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Abstract

Background: Combining genomic data sets from multiple studies is advantageous to increase statistical power in
studies where logistical considerations restrict sample size or require the sequential generation of data. However,
significant technical heterogeneity is commonly observed across multiple batches of data that are generated from
different processing or reagent batches, experimenters, protocols, or profiling platforms. These so-called batch effects
often confound true biological relationships in the data, reducing the power benefits of combining multiple batches,
and may even lead to spurious results in some combined studies. Therefore there is significant need for effective
methods and software tools that account for batch effects in high-throughput genomic studies.

Results: Here we contribute multiple methods and software tools for improved combination and analysis of data
from multiple batches. In particular, we provide batch effect solutions for cases where the severity of the batch effects
is not extreme, and for cases where one high-quality batch can serve as a reference, such as the training set in a
biomarker study. We illustrate our approaches and software in both simulated and real data scenarios.

Conclusions: We demonstrate the value of these new contributions compared to currently established approaches
in the specified batch correction situations.
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Background
In the past two decades, owing to the advent of novel

high-throughput techniques, tens of thousands of genome

profiling experiments have been performed [1, 2]. These

massive data sets can be used for many purposes, includ-

ing understanding basic biological function, classifying

molecular subtypes of disease, characterizing disease

etiology, or predicting disease prognosis and severity.

Initially, the majority of these studies were completed

using microarray platforms, but sequencing platforms

are now common for many applications. Across these

platforms, thousands of variations on technology and

annotation have been used [3]. Scientists who seek to

integrate data across platforms may experience difficulty

because platforms introduce distinct technological biases
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and produce data with different shapes and scales. For

example, gene expression microarrays typically measure

transcription levels on a continuous (log-) intensity scale,

whereas RNA-sequencing measures the same biological

phenomena with overdispersed and zero-inflated count

data. Furthermore, even with data from the same plat-

form, large amounts of technical and biological hetero-

geneity is commonly observed between separate batches

or experiments. Due to the high cost of these experi-

ments or the difficulty in collecting appropriate samples,

datasets are often processed in small batches, at different

times, and in different facilities. This proves to be a diffi-

cult challenge to researchers wanting to combine studies

to increase statistical power in their analyses.

One illustrative example of cross-platform (and within-

platform) heterogeneity can be found in The Cancer

Genome Atlas (TCGA) [4]. Profiling data types collected

by TCGA include RNA expression, microRNA expres-

sion, protein expression, DNA methylation, copy number

variation, and somatic mutations. Within each profiling

type, multiple platforms are often used. For example, RNA
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expression has been measured with RNA-sequencing

(using multiple different protocols) and several differ-

ent microarray platforms including Agilent G4502A,

Affymetrix HG-U133A, and Affymetrix Human Exon 1.0

ST, among others. Many of the tumor samples are profiled

by only a subset of the possible data types and platforms,

and in almost all cases the samples within each platform

were generated in multiple experimental batches. This

presents problems to researchers wanting to do compre-

hensive and integrative analyses, as they often limit their

analyses to a single data type or platform. Furthermore,

other existing data resources (e.g. ENCODE, LINCS,

Epigenome Roadmap) utilize different platforms and pro-

tocols, and researchers often want to combine their own

experimental data with data from these public reposito-

ries. Therefore, these necessitate robust and sophisticated

standardization and batch correction methods in order

to appropriately integrate data within and across these

consortiums.

Many prior studies have clearly established the need for

batch effect correction [5, 6]. To address these difficulties,

existing tools have been developed for batch correction.

Some of the first batch effect methods relied on singular

value decomposition (SVD) [7], machine learning classi-

fication approaches (DWD) [8], or a block linear model

(XPN) [9]. The SVD approach relies on the identification

of batch effects by the unsupervised matrix decompo-

sition, which will commonly result in the removal of

biological signal of interest. The DWD and XPN meth-

ods provide supervised approaches for combining data,

but are mostly used to combine two batches at a time,

and do not account for treatment effects. These methods

need to be applied multiple times in an ad hoc man-

ner for studies with three or more batches, and are not

flexible enough to handle multiple experimental condi-

tions, or studies with unbalanced experimental designs.

More recent and flexible methods rely on robust empir-

ical Bayes regression (ComBat) [10], the efficient use of

control probes or samples (RUV) [11], or more sophis-

ticated unsupervised data decomposition (SVA) [12] to

remove heterogeneity from multiple studies while pre-

serving the biological signal of interest in the data, even

when the experimental design across the studies are not

balanced.

However, despite these useful existing approaches for

data cleaning and combination, there are still significant

gaps that need to be addressed for certain data integration

scenarios. For example, the ComBat approach removes

batch effects impacting both the means and variances of

each gene across the batches. However, in some cases, the

data might require a less (or more) extreme batch adjust-

ment. Below, we present higher ordermoment-basedmet-

rics and visualizations for evaluating the extent to which

batch effects impact the data. Then, at least in the case of

less severe batch effects, we propose a simplified empirical

Bayes approach for batch adjustment.

