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Abstract

We present a novel methodology for building human-
like artificially intelligent systems. We take as a model
the only existing systems which are universally ac-
cepted as intelligent: humans. We emphasize building
intelligent systems which are not masters of a single do-
main, but, like humans, are adept at performing a vari-
ety of complex tasks in the real world. Using evidence
from cognitive science and neuroscience, we suggest
four alternative essences of intelligence to those held
by classical AI. These are the parallel themes of devel-
opment, social interaction, embodiment, and integra-
tion. Following a methodology based on these themes,
we have built a physical humanoid robot. In this paper
we present our methodology and the insights it affords
for facilitating learning, simplifying the computation
underlying rich behavior, and building systems that
can scale to more complex tasks in more challenging
environments.

Introduction

An early development in the history of AI was the claim
of Newell & Simon (1961) that humans use physical
symbol systems to “think”. Over time, this has be-
come adopted into Artificial Intelligence as an implicit
and dominant hypothesis (see (Brooks 1991a) for a re-
view). Although this assumption has begun to soften in
recent years, a typical AI system still relies on uniform,
explicit, internal representations of capabilities of the
system, the state of the outside world, and the desired
goals. These systems are dominated by search prob-
lems to both access the relevant facts, and determine
how to apply them. Neo-classical AI adds Bayesian or
other probabilistic ideas to this basic framework (Pearl
1988).

The underlying assumption of these approaches is
that because a description of reasoning/behavior/-
learning is possible at some level, then that description
must be made explicit and internal to any mechanism
that carries out the reasoning/behavior/learning. The
realization that descriptions and mechanisms could be
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separated was one of the great breakthroughs of Rosen-
schein & Kaelbling (1986), but unfortunately that re-
alization has been largely ignored. This introspective
confusion between surface observations and deep struc-
ture has led AI away from its original goals of build-
ing complex, versatile, intelligent systems and towards
the construction of systems capable of performing only
within limited problem domains and in extremely con-
strained environmental conditions.

In this paper we present a methodology based on a
different set of basis assumptions. We believe that hu-
man intelligence is a direct result of four intertwined
attributes: developmental organization, social interac-
tion, embodiment and physical coupling, and multi-
modal integration. Development forms the framework
by which humans successfully acquire increasingly more
complex skills and competencies. Social interaction al-
lows humans to exploit other humans for assistance,
teaching, and knowledge. Embodiment and physical
coupling allow humans to use the world itself as a tool
for organizing and manipulating knowledge. Integra-
tion allows humans to maximize the efficacy and accu-
racy of complementary sensory and motor systems.

We have followed this methodology to construct
physical humanoid robots (see Figure 1). We design
these robots to follow the same sorts of developmen-
tal paths that humans follow, building new skills upon
earlier competencies. People interact with these robots
through behavioral coupling and direct physical con-
tact. The variety of sensory and motor systems on the
robots provide ample opportunity to confront integra-
tion issues.

Using evidence from human behavior, and early re-
sults from our own work, we argue that building sys-
tems in this manner affords key insights into how to sim-
plify the computation underlying rich behavior, how to
facilitate learning, and how to create mechanisms that
can scale to more complex tasks in more challenging
environments.

The next section of this paper explores the assump-
tions about human intelligence which are deeply embed-
ded within classical AI. The following sections explain
how our methodology yields a plausible approach to
creating robustly functioning intelligent systems, draw-
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Figure 1: Our humanoid robot has undergone many
transformations over the last few years. This is how it
currently appears.

ing on examples from our research. The final section
presents an outline of the key challenges to be faced
along this new road in AI.

Assumptions about Intelligence

In recent years, AI research has begun to move away
from the assumptions of classical AI: monolithic in-
ternal models, monolithic control, and general purpose
processing. However, these concepts are still prevalent
in much current work, and are deeply ingrained in many
architectures for intelligent systems. For example, in
the recent AAAI-97 Proceedings, one sees a contin-
uing interest in planning ((Littman 1997, Hauskrecht
1997, Boutilier & Brafman 1997, Blythe & Veloso
1997, Brafman 1997)) and representation ((McCain &
Turner 1997, Costello 1997, Lobo, Mendez & Taylor
1997)), which build on these assumptions.

