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Abstract - Another class of distributions is proposed to model 
the terrain backscatter, namely the class of the generalized 
inverse Gaussian distributions. Besides allowing the explicit 
calculation of the density of the random variable that models 
the radar return, these distributions have the remarkable 
property of having the gamma and other distributions as 
particular cases. The resulting distributions for complex, mul- 
tilook intensity and multilook amplitude data are derived 
assuming the multiplicative model. These new densities yield 
to a more general model than the classical one, which is given 
by the class of K distributions. Several plots are presented, 
showing the flexibility of these new distributions and its pos- 
sible use as a model for SAR data. 

INTRODUCTION AND SAR IMAGE FORMATION 

The multiplicative model has been widely used in the 
modelling, processing and analysis of synthetic aperture radar 
images. It assumes that the observations within this kind of 
image are the outcome of a random variable that can be 
decomposed in the product of two other independent random 
variables: one (Y) modelling the speckle noise, and the other 
( X )  modelling the terrain backscatter -which is always con- 
sidered real positive-. Therefore, the observed value is the 
outcome of the random variable defined by the product 
Z = XY. Three types of data are considered in this work, 
namely complex, intensity, and amplitude; their representation 
with the multiplicative model will be denoted using the 
indexes "C", "P', and "A" respectively. 

For complex data it is usually assumed that the speckle noise 
is a pair (vector) of independent identically distributed Gaus- 
sian random variables Y ,  = (Ya, U,) with zero mean and vari- 
ance u2 = 1/2 (this distribution is denoted by N2(0,1/2)), 
and complex data is modelled as 2, = (&,Z*) = X,,Yc. One 
look intensity data is formed taking the modulus of Z,, namely 
Z,  = X i  lYJ2; while n-looks data is obtained averaging one 
look independent intensity observations, i.e. 
Z, = Xi.-' ~ ; ~ J Y & ) 1 2 .  Amplitude data is obtained taking 
the square root of intensity data. These assumptions are well 
justified by the physics of illumination, which uses coherent 
radiation to form the image. 

Using the aforementioned hypothesis Y, has a gamma 
distribution, denoted here Y, - T(a,l), characterized by the 
density 

with a = A = n. The amplitude speckle is characterized by 
the square root of gamma distribution, denoted fi(a,A), 
whose density is 

fyA(x; a, A) = 2la/(T(a))P-' exp( - Ax'), x ,  a ,  1 > 0, 
with a = A = n. 
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fy, (x; a ,  A) = Aa/(T(a))xa-' exp (- kx), x ,  a ,  A > 0, 
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In order to model the terrain backscatter (X,,), several 

distributions could be used. In particular, the distribution of a 
constant (a probability mass equal to one) seems to be well 
suited to homogeneous areas, whilst a square root of gamma 
distribution has been used for inhomogeneous targets. The 
former leads to model 2, (Z,,, Z,) as a normal distribution 
(square root of gamma and gamma distributions, resp.), while 
the latter leads to K distributions [2,7]. 

K distributions are characterized by the following densities: 

where Kv is the modified Bessel function of the third kind and 
order v, a , l  > 0, a/l = fj and x E R for the first and 
x E R+ for the last two densities. These distributions are 
denoted by, respectively, W(a,A), W(a,P,n) and 
=(a, p, n). The r-th order moments of these distributions are 

if P is odd 

E(G) = E(Z;/'). 
The assumption of a square root of gamma distribution for 

the modelling of the amplitude backscatter (or, equivalently, 
a gamma distribution for the intensity backscatter) is mainly 
based on empirical evidence, though some theoretical results 
can be found in [2]. It is a very convenient hypothesis, since 
it allows the explicit derivation of the resulting density. Many 
other distributions for the backscatter do not have this property 
as, for instance, it is not possible to obtain -in general- the 
density of the random variable defined as the product of a 
gamma distributed random variable by a normally distributed 
one. 

In this paper, the use of the generalized inverse Gaussian dis- 
tribution is proposed as a more general model for the intensity 
backscatter, and the related densities are derived. This dis- 
tribution is characterized by the density 

It is denoted X, - N"(&y,l), with parameters domain 
given by 



if a < 0 ,  

(1) 

The r-th order moments of a N-’(a,y,A) distributed ran- 
dom variable are given by 

- .  . . 
It can be proved that this distribution has the following 

important particular cases: 
0 the gamma distribution, since X, - T(a, A) if y = 0; 
0 the distribution of the reciprocal of a gamma distributed 

0 the inverse Gaussian distribution, if a = - 1/2; 
0 the distribution of a reciprocal inverse Gaussian variate, if 

a = 1/2,and 
0 the hyperbola distribution, when a = 0. 

This distribution was proposed in [31, and it has found many 
remarkable applications [ 1,5,6]. 