Another limitation of the current ComBat model is that

it adjusts the data for each gene to match an overall, or

common cross-batchmean, estimated using samples from

all batches. While this approach is advantageous for cases

with small sample size or where the batches are of simi-

lar caliber and size, this is not the best solution when one

batch is of superior quality or can be considered a natural

’reference’. In addition, the current ComBat approach suf-

fers from sample ’set bias’ [13], meaning that if samples or

batches are added to or removed from the set of samples

on hand, the batch adjustment must be reapplied, and the

adjusted values will be different–even for the samples that

remained in the dataset in all scenarios. In some cases,

the impact of this set bias can be significant. For example,

consider a biomarker study, where a genomic signature is

derived in one study batch (training set) and then later

applied or validated in future samples/batches (test sets)

which were not collected at the time of biomarker gener-

ation. Once the test sets are obtained and combined with

the training data using ComBat, the post-ComBat training

data may change and the biomarker may need to be regen-

erated. Many statistical tests that are commonly used for

biomarker derivation, such as t-test and F-test, involve

calculating data variance. As ComBat adjustment reduces

or expands the variance for each gene, it will result in a dif-

ferent test statistics, followed by an increased or reduced

P value. This may cause certain genes to be included or

excluded from the biomarker list, resulting in a different

biomarker from before. If ComBat is applied on multiple

training/test combinations separately (i.e. say at differ-

ent times), then the derived biomarker may be different

between different dataset combinations. Therefore, the

value of establishing the training set as a ’reference batch’

to which all future batches will be standardized would

have a significant impact. This would allow the training

data and biomarker to be fixed a priori but still enable the

application of the biomarker on an unlimited set of future

validation or clinical cohorts.

Although these alternative models for batch only rep-

resent alternative formulations of the original ComBat

modeling approach, their implementation will have sig-

nificant downstream impacts on certain batch combina-

tion scenarios. Below, we detail these modifications and

demonstrate their utility and increased efficacy on real

data examples.

Methods
We present several approaches for improved diagnostics

and batch effect adjustment for certain batch adjust-

ment situations. We focus on developing models based on

the ComBat empirical Bayes batch adjustment approach,

although similar methods and models can be applied
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to other existing approaches. One set of diagnostic

procedures attempts to characterize the distributional

(mean, variance, skewness, kurtosis, etc) differences

across batches. We present a solution for the cases where

adjusting only the mean of the batch effect is sufficient

for harmonizing the data across batches. In addition, we

present an approach that allows the user to select a refer-

ence batch, or a batch that is left static after batch adjust-

ment, and to which all the other batches are adjusted. This

approach makes sense in situations where one batch or

dataset is of better quality or less variable. In addition,

this approach will be particularly helpful for biomarker

studies, where one dataset is used for training a fixed

biomarker, then the fixed biomarker is applied onmultiple

different batches or datasets, even at different times. This

approach avoids the negative impacts of test set bias in the

generation of the biomarker signatures. Belowwe describe

the methodological developments for these cases.

ComBat batch adjustment

ComBat [10] is a flexible and straightforward approach

to remove technical artifacts due to processing facility

and data batch. ComBat has been established as one of

the most common approaches for combining genomic

data across experiments, labs, and platforms [14], and has

been shown to be useful for data from a broad range of

types and biological systems [15, 16]. The ComBat batch

adjustment approach assumes that batch effects repre-

sent non-biological but systematic shifts in the mean or

variability of genomic features for all samples within a pro-

cessing batch. ComBat assumes the genomic data (Yijg) for

gene g, batch i, and sample j (within batch i) follows the

model:

Yijg = αg + Xijβg + γig + δigεijg (1)

where αg is the overall gene expression. Xij is a known

design matrix for sample conditions, and βg is the vec-

tor of regression coefficients corresponding to Xij. γig and

δig represent the additive and multiplicative batch effects

of batch i for gene g, which affect the mean and vari-

ance of gene expressions within batch i, respectively. The

error terms, εijg , are assumed to follow a normal distribu-

tion with expected value of zero and variance σ 2
g . ComBat

assumes either parametric or nonparametric hierarchical

Bayesian priors in the batch effect parameters (γig and δig)

and uses an empirical Bayes procedure to estimate these

parameters [10]. This procedure pools information across

genes in each batch to shrink the batch effect parame-

ter estimates toward the overall mean of the batch effect

empirical estimates. These are used to adjust the data

for batch effects. This approach provides a robust and

often more accurate adjustment for the batch effect on

each gene.

Moment-based diagnostics for batch effects

The ComBat model described above robustly estimates

both themean and the variance of each batch using empir-

ical Bayes shrinkage, then adjusts the data according to

these estimates. However, in some cases, adjusting only

the mean of the batches may be sufficient for further anal-

ysis. In other scenarios (see examples in “Results” below),

adjustment of the mean and variance is not sufficient, and

thus the adjustment of higher order moments is needed.

Here, we present multiple diagnostics for interrogating

the shape of the distribution of batches to determine how

batch effect should be adjusted.

As with ComBat, we assume that in the presence of

batch effect, the mean and variance (as well as higher

order moments) of gene expression demonstrate system-

atic differences across batches on a standardized scale

[10]. Thus, we standardize the data as we have done

previously, namely by estimating the model (1) above,

obtaining the estimates for the parameters and calculating

the standardized data, Zijg , as follows:

Zijg =
Yijg − α̂g − Xijβ̂g

σ̂g
(2)

After standardization, we assume the standardized data,

Zijg , originate from a distribution with mean γig , variance

δ2ig , skewness ηig , and kurtosis φig . In addition, consis-

tent with the ComBat assumptions, we assume that each

of these moments originates from a common distribu-

tion (henceforth denoted the hyper-distribution), namely

that the γig are drawn from a distribution with mean γi
that is common across all genes. Similar assumptions of

exchangeability across genes are made about the variance,

skewness, and kurtosis.

We apply two tests of significance to individually test for

significant differences in these moments across batches.

In both of the tests, we estimate and conduct the test

on the hyper-moments (i.e. moments of the hyper-

distribution) across batches. The first test estimates the

hyper-moments within each sample, whereas the other

test estimates the hyper-moments within each gene. The

first, sample-based test is more robust for small sample

size, whereas the second, gene-based test is more robust

and sensitive in larger sample size. Finally, for quantile-

normalized data [17], the sample-wise test will fail because

quantile normalization will naturally force all moments to

be the same across samples. So for quantile normalized

data, the gene-wise test will be needed.