The motivation for our alternative methodology
comes from a modern understanding of cognitive sci-
ence and neuroscience, which counterposes the assump-
tions of classical AI, as described in the following sec-
tions.

Humans have no full monolithic internal mod-
els. There is evidence that in normal tasks humans
tend to minimize their internal representation of the
world. Ballard, Hayhoe & Pelz (1995) have shown that
in performing a complex task, like building a copy of

a display of blocks, humans do not build an internal
model of the entire visible scene. By changing the dis-
play while subjects were looking away, Ballard found
that subjects noticed only the most drastic of changes;
rather than keeping a complete model of the scene, they
instead left that information in the world and continued
to refer back to the scene while performing the copying
task.

There is also evidence that there are multiple inter-
nal representations, which are not mutually consistent.
For example, in the phenomena of blindsight, cortically
blind patients can discriminate different visual stimuli,
but actually report seeing nothing (Weiskrantz 1986).
This inconsistency would not be a feature of a single
central model of visual space.

These experiments and many others like it (e.g.
(Rensink, O’Regan & Clark 1997, Gazzaniga & LeDoux
1978)) convincingly demonstrate that humans do not
construct a full, monolithic model of the environment.
Instead humans tend to only represent what is imme-
diately relevant from the environment, and those rep-
resentations do not have full access to one another.

Humans have no monolithic control. Naive in-
trospection and observation can lead one to believe in
a neurological equivalent of the central processing unit
– something that makes the decisions and controls the
other functions of the organism. While there are un-
doubtedly control structures, this model of a single, uni-
tary control system is not supported by evidence from
cognitive science.

One example comes from studies of split brain pa-
tients by Gazzaniga & LeDoux (1978). These are pa-
tients where the corpus callosum (the main structure
connecting the two hemispheres of the brain) has been
cut. The patients are surprisingly normal after the op-
eration, but with deficits that are revealed by presenting
different information to either side of the (now uncon-
nected) brain. Since each hemisphere controls one side
of the body, the experimenters can probe the behav-
ior of each hemisphere independently (for example, by
observing the subject picking up an object appropriate
to the scene that they had viewed). In one example, a
snow scene was presented to the right hemisphere and
the leg of a chicken to the left. The subject selected a
chicken head to match the chicken leg, explaining with
the verbally dominant left hemisphere that “I saw the
claw and picked the chicken”. When the right hemi-
sphere then picked a shovel to correctly match the snow,
the left hemisphere explained that you need a shovel
to “clean out the chicken shed” (Gazzaniga & LeDoux
1978, p.148). The separate halves of the subject in-
dependently acted appropriately, but one side falsely
explained the choice of the other. This suggests that
there are multiple independent control systems, rather
than a single monolithic one.

Humans are not general purpose. The brain is
conventionally thought to be a general purpose ma-
chine, acting with equal skill on any type of operation



that it performs by invoking a set of powerful rules.
However, humans seem to be proficient only in partic-
ular sets of skills, at the expense of other skills, often
in non-obvious ways. A good example of this is the
Stroop effect (Stroop 1935). When presented with a
list of words written in a variety of colors, performance
in a color recognition and articulation task is actu-
ally dependent on the semantic content of the words;
the task is very difficult if names of colors are printed
in non-corresponding colors. This experiment demon-
strates the specialized nature of human computational
processes and interactions.

Even in the areas of deductive logic, humans often
perform extremely poorly in different contexts. Wason
(1966) found that subjects were unable to apply the
negative rule of if-then inference when four cards were
labeled with single letters and digits. However, with
additional context—labeling the cards such that they
were understandable as names and ages—subjects could
easily solve exactly the same problem.

Further, humans often do not use subroutine-like
rules for making decisions. They are often more emo-
tional than rational, and there is evidence that this
emotional content is an important aspect of decision
making (Damasio 1994).

Essences of Human Intelligence

Since humans are vastly complex systems, we do not
expect to duplicate every facet of their operation. How-
ever, we must be very careful not to ignore aspects of
human intelligence solely because they appear complex.
Classical and neo-classical AI tends to ignore or avoid
these complexities, in an attempt to simplify the prob-
lem (Minsky & Papert 1970). We believe that many of
these discarded elements are essential to human intel-
ligence and that they actually simplify the problem of
creating human-like intelligence.

