the idea that enough
space was allocated in the initial configuration.

This notation assumes a fixed size of tape available, i.e., w and w′ are of the
same length and the head may not move outside w. For convenience, we will also
write qv ! q′v′ for timed words v and v′ if q untime(v) −→ q′untime(v′) holds and
time-stamps are identical in v and v′ (note that v and v′ are of the same length in
particular); untime(v) stands for the word v after removing time-stamps.

Definition 6.2. By a recurrent accepting computation encoding we mean any
timed word w over Σ of the form:

(q0, t0) v0 (q1, t1) v1 . . . ,

such that the following conditions hold:

(P1). Structure: each qi ∈ Q and each vi = (a1
i , u

1
i ) . . . (ali

i , uli
i ) is a nonempty

finite timed word over ΣH such that precisely one of a1
i . . . ali

i is in Σ×{H}.
(P2). Distribution in time: i = ti < u1

i < u2
i < . . . < uli

i < ti+1 = i+1.
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(P3). Acceptance: q0 is the initial state of M, each of a1
0 . . . al0

0 is in {B, 〈B, H〉},
and qi = qacc for infinitely many i.

(P4). Recurrence: whenever qi−1 = qacc, then qi = q0 and a1
i , . . . , a

li
i ∈ {B, 〈B, H〉}.

(P5). Steps: whenever qi−1 ,= qacc, qi−1(vi−1 + 1) ! qiv, for some v 2 vi.
(P6). Insertions bound: w contains no infinite subsequence (a0, u0)(a1, u1) . . .

such that u0 < u1 < . . ., ai ∈ ΣH for all i ≥ 0, and the sequence

fract(u0), fract(u1), . . .

is either strictly increasing or strictly decreasing.

Lemma 6.3. Started with the empty tape, the machine M accepts if and only if
there exists a recurrent accepting computation encoding as in Definition 6.2.

Proof. Assume M accepts. There is a sequence

q0w0 −→ q1w1 . . . −→ qnwn

where qn = qacc and w0 is a finite word over ΣH representing a sufficiently big
portion of initially empty tape to store the computation. Hence, there is a re-
current accepting computation encoding obtained by repeating infinitely the word
q0w0q1w1 . . . qnwn; time-stamps for tape symbols in w0, w1, . . . can be chosen ar-
bitrarily to satisfy (P2) and (P5).

For the opposite direction, assume that some recurrent accepting computation
encoding w exists.

By (P6), it contains only finitely many insertions, where by an insertion we mean
a pair (a, t), a ∈ ΣH, appearing in w such that no letter appears at time t − 1 in
w. Indeed, assume otherwise, i.e., assume that the number of insertions in w is
infinite. Build the infinite sequence of all the insertions, in the order they appear in
w. The fractional parts fract(t) of all the time-stamps form an infinite sequence of
reals in (0..1), with no number appearing twice. Such a sequence has necessarily a
subsequence that is either strictly increasing or strictly decreasing – contradiction
with (P6).

By (P3) and (P4), w contains infinitely many restarts of the machine. This
implies that there is a restart followed by no insertion any more. Hence, from this
position on, the encoding simulates the machine faithfully and provides the halting
run of the machine.

The undecidability result will follow from the next lemma.

Lemma 6.4. A nondeterministic automaton A can be effectively constructed such
that L(A) contains precisely all timed words that are not recurrent accepting com-
putation encodings.

The automaton A is a disjunction of six automata, each of them accepting timed
words that do not satisfy one of conditions (P1)–(P6), respectively. We omit the
automata for (negation of) (P1)–(P4) and focus on the other two conditions only.
While analysing the definitions we may assume conveniently that the input word
satisfies conditions (P1)–(P4).

Automaton for negation of (P5), in its initial state s0, at each letter q ∈ Q
read, decides nondeterministically either to check this step, or to keep searching for
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another step to check; in the former case, it guesses a move of the head in this step:

s0, q, tt *→ sq
← ∨ sq

→ ∨ sq
· ∨ s0, for q ∈ Q

s0,ΣH, tt *→ s0.

To show the idea, we present in detail the transition rules from state sq
· only; but we

omit transitions from sq
← and sq

→, as they are conceptually similar. In state sq
· , the

automaton needs to check that the next configuration differs from the configuration
determined by a single machine step from the current configuration. The automaton
can check tape symbols appearing precisely one unit later that some symbol in the
current configuration; hence insertions are pretty allowed.

sq
· , a, tt *→ (s+1

a , {x}) ∨ sq
· , for a ∈ Σ

sq
· , 〈a, H〉, tt *→ (s+1

〈b,H〉, {x}) ∨ sq′

cont, if δ(q, a) = (·, q′, b)

sq
cont, a, tt *→ (s+1

a , {x}) ∨ sq
cont

sq
cont, q

′, tt *→ 5, if q′ ,= q.