Sample-level moments

The first test is a sample-level test that estimates the

hyper-moments by summarizing the moments of gene

expression within each sample, and then conducts a stan-

dard or robust F-test (described below) to compare the

moment estimates across batches. For example, for the
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mean, the sample-wise test first estimates the mean gene

expression of each sample, namely

γ̄ij =
1

ng

∑

g

Zijg (3)

where ng is the total number of genes. We then con-

duct an F-test on the γ̄ij values between batches. Sim-

ilarly, the variance, skewness, and kurtosis of the Zijg

are estimated across genes within each sample (using

standard estimation approaches for these moments) and

then tested for significant differences across batches in

the same way as the mean. Overall this is not specifi-

cally testing the moments of the assumed ComBat model

hyper-distribution, but rather the marginal distribution of

the data and hyper-distributions of the data.

Gene-level moments

The second test is a gene-level test that estimates the

hyper-moments within each gene, using samples in each

batch separately, and then conducts a robust F-test com-

paring the moment estimates across batches. For example,

for the mean, the gene-wise test first estimates the mean

of each gene across samples within a batch, namely

γ̄ig =
1

ni

∑

j

Zijg (4)

where ni is the total number of samples in batch i. We then

conduct a test of significance on the γ̄ig values between

batches. Similarly, the variance, skewness, and kurtosis of

the Zijg are estimated across samples within each batch

for each gene (using standard estimation approaches for

these moments) and then tested for significant differences

across batches in the same way as the mean. Unlike the

sample-wise test, this test more specifically follows the

ComBat hierarchical model assumption, by first estimat-

ing the parameters drawn from the hyper-distribution.

Robust F-test

In hypothesis testing, a large enough sample size may

cause the P-value problem [18]: small effects with no

practical importance can be detected significant, as the P-

value quickly drops to zero under a very large sample size.

The P-value problem influences tests that are sensitive to

the sample size, including the F-test used in this study. To

address this problem and better interpret the results of the

two tests above, we applied a robust F-test. The robust

F-test is modified from standard F test, by adding a vari-

ance inflation factor in the F statistics, which accounts for

the influence of the sample size in P-values. Details of the

robust F-test are documented in Additional file 1.

The robust F-test is especially useful for the gene-level

test, as the total degrees of freedom in this test is in fact

the amount of moment estimates, which equals to the

number of genes times the number of batches. This value

can easily become very large in genomic studies. We used

both the robust and the non-robust versions of F statis-

tics in the sample- and gene-level tests, and evaluated and

compared their performances in diagnosing the degree of

batch effect in our example data.

Mean-only adjustment for batch effects

The current ComBat model adjusts for effects in both

the mean and the variance across batches. However, for

some datasets, after testing for the moments of the batch

effect, it may be determined that differences are only

present in themean across batches. Other datasets may be

expected to have variance differences across batches for

non-technical reasons, such as in a study combining a in

vitro perturbation experiment (low variance) with patient

samples (high variance). For cases in which that batch dif-

ferences are only present in the mean, we have modified

the current ComBat model to only adjust the mean batch

effect. Specifically, we modify the ComBat model (1) as

follows:

Yijg = αg + Xijβg + γig + εijg (5)

and then use the same approach for standardization and

shrinkage as described previously with the exception

of not estimating and adjusting for variance differences

across batches.

Reference batch adjustment

Many batch adjustment approaches, including ComBat,

are dependent on the datasets in hand for their batch

adjustments. In other words, if additional samples or

batches of data are added, the batch adjustments and

adjusted data would be different. We present a reference-

based batch adjustment approach that uses one batch as

the baseline for the batch adjustment. The reference batch

is not changed and the other batches are adjusted to the

mean and variance of the reference. Thus, as long as the

reference batch does not change, the adjustments and

adjusted data would be the same, regardless of the batches

of data that are included in the dataset. This also allows

batches of data to be adjusted at different times without

impacting the results. This approach will be advanta-

geous to data generating consortiums where data arrive

sequentially in small batches. It will also be important for

applications in personalized medicine where biomarkers

need to be established and validated prior to the collec-

tion of patient data. For our reference-based version of

ComBat, we will assume amodel slightly different than the

model (1) presented above, namely:

Yijg = αrg + Xijβrg + γrig + δrigεijg (6)

where Xij and βrg are the design matrix and regression

coefficients as described before, but αrg is the average gene

expression in the chosen reference batch (r). Furthermore,



Zhang et al. BMC Bioinformatics  (2018) 19:262 Page 5 of 15

γrig and δrig represent the additive andmultiplicative batch

differences between the reference batch and batch i for

gene g. The error terms, εijg , are assumed to follow a

normal distribution with expected value of zero and a ref-

erence batch variance σ 2
rg . The empirical Bayes estimates

for γrig and δrig will be obtained as in the current ComBat

approach.

Software implementation

The models presented here have been integrated into the

ComBat function available in the ’sva’ Bioconductor pack-

age (version 3.26.0) [12, 19]. More specifically, ComBat

now includes optional parameters ’mean.only’, which if

TRUE will only adjust the mean batch effect and not the

variance, and ’ref.batch’, which allows the user to specify

the batch name or number to be used as the reference

batch. Our moment-based diagnostic tests for the mean,

variance, skewness, and kurtosis are now available in our

’BatchQC’ Bioconductor package [20]. BatchQC is an R

software package designed to automate many important

evaluation tasks needed to properly combine data from

multiple batches or studies. BatchQC conducts compre-

hensive exploratory analyses and constructs interactive

graphics for genomic datasets to discover the sources of

technical variation that are present across multiple sets

of samples. BatchQC currently provides both the super-

vised diagnostics for known sources of technical variation

(data generating batch, reagent date, RNA-quality, etc)

as well as an unsupervised evaluation of batch effects to

detect unmeasured non-biological variability or ’surrogate

variables’ [12].