Development Humans are not born with complete
reasoning systems, complete motor systems, or even
complete sensory systems. Instead, they undergo a
process of development where they are able to perform
more difficult tasks in more complex environments en
route to the adult state. This is a gradual process, in
which earlier forms of behavior disappear or are modi-
fied into more complex types of behavior. The adaptive
advantage of the earlier forms appears to be that they
prepare and enable more advanced forms of behavior to
develop within the situated context they provide. The
developmental psychology literature abounds with ex-
amples of this phenomenon. For instance, the work of
Diamond (1990) shows that infants between five and
twelve months of age progress through a number of
distinct phases in the development of visually guided
reaching. In one reaching task, the infant must re-
trieve a toy from inside a transparent box with only one
open side. In this progression, infants in later phases
consistently demonstrate more sophisticated reaching
strategies to retrieve the toy in more challenging scenar-

ios. As the infant’s reaching competency develops, later
stages incrementally improve upon the competency af-
forded by the previous stage.

Social Interaction Human infants are extremely de-
pendent on their caregivers, relying upon them not only
for basic necessities but also as a guide to their develop-
ment. The presence of a caregiver to nurture the child
as it grows is essential. This reliance on social con-
tact is so integrated into our species that it is hard to
imagine a completely asocial human. However, severe
developmental disorders sometimes give us a glimpse
of the importance of social contact. One example is
autism. Autistic children often appear completely nor-
mal on first examination; they look normal, have good
motor control, and seem to have normal perceptual abil-
ities. However, their behavior is completely strange to
us, in part because they do not recognize or respond to
normal social cues (Baron-Cohen 1995). They do not
maintain eye contact, recognize pointing gestures, or
understand simple social conventions. Even the most
highly functioning autistics are severely disabled in our
society.

Embodiment Perhaps the most obvious, and most
overlooked, aspect of human intelligence is that it is
embodied. Humans are embedded in a complex, noisy,
constantly changing environment. There is a direct
physical coupling between action and perception, with-
out the need for an intermediary representation. This
coupling makes some tasks simple and other tasks more
complex. By exploiting the properties of the complete
system, certain seemingly complex tasks can be made
computationally simple. For example, when putting a
jug of milk in the refrigerator, you can exploit the pen-
dulum action of your arm to move the milk (Greene
1982). The swing of the jug does not need to be explic-
itly planned or controlled, since it is the natural behav-
ior of the system. Instead of having to plan the whole
motion, the system only has to modulate, guide and
correct the natural dynamics. For an embodied system,
internal representations can be ultimately grounded
in sensory-motor interactions with the world (Lakoff
1987).

Integration Humans have the capability to receive
an enormous amount of information from the world.
Visual, auditory, somatosensory, and olfactory cues are
all processed simultaneously to provide us with our view
of the world. However, there is evidence that the sen-
sory modalities are not independent; stimuli from one
modality can and do influence the perception of stim-
uli in another modality. Churchland, Ramachandran
& Sejnowski (1994) describe an experiment illustrating
how audition can cause illusory visual motion. A fixed
square and a dot located to its left are presented to
the observer. Without any sound stimuli, the blink-
ing of the dot does not result in any perception of mo-
tion. If a tone is alternately played in the left and right
ears, with the left ear tone coinciding with the dot pre-



Figure 2: We have built two active vision heads, similar
in design to Cog’s head. On top is a desktop version
with a 1 DOF neck, and below a head with actuators
to include facial expressions.

sentation, there is an illusory perception of back and
forth motion of the dot, with the square acting as a vi-
sual occluder. Vision can cause auditory illusions too,
such as the McGurk effect (Cohen & Massaro 1990).
These studies demonstrate that humans’ perception of
their senses cannot be treated as completely indepen-
dent processes.

Methodology
Our methodology—exploring themes of development,
social interaction, physical interaction and integration
while building real robots—is motivated by two ideas.
First, we believe that these themes are important as-
pects of human intelligence. Second, from an engi-
neering perspective, these themes make the problems
of building human intelligence easier.

Embodiment
A principle tenet of our methodology is to build and
test real robotic systems. We believe that building
human-like intelligence requires human-like interaction

with the world (Brooks & Stein 1994). Humanoid form
is important to allow humans to interact with the robot
in a natural way. In addition we believe that building a
real system is computationally less complex than sim-
ulating such a system. The effects of gravity, friction,
and natural human interaction are obtained for free,
without any computation.