Observe that the automaton fails to accept from sq
· if the head move in current

configuration is not ’·’, i.e, the automaton’s guess has been incorrect. The task
from state s+1

a , for a ∈ ΣH, is merely to check that the letter appearing one unit
later is not equal to a, or that there is no such letter at all:

s+1
a ,Σ, x < 1 *→ s+1

a

s+1
a , b, x = 1 *→ 5, if a ,= b

s+1
a ,Σ, x > 1 *→ 5.

The only accepting state is 5.
Now we switch to condition (P6). The task is to recognize a strictly increasing

or strictly decreasing subsequence as defined in (P6), hence the automaton is a
disjunction Ainc ∨ Adec. For simplicity of analysis, assume that the input word
satisfies all previous conditions (P1)–(P5). In particular, for each letter appearing
at time t, say, there is another letter at time t + 1.

As a preparation, consider the following transition rules, from states s and s̄,
respectively:

s,ΣH, tt *→ s

s,Q, x < 1 *→ s̄

s, Q, x = 1 *→ (s, {x})

s̄,ΣH, x < 1 *→ s̄

s̄,ΣH, x = 1 *→ (s, {x})
s̄, Q, tt *→ (s̄, {x})

Imagine that the clock x has been reset at some letter a ∈ ΣH of the input word.
Now, starting from state s, the above rules describe scanning of the word in the
following cycle: scan all letters in ΣH staying in state s, then on q ∈ Q change the
state to s̄; then scan the following letters in ΣH until x = 1, i.e., until precisely one
time unit elapses since the last clock reset; then reset the clock again and change to
state s; and so on. Hence, the whole word is conceptually split into segments deter-
mined by the clock resets, and each segment is typically scanned in two “phases”:
first the s-phase and then the s̄-phase. The transition from s to s̄ can happen when
we see a state from Q; thus only at integer times by property (P2). The only small
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difference appears when one of the phases starts by a clock reset at some letter
q ∈ Q; in this case the other phase is degenerate and the bottom-most transition
rules for s and s̄ apply. In fact this is the case initially, since for the initial state of
Ainc and Adec we choose s and s̄, respectively.

Having these rules, definition of Ainc and Adec requires only appropriate handling
of moments where additional clock resets may be done. In Ainc the additional clock
resets will be enabled only during s-phase, while in Adec only in s̄-phase.

We will need a third state s′ with the following rules:

s′,ΣH, tt *→ s′

s′, Q, tt *→ s̄,

enabling to mimic the s-phase, but not enabling for any additional clock reset until
some q ∈ Q is observed. State s′ will be the only accepting state in both Ainc

and Adec and will be intentionally visited at each consecutive letter belonging to
a strictly increasing (or decreasing) subsequence. Now, to complete the definition
of Ainc, we allow the transition from s to s′ by replacing the first rule for s by the
following rule:

s,ΣH, tt *→ s ∨ (s′, {x}).

Notice that we do not allow to reset clock more than once in one s-phase (by the
first rule for s′). But as we have assumed (P1)–(P5), we know that each letter
reappears, perhaps not identically, one unit later. Hence we will not miss a strictly
increasing subsequence, but only “postpone” capturing its next element to the next
s-phase.

Similarly, to complete the definition of Adec, we allow the transition from s̄ to s′

by replacing the first rule for s̄ by the following one:

s̄,ΣH, x < 1 *→ s̄ ∨ (s′, {x}).

This completes description of automaton A needed for the proof of Lemma 6.4
and hence also the proof of Theorem 6.1.

7. FINAL REMARKS

In this paper we have explored the possibilities opened by the observation that the
universality problem for nondeterministic timed automata is decidable [Ouaknine
and Worrell 2004] We have extended this result to obtain a class of timed automata
that is closed under boolean operations and that has decidable emptiness problem.
We have shown that despite being decidable the problem has prohibitively high
complexity. We have also considered the extension of the model with epsilon tran-
sitions. The undecidability result for this model points out what makes the basic
model decidable and what further extensions are not possible. Finally, maybe some-
what surprisingly, we prove that the universality for 1-clock nondeterministic timed
automata but over infinite words is undecidable.

We see several topics for further work:

—Adding event-clocks to the model and/or extending from timed words to trees.
It seems that in both cases one would still obtain a decidable model.
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—Decidability of the universality problem for one-clock co-Büchi automata is still
open.

—Finding logical characterisations of the languages accepted by alternating timed
automata with one clock. Since we have the closure under boolean operations,
we may hope to find one.

—Finding a different syntax that will avoid the prohibitive complexity of the empti-
ness problem. There may well be another way of presenting alternating timed
automata that will give the same expressive power but for which the algorithmic
complexity of the emptiness test will be lower.

ACKNOWLEDGMENTS

We would like to thank the referees for helpful remarks.

REFERENCES

Abdulla, P. and Jonsson, B. 1998. Veryfying networks of timed processes. In Proc. TACAS’98.
298–312.

Abdulla, P. and Jonsson, B. 2001. Timed petri nets and BQOs. In Proc. ICATPN’01. 53–70.
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