Dataset descriptions

Pathway simulation

We generated simulated data to represent a case where we

(1) derive a gene expression signature of a biological path-

way or drug perturbation, and (2) profile the signature into

another batch of data to predict pathway activity (or drug

efficacy). The study consists of two experimental batches

which are designed as follows: batch 1 is given by a 200

(gene) by 6 (sample) matrix of expression data, where the

columns contain three replicate samples before pathway

activation and three after activation (i.e. overexpressing

key pathway driving genes). Among the 200 genes, the

first 100 represent ’signature genes’ that are differentially

expressed (before vs. after) based on a ’before’ Gaussian

distribution: N(0, 0.1), and an ’after’ distribution:

N(1, 0.1). The rest of the genes are drawn from aN(0, 0.1)

distribution in all 6 samples, representing genes that do

not respond to the pathway perturbation. Batch 2 consists

of a 200 (gene; same genes as batch 1) by 600 (sample)

matrix, and represents a large and highly variable patient

data set. The 600 patients are divided equally into 6 sub-

groups with different levels of pathway activation between

groups; signature genes are drawn from a N(µ, 10) distri-

bution, where µ = 0.5, 0.7, 0.9, 1.1, 1.3, and 1.5 for the six

subgroups. The control genes are drawn from aN(0.5, 10)

distribution. We set up these simulation studies based

on the design of real signature profiling studies [21], and

selected parameters to capture the statistical properties of

realistic gene expression distributions (Additional file 2).

Simulation code for this dataset is available at https://

github.com/zhangyuqing/meanonly_reference_combat.

Bladder cancer

We used a previously published bladder cancer microar-

ray dataset, which aims to measure gene expression in

superficial transitional cell carcinoma (sTCC) in the pres-

ence and absence of carcinoma in situ (CIS) [22]. This

dataset contains 57 observations generated at 5 different

processing times. It was previously established that the

processing time is strongly confounded with CIS condi-

tion, and batch effect still exists for certain genes after

normalization of the data [19].

Nitric oxide

This study was designed to investigate whether exposing

mammalian cells to nitric oxide (NO) stabilizes mRNAs

[10]. Human lung fibroblast cells (IMR90) were exposed

to NO for 1 h, then transcription inhibited together with

control cells for 7.5 h. Expressions in the exposed sam-

ple and control cells are measured at 0 h and 7.5 h using

Affymetrix HG-U133A microarray, resulting in 4 arrays

for each cell pair. The experiment was repeated at 3 differ-

ent times. The dataset contains the 3 batches of data, each

containing 4 arrays of different treatment combinations,

which leads to 12 samples in total.

Oncogenic signature

The growth factor receptor network (GFRN) contributes

to breast cancer progression and drug response. This

RNA-Seq dataset is designed to develop gene signatures

for several GFRN pathways: AKT, BAD, HER2, IGF1R,

RAF1, KRAS, and EGFR. We used recombinant ade-

noviruses to express these genes in case samples and

produce green fluorescent protein (GFP) in control sam-

ples, using replicates of human mammary epithelial cells

(HMECs). RNA-Seq data are collected from these HMECs

overexpressing GFRN genes and GFP controls [21]. This

dataset contains 89 samples, which are created in three

batches: batch 1 contains 6 replicate samples of each for

AKT, BAD, IGF1R, and RAF1, 5 replicates for HER2, and

12 replicates for GFP controls (GEO accessionGSE83083);

batch 2 consists of 9 replicates of each for three types

of KRAS mutants and GFP control (GEO accession

GSE83083); batch 3 contains 6 replicates of each for EGFR

and its corresponding control (GEO accessionGSE59765).

We derived signatures from this dataset and predicted

pathway activities and drug effects in cell line and patient

datasets with ASSIGN [23].

https://github.com/ zhangyuqing/meanonly_reference_combat
https://github.com/ zhangyuqing/meanonly_reference_combat
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Lung cancer

This dataset contains microarray measurements from his-

tologically normal bronchial epithelium cells collected

during bronchoscopy from non-smokers, former smok-

ers, and current smokers. Samples are selected from

various studies, which are divided into three batches

A (GSE994 [24], GSE4115 [25, 26], GSE7895 [27]), B

(GSE66499, [28]) and C (GSE37147, [29]). The three sub-

batches within A are ComBat adjusted before A is com-

bined with B and C. The dataset contains 1051 samples,

with 318 samples in batch A, 507 in batch B, and 226 in

batch C.

Results

Moments-based tests of significance for batch effect

We introduced sample- and gene-wise tests to detect

significant differences in the moments of batch effect dis-

tributions.We applied these tests to four different datasets

(Table 1) and observed their properties. We found that

the four datasets have different degrees of batch effect,

and require different adjustment. The first dataset (blad-

der cancer) has significant mean differences between the

batches (P < 0.0001), but has P-values above 0.33 for

variance differences for both tests. Since the bladder can-

cer dataset only exhibits batch effects in the mean and

not in the variance, mean-only adjustment is more suit-

able for this dataset. In the nitric oxide dataset, however,

mean/variance ComBat is required to remove the differ-

ence in batch variances detected by the gene-wise test

(P = 0.0005 without adjustment; P = 0.0042 using

mean-only ComBat). All four datasets show certain lev-

els of significant differences in skewness and/or kurtosis

even after the mean/variance ComBat is used, which sug-

gests that adjustment for higher order moments may be

required, which is beyond the scope of this paper.