Our humanoid robot, named Cog and shown in Fig-
ure 1, approximates a human being from the waist up
with twenty-one degrees-of-freedom (DOF) and a vari-
ety of sensory systems. The physical structure of the
robot, with movable torso, arms, neck and eyes gives it
human-like motion, while the sensory systems (visual,
auditory, vestibular, and proprioceptive) provide rich
information about the robot and its immediate envi-
ronment. These together present many opportunities
for interaction between the robot and humans.

In addition to the full humanoid, we have also devel-
oped active head platforms, of similar design to Cog’s
head, as shown in Figure 2 (Scassellati 1998a). These
self-contained systems allow us to concentrate on vari-
ous issues in close human-machine interaction, includ-
ing face detection, imitation, emotional display and
communication, etc. (Scassellati 1998b, Ferrell 1998c).

Development

Building systems developmentally facilitates learning
both by providing a structured decomposition of skills
and by gradually increasing the complexity of the task
to match the competency of the system.

Bootstrapping Development is an incremental pro-
cess. As it proceeds, prior structures and their behav-
ioral manifestations place important constraints on the
later structures and proficiencies. The earlier forms
bootstrap the later structures by providing subskills
and knowledge that can be re-used. By following the
developmental progression, the learning difficulties at
each stage are minimized. Within our group, Scassellati
(1996) discusses how a humanoid robot might acquire
basic social competencies through this sort of develop-
mental methodology.

The work of Marjanović, Scassellati & Williamson
(1996) applied bootstrapping techniques to our robot,
coordinating visual and motor systems by learning to
point toward a visual target. A map used for a saccad-
ing behavior (visual/eye-movement map), was reused to
learn a reaching behavior (visual/arm-movement map).
The learned saccadic behavior bootstrapped the reach-
ing behavior, reducing the complexity of the overall
learning task. Other examples of developmental learn-
ing that we have explored can be found in (Ferrell 1996).

Gradual increase in complexity The developmen-
tal process, starting with a simple system that grad-
ually becomes more complex allows efficient learning
throughout the whole process. For example, infants are
born with low acuity vision which simplifies the visual
input they must process. The infant’s visual perfor-



mance develops in step with their ability to process the
influx of stimulation (Johnson 1993). The same is true
for the motor system. Newborn infants do not have in-
dependent control over each degree of freedom of their
limbs, but through a gradual increase in the granular-
ity of their motor control they learn to coordinate the
full complexity of their bodies. A process where the
acuity of both sensory and motor systems are gradu-
ally increased significantly reduces the difficulty of the
learning problem (Thelen & Smith 1994).

To further facilitate learning, the gradual increase in
internal complexity associated with development should
be accompanied by a gradual increase in the complexity
of the external world. For an infant, the caregiver bi-
ases how learning proceeds by carefully structuring and
controlling the complexity of the environment. This
approach is in stark contrast to most machine learn-
ing methods, where the robot learns in a usually hos-
tile environment, and the bias, instead of coming from
the robots’ interaction with the world, is included by
the designer. We believe that gradually increasing the
complexity of the environment makes learning easier
and more robust.

By exploiting a gradual increase in complexity both
internal and external, while reusing structures and in-
formation gained from previously learned behaviors, we
hope to be able to learn increasingly sophisticated be-
haviors. We believe that these methods will allow us to
construct systems which do scale autonomously (Ferrell
& Kemp 1996).

Social Interaction
Building social skills into an artificial intelligence pro-
vides not only a natural means of human-machine in-
teraction but also a mechanism for bootstrapping more
complex behavior. Our research program has investi-
gated social interaction both as a means for bootstrap-
ping and as an instance of developmental progression.

Bootstrapping Social interaction can be a means to
facilitate learning. New skills may be socially transfered
from caregiver to infant through mimicry or imitation,
through direct tutelage, or by means of scaffolding, in
which a more able adult manipulates the infant’s in-
teractions with the environment to foster novel abili-
ties. Commonly scaffolding involves reducing distrac-
tions, marking the task’s critical attributes, reducing
the number of degrees of freedom in the target task,
and enabling the subject to experience the end or out-
come before the infant is cognitively or physically able
of seeking and attaining it for herself (Wood, Bruner &
Ross 1976).