The distribution of the square root of a .K’-’(a,y, A) distrib- 
uted random variable will be used to model the amplitude 
backscatter. Its density, denoted by N-’I2(a, y, A), is given by 

random variable, if 1 = 0; 

and its r-th order moments are given by E(X;) = E(X;/’), 
whith E(X2 given in eq. (2). 

THE 9 DISTRIBUTIONS 
In [4] an extension of K distributions is presented, using a 

drift in the random walk that generates the speckle noise. In 
this paper these distributions are extended to a different dis- 
tribution using the square root of generalized inverse Gaussian 
distribution as the model for the amplitude backscatter, while 
keeping the complex speckle noise as a pair of independent 
identically distributed Gaussian random variables. 

Using the multiplicative model 2, = X,,Y,-, and assuming 
that X,, - N-’/’(a,y,A) and Y ,  - N2(0,1/2) are indepen- 
dent, then it can be proved that the density of either component 
of Zc is given by 

This distribution, denoted here as 9C(a, y, A), has been studied 
in [l] where it is a special case of the generalized hyperbolic 
distributions, and is denoted by 36(a,2fi,O,fi,O). Its 
parameters domain is given in eq. (1). It is symmetric and uni- 
modal, with the mode at the origin; its r-th order moments are 
given by 
E(Z;& = E(Z;,) = 

(0 if r is odd - 

Now turning to the intensity case, it is possible to prove that 
the distribution of the product of two indenpendent random 

variables X, - X-’(a, y, A) and Y, - r(n, n) is characterized 
by the density 

Ka-nQJWy + x > 0, 
with n > 0 and the remaining parameters domain given in 
eq. (1). This distribution is denoted 2, - q(a ,  y, 1, n); its r-th 
order moments are given by 

It is possible to see that this- distribution includes the afore- 
mentioned 961 distribution, since it can be proved that 
@(a, 0, A, n) = W(a, a/1, n), where the sign “ =” should be 
understood as “equivalence between distributions”. 

If amplitude, rather than intensity, data are considered, the 
distribution of the echo return is the distribution of the product 
of two independent random variables X,, - ,FT-’f2(a, y, 1) and 
YA - f i  (n, n), which is given by the density 

K a - , , ( 2 j m ) ,  x > 0. 
Its parameters domain is the same of eq. (3). This distribution 
is denoted 2, - @l(a,y,A,n); its r-th order moments are 
given by 

~ a + r / 2 ( 2 f i ~ ~ n  + r/2) y ‘I4 
= Ka(2 fir(.> (x) * 

It is possible to prove that, setting y = 0 and fl = a/A, the 
($4 distribution becomes the distribution of the square root of 
a W(a,  fl, n) distributed random variable. 

Figs. 1 to 4 show examples of the distributions presented in 
this work for three different types of areas: homogeneous (H), 
moderately heterogeneous (M) and extremely heteroge- 
neous (E). Fig. 1 shows the densities associated to the back- 
scatters of H (a constant equal to m), M (fi(2,2/5000)) 
andE(.K’-’12(-3, 104,2.96 - 10-ls)).Theseparameterswere 
chosen to generate complex distributions with the same fist 
and second moments. 

In Fig. 2 the resulting complex distributions are shown: H (a 
Gaussian distribution with zero mean and variance 2500), M 
(96C(2,2/5000)) and E (gC(-3, 104,2.96 lO-I5)). Fig. 3 
shows the associated intensity densities to H (r(l,1/5OOO)), 
M (961(2,5000,1)) and E (q( - 3, 104,2.96 - 1)). 
Fig. 4 presents the associated amplitude densities to the three 
types of areas: H (fi(l,l/5000)), M (96A(2,5000,1)) and E 

It is interesting to note that, though all the complex distribu- 
tions have zero means and variances equal to 2500, the 
associated @variance in the intensity domain is larger than the 
corresponding 961 variance which, in turn, is larger than the r 
one, though they all have the Same intensity mean. One 
implication of this fact is that, for the same intensity mean, the 
inclusion of new parameters yields to distributions that allow 
larger variances and, with higher probabilities, the appearance 

(g~(-3,104,2.96 - 10-15,i)). 
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of larger backscatter values; in this way, heterogeneous areas 
can be modelled better. 

CONCLUSIONS AND FUTURE WORK 
It has been shown that the use of M-l distributions for the 

intensity backscatter yields to a more general model for S A R  
data than the use of I? distributions, whilst preserving (and 
extending) all the relations presented in [7]. The same idea 
could be applied to the extension of the speckle. 

Parameters estimation procedures are being studied for the 
QC, g and (JA distributions. The discriminatory capabilities 
of its estimated parameters are also under evaluation. 
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Fig. 3: Intensity return densities. 
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Fig. 4: Amplitude return densities. 
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