Mean-only batch adjustment

We modified the current mean/variance ComBat into

a mean-only version of ComBat, which allows users to

only adjust the batch effects in mean. It is recommended

for cases where milder batch effects are expected (i.e.

there is no need to adjust the variance). For example, we

have shown in Table 1 and Additional file 3 that in the

bladder cancer dataset, the mean, skewness and kurtosis

are significantly different across batches. But there is no

evidence for significant differences in the variance.

We applied both the mean-only and mean/variance

ComBat on the bladder cancer dataset to compare their

performances.We compared batchmean (γ̄ij from Eq. (3))

and variance estimates collected within each sample in the

unadjusted data, and in data adjusted by the two versions

of ComBat (Fig. 1). Consistent with the result in Table 1

(P < 0.0001), the mean estimates in the original data

are significantly different across batches. In particular,

Fig. 1a shows mean-level differences in batch 2 compared

to the other batches. Because variance estimates are not

significantly different across batches, mean-only ComBat

is sufficient to adjust the bladder cancer data. Neither

version of ComBat makes the variance estimates more

similarly distributed to each other than they are in the

unadjusted data (Fig. 1b). This shows that, based on the

sample-wise test, adjusting both the mean and variance

of batch effects in the bladder cancer data does not give

better results than only adjusting the mean.

Table 1 P-values from sample-wise and gene-wise robust tests on four datasets, before and after batch correction

Sample-wise tests Gene-wise tests

Dataset ComBat Mean Variance Skewness Kurtosis Mean Variance Skewness Kurtosis

Bladder cancer None < 0.0001 0.6495 0.0539 0.3149 < 0.0001 0.3353 < 0.0001 0.0012

Mean-only 0.9998 0.9557 0.1496 0.6236 0.2011 0.3618 < 0.0001 0.0012

Mean/variance 1 0.8989 0.1826 0.2737 0.2538 0.9816 < 0.0001 0.0012

Nitric oxide None 0.1007 0.3565 0.1009 0.866 < 0.0001 0.0005 < 0.0001 0.9887

Mean-only 0.9997 0.577 0.9838 0.9485 0.4595 0.0042 < 0.0001 0.9887

Mean/variance 1 0.982 0.9847 0.7013 0.7245 0.6219 < 0.0001 0.9791

Oncogenic signature None 0.0011 < 0.0001 0.0001 0.0235 < 0.0001 0.0001 < 0.0001 0.5711

Mean/variance 1 0.7486 0.5553 0.9202 0.0363 0.8919 < 0.0001 0.5711

Lung cancer None < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0106 < 0.0001 0.4853

Mean/variance 1 0.9872 0.0003 0.9612 0.0016 0.9971 < 0.0001 0.4853

The four datasets have different degrees of batch effect. The bladder cancer dataset has differences in batch mean, but does not show any batch effect in the variance.
Mean-only ComBat is sufficient to adjust this dataset as there is no need to adjust the variance. In the nitric oxide dataset, the gene-wise test reports significant differences in
both the mean and the variance. The full mean/variance ComBat is necessary to remove batch effects in this data. The mean/variance ComBat cannot adjust the skewness or
kurtosis. All four datasets exhibit certain levels of batch effect in the skewness and/or kurtosis, which may call for methods that adjust these higher order moments. Results
comparing robust and non-robust F tests are summarized in Additional file 3



Zhang et al. BMC Bioinformatics  (2018) 19:262 Page 7 of 15

a

b

Fig. 1 Distribution of sample-wise mean and variance estimates from each batch in the bladder cancer data. Estimates are calculated within each
sample as previously described. a Boxplots of sample-wise mean estimates (γ̄ij , as in Eq. (3)) within each batch. The sample-wise mean estimates for
batch 2 in the unadjusted data are significantly different from the other batches. Both mean-only and mean/variance ComBat adequately correct
this batch 2 mean difference. b Boxplots of sample-wise variance estimates across batches. The sample-wise variance estimates are not significantly
different in the unadjusted data. Adjusting either just the mean or both mean and variance does not makes the estimates more similarly distributed,
meaning that adjusting the variance is not necessary

From the gene-wise perspective, we found that the

mean/variance ComBat overcorrects the data by shrink-

ing the variance of batch 3 and 4 when pooling informa-

tion from all batches (Fig. 2, Additional file 1: Figure S1).

Batch 3 (4 samples) and batch 4 (5 samples) have relatively

fewer samples than the remaining three batches (11, 18

and 19 samples), and so the gene-wise variance estimates

are more likely to be impacted by outlying samples. When

mean/variance ComBat estimates the background vari-

ance using all batches, variance estimates become less

variable in these two batches than in the other batches.

Thus, the variance adjustment actually introduces differ-

ences in distribution across batches than in the original

data (Additional file 1: Figure S1). In contrast, mean-only
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ComBat does not affect the variance estimates, thus avoid-

ing the overcorrection problem. Therefore, mean-only

ComBat is more justifiable than mean/variance ComBat

for the bladder cancer data, where there is no need to

adjust the variance.

Selecting the appropriate ComBat version for each dataset

Unlike in the bladder cancer data, mean-only Com-

Bat is not sufficient for removing batch effects in the

other three datasets. For example, the oncogenic signa-

ture dataset displays batch effect in both mean and vari-

ance. Mean/variance adjustment is required to remove

the technical differences across batches (Additional file 1:

Figure S2). As another example, the gene-wise test detects

a significant difference in variance (Table 1, P = 0.0005)

in the nitric oxide dataset. In this dataset, we found that

mean-only ComBat cannot completely remove the sig-

nificant difference in gene-wise variance estimates across

batches (Additional file 1: Figure S3). In this case, the

mean/variance ComBat is necessary to remove the batch

effect.