We are currently engaged in work studying boot-
strapping new behaviors from social interactions. One
research project focuses on building a robotic system
capable of learning communication behaviors in a so-
cial context where the human provides various forms of
scaffolding to facilitate the robot’s learning task (Ferrell
1998b). The system uses expressive facial gestures (see

Figure 2) as feedback to the caregiver (Ferrell 1998a).
The caregiver can then regulate the complexity of the
social interaction to optimize the robot’s learning rate.

Development of social interaction The social
skills required to make use of scaffolding are complex.
Infants acquire these social skills through a develop-
mental progression (Hobson 1993). One of the earliest
precursors is the ability to share attention with the care-
giver. This ability can take many forms, from the recog-
nition of a pointing gesture to maintaining eye contact.

In our work, we have also examined social interac-
tion from this developmental perspective. One research
program focuses on a developmental implementation of
shared attention mechanisms based upon normal child
development, developmental models of autism1, and
on models of the evolutionary development of social
skills (Scassellati 1996). The first step in this devel-
opmental progression is recognition of eye contact. Hu-
man infants are predisposed to attend to socially rele-
vant stimuli, such as faces and objects that have human-
like motion. The system is currently capable of de-
tecting faces in its peripheral vision, saccading to the
faces, and finding eyes within its foveal vision (Scas-
sellati 1998b). This developmental chain has also pro-
duced a simple imitation behavior; the head will mimic
yes/no head nods of the caregiver (Scassellati 1998c).

Physical Coupling
Another aspect of our methodology is to exploit inter-
action and tight coupling between the robot and its en-
vironment to give complex behavior, to facilitate learn-
ing, and to avoid the use of explicit models. Our sys-
tems are physically coupled with the world and operate
directly in that world without any explicit representa-
tions of it (Brooks 1986, Brooks 1991b). There are rep-
resentations, or accumulations of state, but these only
refer to the internal workings of the system; they are
meaningless without interaction with the outside world.
The embedding of the system within the world enables
the internal accumulations of state to provide useful
behavior (this was the fundamental approach taken by
Ashby (1960) contemporaneously with the development
of early AI).

One example of such a scheme is implemented to
control our robot’s arms. As detailed in (Williamson
1998a, Williamson 1998b), a set of self-adaptive oscil-
lators are used to drive the joints of the arm. Each
joint is actuated by a single oscillator, using proprio-
ceptive information at that joint to alter the frequency
and phase of the joint motion. There are no connec-
tions between the oscillators, except indirectly through

1Some researchers believe that the missing mecha-
nisms of shared attention may be central to autism disor-
ders (Baron-Cohen 1995). In comparison to other mental
retardation and developmental disorders (like Williams and
Downs Syndromes), the deficiencies of autism in this area
are quite specific (Karmiloff-Smith, Klima, Bellugi, Grant
& Baron-Cohen 1995).



the physical structure of the arm. Without using any
kinematic or dynamical models, this simple scheme has
been used for a variety of different coordinated tasks,
including turning a crank and playing with a slinky toy.
The interaction between the arm and the environment
enables the oscillators to generate useful behavior. For
example, without the slinky to connect the two arms,
they are uncoordinated, but when the arms are coupled
through the slinky, the oscillators tune into the dynam-
ics of the motion and coordinated behavior is achieved.
In all cases, there is no central controller, and no model-
ing of the arms or the environment; the behavior of the
whole system comes from the coupling of the arm and
controller dynamics. Other researchers have built simi-
lar systems which exhibit complex behavior with either
simple or no control (McGeer 1990, Schaal & Atkeson
1993) by exploiting the system dynamics.

Sensory Integration
Sensory Integration Simplifies Computation
Some tasks are best suited for particular sensory modal-
ities. Attempting to perform the task using only one
modality is sometimes awkward and computationally
intensive. Utilizing the complementary nature of sepa-
rate modalities results in a reduction of overall compu-
tation. We have implemented several mechanisms on
Cog that use multimodal integration to aid in increas-
ing performance or developing competencies.