We emphasize that it is critical to select the appropri-

ate ComBat version based on the degree of batch effect

in different datasets. We simulated datasets with two con-

dition groups, with some genes that differentially express

between the two groups. Samples are divided in two

batches. We simulated three types of batch effect in the

data: 1) no batch effect, 2) only differences in the mean,

and 3) both mean and variance batch effects. We applied

both the mean-only and the mean-variance ComBat on

each dataset. Then in both adjusted and unadjusted data,

we performed differential expression analysis, and calcu-

lated the type I error rate and statistical power of our

detection. We observed that using the ComBat model

corresponding to the type of batch effect in the data is

able to gain more power of detection, at the same cost

of type I error rate increase (Additional file 1: Figure S4).

These results show that a mean-variance model overfits

the data in cases where a mean-only adjustment is needed,

and that the mean-only model is not always sufficient.

Therefore, it is necessary to evaluate the degree of batch

effect, and select the appropriate ComBat version for

batch correction. More details of this analysis are available

in Additional file 1.

We also note that the nitric oxide dataset gives con-

flicting results for the sample-wise and gene-wise variance

Fig. 2Distribution of gene-wise variance estimates from each batch in the bladder cancer data. Batch 3 and batch 4 have smaller sample size than the
other batches, thus their variance estimates are impacted more by outlying samples. Mean/variance ComBat brings all estimates to the same levels,
over correcting the variance estimates in batches 3 and 4. This leads to unwanted, less variable gene expression (see Additional file 1: Figure S1).
Mean-only ComBat does not affect or overcorrect the variance estimates
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tests. We emphasize that, though both the sample-

and gene-wise tests intend to detect differences in the

hyper-moments across batches, they interrogate differ-

ent aspects of the batch effect: sample-wise P-values

reflect the difference in moments between batches by

summarizing information over genes; while gene-wise

P-values neglect differences between samples by summa-

rizing across samples to estimate the gene-wise moments.

We have shown in our previous work that multiple diag-

nostics are often needed to fully diagnose batch effects,

as batch effects can be present in many different ways

[20]. Thus we recommend using mean/variance ComBat

if either of the gene-wise or sample-wise tests show a

significant batch effect.

Higher order moment-based batch adjustment

We observed evidence in all four datasets that the cur-

rent ComBat mean/variance model does not completely

remove all batch effects (Fig. 3). The bladder cancer has

significant differences in gene-wise kurtosis even after

mean/variance adjustment. The lung cancer data has

remaining batch effect in sample-wise skewness. Also,

the gene-wise test on skewness remains significant in all

datasets (Table 1). These results suggest that amore severe

batch correction targeting the higher order moments may

be necessary, indicating the need to develop additional

methods and tools for these cases.

Batch adjustment based on a reference batch

We used pathway signature projection examples to estab-

lish the benefits of reference-batch ComBat. First, we use

a simulated pathway dataset to compare the benefits of

the original and new reference-batch versions of Com-

Bat. The goal of this simulation is to justify the necessity

of reference-batch ComBat in scenarios when one batch

is of superior quality than the other batches, or when

biomarkers need to be generated in one dataset, fixed, and

then applied to another dataset. We further illustrate that

reference-batch ComBat yields better prediction results

than the original ComBat in a real data signature profiling

example for predicting drug efficacy.

Simulation study

Weused simulated data to represent a gene expression sig-

nature study for an activated (or knocked down) biological

pathway or drug perturbation that is profiled into another

batch of data to predict pathway activity (or drug efficacy).

Descriptions of these simulated datasets are detailed in

the Dataset descriptions - Pathway simulation section.We

used the two versions of ComBat (original and reference)

to combine the two batches and to enable the prediction

of the activity strength of the pathway from batch 1 into

the batch 2 samples. Batch 1 was selected as reference

for the reference-batch ComBat. Pathway activation levels

are added in both versions ComBat as covariates. Results

of not using activation levels as covariates is shown in

Additional file 1: Figure S5.

The original and reference-batch ComBat yield very

different results in the two batches (Fig. 4). The origi-

nal ComBat uses the overall mean and variance of each

gene across all batches as a background profile. Due to

the large sample size and variances of the second batch,

the estimated background profiles resemble batch 2 in

variance. As a result, ComBat significantly increased the

variance of batch 1 to match the variance of batch 2.

As illustrated in Fig 4, the original ComBat results in a

near complete loss of signal in batch 1. In comparison,

reference-batch ComBat does not change the chosen ref-

erence (batch 1). It estimates the background means and

variances based on batch 1, and adjusts batch 2 accord-

ingly. After adjustment, the true signals of the pathway

are recovered in the second batch. In this setting where

batch 1 is of better quality, but batch 2 is more variable and

larger in size, reference-batch ComBat retrieves biologi-

cal signals of interest more successfully than the original

version. This is further demonstrated quantitatively by the

k-means clustering shown in Fig. 5. However, we note that

the true activation level of signature genes are included as

covariates in ComBat in this example. In a more realistic

setting, the activation levels are unknown and cannot be

included as covariates in the ComBat adjustment. When

we applied ComBat without covariates (Additional file 1:

Figure S5), the pathway activation signals are less clear

in both batches. However, the original version of Com-

Bat still increases the variance in batch 1, making the data

less ideal for signature development than those from the

reference version.

To quantify the impact of batch correction on batch 1,

we use a k-means clustering approach to attempt to iden-

tify the biomarker gene set (the first 100 genes are the

signature genes and the subsequent 100 genes are unaf-

fected by the perturbation). We treat the gene expression

of each sample as high-dimensional vectors (batch 1: 6

samples ; batch 2: 600 samples). We used k-means clus-

tering to divide these vectors into two groups for batch

1 alone, batch 2 alone, and batches 1 and 2 combined,

with both ComBat adjustments (original and reference).

We compared the clustering assignment of genes with

the signature/non-signature separation, and calculated

the accuracy as the maximum percentage of correctly

classified genes in either way of labeling the two clusters

as signatures and non-signatures.We evaluated how using

original and reference-batch ComBat affects this accuracy.

In batch 1 without adjustment, all genes are correctly

separated into signature and non-signature. However, this

separation is confounded when batch 2 is combined with

batch 1, as only 58.5% of the genes are correctly sep-

arated in the combined dataset. When using original
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Fig. 3 Distributions of higher order moments in the bladder cancer dataset after the mean/variance adjustment. The current mean/variance
ComBat does not adjust higher order moments, thus distributions of these moment estimates remain significantly different (a sample-wise kurtosis:
P = 3.025e − 05 using non-robust test; b gene-wise skewness: P = 0; c gene-wise kurtosis: P = 0.0012 using robust test) across batches even after
batch adjustment. These may cause problems in downstream analysis such as prediction tasks, and call for batch correction methods that adjust the
higher order moments

ComBat, because the variance of batch 1 is artificially

increased, the accuracy in batch 1 alone drops from 100

to 54.5%, and only 64.5% of the genes maintain their cor-

rect signature/non-signature labels after combining batch

2 with batch 1. In contrast, reference-batch ComBat keeps

the cluster assignment in the adjusted batch 1 100% cor-

rect, because batch 1 stays intact as the reference, and

91% of the genes retain their correct labels in the com-

bined dataset after adjustment. Thus reference ComBat

improves the ability to identify biomarker genes across

multiple studies compared to no adjustment and standard

ComBat.

EGFR signature and drug prediction

We also considered a real signature study using ASSIGN

[23], a pathway profiling toolkit based on a Bayesian factor

analysis approach, to develop an EGFR pathway signa-

ture from the oncogenic signature dataset. ASSIGN allows

for derivation of signatures from a pathway perturba-

tion experiment, and adapts signatures from experimental

datasets to disease. Our goal was to predict EGFR path-

way activity in two RNA-Seq datasets: a breast cancer

cell line panel [30] and from breast carcinoma patients

in TCGA [31]. As in the simulation study, the two RNA-

Seq test sets were first combined with the EGFR training

set separately, to adjust for the batch effect between the

training and the test set. ASSIGN then trains biomarkers

from the adjusted EGFR training set, and makes predic-

tions of pathway activity in both of the adjusted test sets.

We compared the impact of using three versions of Com-

Bat (original, mean-only and reference-batch), as well as

frozen SVA and RUV on these predictions (Table 2).
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Fig. 4 Simulated pathway datasets before and after batch correction using original and reference-batch ComBat. The figure shows the heatmaps of
the gene-by-sample expression matrices for the two simulated batches. Pathway activation levels are included as covariates in the two versions of
ComBat. Batch 1 is less variable than batch 2, and is better in quality for identifying signatures for the pathway. Using the original ComBat does not
remove the variance in batch 2. Instead, it causes a severe loss of signal in batch 1 by inflating the variance. Reference-batch ComBat does not
change the chosen reference (batch 1) and leads to clearer signal detection in batch 2

We used ASSIGN to develop a 50-gene signature from

the EGFR samples in the training set [21]. We first focus

on the three versions of ComBat in the ability to gener-

ate replicable signatures. Because of the ’set bias’ caused

by using original ComBat, only 20 (40%) of the signature

genes are the same between the signatures developed in

the training set adjusted against the cell line test set com-

pared to the training set adjusted against the patient data.

The same analysis performed with mean-only ComBat

produced gene signatures with 44 (88%) of the genes

shared between the two datasets. Because reference-batch

ComBat does not change the EGFR dataset, the signa-

tures are identical after (separate) adjustment with the

two test sets. This points to the value of using refer-

ence ComBat to develop fixed genomic biomarkers that

can be projected into multiple datasets, even at differ-

ent times and without the need to combine all the data

together.
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a

b

Fig. 5 Cluster assignment of the 200 genes using k-means algorithm, where k=2. Color bars show the 200 genes from top to bottom, which
corresponds to the gene labels in Fig. 4. The red and blue bars represent signature and control genes, respectively. During batch adjustment, true
activation levels are included as covariates, as opposed to using no covariates in both versions of ComBat (Additional file 1: Figure S6). In the batch
adjusted data, we first clustered genes into 2 groups without specifying the group sizes or labels. Then, clusters are assigned as signature and
control by how it best accords with the original separation. a In batch 1, genes are correctly separated. But combining batch 2 with batch 1 without
ComBat adjustment changes the signature / non-signature separation. Only 58.5% genes remain the same in the combined dataset. b Reference-
batch ComBat gives cluster assignment that is more consistent with the true separation than original ComBat, in batch 1 only, batch 2 only, and the
combined dataset of batch 1 and 2. These results suggest that the original ComBat breaks the similarity between genes in the same group
(signature or control), where similarity is measured by the Euclidean distance. Only reference-batch ComBat is able to preserve this similarity

We further compared the correlations of pathway pre-

dictions with the following validation datasets: (1) EGFR

protein expression data (cell line and TCGA), and (2)

EGFR inhibitor drug response (cell lines). As shown

in Table 2, the correlations with protein expression for

the reference-batch ComBat adjusted data (Cell Line:

0.442, TCGA: 0.299) are the highest in both test sets

among all five methods. The correlations with drug

response are also the highest when adjusting the data

with reference-batch ComBat. For example, reference

adjusted data yield a correlation of 0.415 with Erlotinib

response and 0.520 with GSK1120212 response, com-

pared to using the original (Erlotinib: 0.360, GSK:

0.401) and mean-only (Erlotinib: 0.294, GSK: 0.407)

ComBat, frozen SVA (Erlotinib: -0.09, GSK: -0.131),

and RUV (Erlotinib: 0.332, GSK: 0.145). These results

strongly justify the benefits of the reference version

of ComBat in pathway profiling and predicting drug

efficacy.