For example, Peskin & Scassellati (1997) imple-
mented a system that stabilized images from a mov-
ing camera using vestibular feedback. Rather than at-
tempting to model the camera motion, or to predict
motion effects based on efference copy, the system mim-
ics the human vestibular-ocular reflex (VOR) by com-
pensating for camera motion through learned feedback
from a set of rate gyroscopes. By integrating two sen-
sory systems, we can achieve better performance than
traditional image processing methods, while using less
computation.

Sensory Integration Facilitates Learning By in-
tegrating different sensory modalities we can exploit the
complex nature of stimuli to facilitate learning. For ex-
ample, objects that make noise often move. This cor-
relation can be exploited to facilitate perception. In
our work, we have investigated primarily the relation-
ship between vision and audition in learning to orient
toward stimuli.

We can characterize this relationship by examining
developmental evidence. Wertheimer (1961) has shown
that vision and audition interact from birth; even ten-
minute-old children will turn their eyes toward an au-
ditory cue. This interaction between the senses contin-
ues to develop, indeed related investigations with young
owls have determined that visual stimuli greatly affect
the development of sound localization. With a constant
visual bias from prisms, owls adjusted their sound lo-
calization to match the induced visual errors (Knudsen
& Knudsen 1985).

Irie (1997) built an auditory system for our robot
that utilizes visual information to train auditory lo-
calization; the visually-determined location of a sound
source with a corresponding motion is used to train an
auditory spatial map. This map is then used to orient
the head toward the object. This work highlights not
only the development of sensory integration, but also
the simplification of computational requirements that
can be obtained through integration.

Challenges for Intelligent Systems
This new approach to designing and studying intelli-
gent systems leaves us with a new set of challenges to
overcome. Here are the key questions which we must
now answer.

• Scaling and Development: What learning structures
and organizational principles will allow us to design
successful developmental systems?
• Social Interaction:

– How can the system learn to communicate with
humans?

– What attributes of an infant must the machine em-
ulate in order to elicit caregiver behavior from hu-
mans?

– What drives, motivations and emotions are neces-
sary for the system to communicate effectively with
humans?

• Physical Coupling:
– How can a system scale the complexity of its coor-

dinated motion while still exploiting the dynamics?
– How can the system combine newly learned spatial

skills with previously learned spatial skills? How
is that memory to be organized?

– How can the system use previously learned skills
in new contexts and configurations?

• Integration:
– How can a conglomerate of subsystems, each with

different or conflicting goals and behaviors, act
with coherence and stability?

– At what scale should we emulate the biological or-
ganism, keeping in mind engineering constraints?

– What are good measures of performance for inte-
grated systems which develop, interact socially and
are physically coupled with the world?

Conclusion
We have reported on a work in progress which incorpo-
rates a new methodology for achieving Artificial Intel-
ligence. We have built a humanoid robot that operates
and develops in the world in ways that are similar to
the ways in which human infants operate and develop.
We have demonstrated learning to saccade, learning to
correlate auditory and occular coordinate systems, self
adapting vestibular-ocular systems, coordinated neck
and ocular systems, learning of hand-eye coordination,



localization of multiple sounds streams, variable stiff-
ness arms that interact safely with people, arm control
based on biological models of invertebrate spinal cir-
cuits, adaptive arm control that tunes into to subtle
physical cues from the environment, face detection, eye
detection to find gaze direction, coupled human robot
interaction that is a precursor to caregiver scaffolding
for learning, large scale touch sensitive body skin, and
multi-fingered hands that learn to grasp objects based
on self-categorized stiffness properties. These are com-
ponents for higher level behaviors that we are begin-
ning to put together using models of shared attention,
emotional coupling between robot and caregiver, and
developmental models of human infants.

We have thus chosen to approach AI from a different
perspective, in the questions we ask, the problems we
try to solve, and the methodology and inspiration we
use to achieve our goals. Our approach has led us not
only to formulate the problem in the context of general
human-level intelligence, but to redefine the essences
of that intelligence. Traditional AI work has sought
to narrowly define a problem and apply abstract rules
to its solution. We claim that our goal of creating a
learning, scalable, intelligent system, with competencies
similar to human beings, is altogether relevant in trying
to solve a broad class of real-world situated problems.
We further believe that the principles of development,
social interaction, physical coupling to the environment,
and integration are essential to guide us towards our
goal.
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