Discussion
Combining multiple genomic datasets is beneficial for

boosting statistical power of studies, especially in cases

where data are generated in small batches necessitated

by high experimental cost or difficulties in collecting

samples. In addition, combining batches of data from

similar experiments from different labs also provides

opportunities for increased power for the detection of

biological differences, as well as providing ways for test-

ing/validating biomarkers generated in one batch of data.
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Table 2 Comparison between five batch correction methods in predicting pathway activity and drug efficacy

Correlation: EGFR protein expression Drug response in cell lines

ComBat version Common genes (cell line vs. TCGA) Cell line TCGA Erlotinib GSK1120212

Original ComBat 20 (40%) 0.316 0.132 0.360 0.401

Mean-only ComBat 44 (88%) 0.331 -0.042 0.294 0.407

Reference-batch ComBat 50 (100%) 0.442 0.299 0.415 0.520

Frozen SVA 50 (100%) 0.115 0.092 -0.09 -0.131

RUV 40 (80%) 0.287 0.182 0.332 0.145

We combined the oncogenic signature dataset with the cell line and TCGA patient data separately to adjust for batch effect and enable the profiling of EGFR signatures from
the oncogenic data to the test sets. We observed the set bias using original ComBat (40% same signature genes), mean-only ComBat (88% same genes), and RUV (80% same
genes) to combine the datasets. Reference-batch ComBat and frozen SVA kept the same signature genes. Also, using reference-batch ComBat gave the highest correlations
of prediction scores with both protein expression and drug response, among all five batch correction methods. These results support the benefit of using reference-batch
ComBat in this context

The presence of batch effects due to technical hetero-

geneity and batch effects due to different profiling plat-

forms, protocols, or other factors can often confound

the biological signals in data, which reduces the bene-

fit of combining datasets. Despite the many previously

developed techniques for batch adjustment, there are

still situations where new methods need to be devel-

oped to appropriately or more effectively remove batch

effects.

We introduced new models and tools for address-

ing batch correction in several scenarios based on the

ComBat model. For example, many methods focus on

adjusting the means and variances of batches, but some

datasets require less (or more) stringent adjustments. We

proposed two significance testing approaches, based on

the batch effect moment distributions, to diagnose the

degree of adjustment required. We visualized different

degrees of batch effect detected by these tests in four

experimental datasets. In the bladder cancer data where

mean is significantly different across batches but not the

variance, our proposed mean-only ComBat successfully

removes the batch differences. In all four datasets, we

presented evidence that adjusting both mean and vari-

ance is not sufficient to remove all batch effect, which

calls for a method that performs a more severe batch

adjustment.

For datasets where a less severe adjustment targeting

the mean is sufficient, adjusting the variance may lead

to unnecessary costs in downstream analysis. The origi-

nal ComBat model pools all samples to estimate both the

mean and the variance batch effects, which introduces a

correlation structure between the samples. Such correla-

tions may cause issues in further analysis, such as inflating

type I error rate in differential expression detection, if

we do not account for them properly. Therefore, for the

datasets with only mean batch effect, our proposed mean-

only ComBat is able to avoid the cost of estimating the

variances, and is more beneficial than the mean-variance

version.

It is important to highlight that a thorough evaluation of

the degree of batch effect is necessary before applying any

version of ComBat. We presented simulation results to

demonstrate that using the ComBat model corresponding

to the type of batch effect in the data is able to achieve

more statistical power at the same cost of type I error rate

in differential expression analysis. Therefore, we strongly

suggest evaluating whether there is differences in mean

and variances between batches with the moment-based

significance tests, and selecting the appropriate version of

ComBat based on the type of batch effect in the data.

Also, we noticed that the gene-wise and sample-wise

tests yielded different results in a few of our datasets. To

resolve a conflicting result from the two tests, we rec-

ommend visualizing the batch distributions as we did in

this study, and decide the level of adjustment required

based on all available information. BatchQC offers visu-

alizations from various aspects including boxplot of gene

expressions, dendrogram of clustering, and scatter plot of

principal components, which can all assist in diagnosing

the degree of batch effect.

In addition, we illustrated the benefits of selecting a ref-

erence batch in batch correction, in situations when one

batch is high quality and less variable, and when biomark-

ers need to be developed from one study, fixed and vali-

dated on another study. Particularly in the situation where

the goal is to generate fixed biomarkers, including an extra

batch of data to those in hand can strongly affect the

results, an issue described as ‘set bias’. In these situations,

analysis need to be re-run in order to process the new

batch of data, which can cause the biomarker genes to be

largely different.

Our reference-batch ComBat is proven more success-

ful in retrieving biological signals in signature profil-

ing examples, where one batch shows a clear signal of

biological conditions. We demonstrated that reference-

batch ComBat resolves the ‘set bias’ caused by the

original version of ComBat in adding data sequen-

tially, and yields better prediction of pathway activities
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and drug effects. Although these approaches are only

alternative expressions of the ComBat model, their imple-

mentation has critical impact in real batch correction

scenarios.

Conclusions
Weproposed diagnostic tools and improvedmodels based

on ComBat to evaluate and address batch effects in cer-

tain batch adjustment situations. The significance tests

for batch differences can be used to determine the degree

of batch effects to be adjusted. We purposed mean-only

ComBat for the situation where a less severe adjustment

is preferred. The reference-batch ComBat is able to leave

one batch unchanged, which is especially useful for gen-

erating a fixed biomarker for further clinical use. We have

shown in both simulations and real data that these pro-

posed methods provide better solutions to batch effects

than the existing ComBat model in their corresponding

batch correction scenarios.
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