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Abstract

When bacteria evolve resistance against a particular antibiotic, they may simultaneously gain increased sensitivity against a

second one. Such collateral sensitivity may be exploited to develop novel, sustainable antibiotic treatment strategies aimed

at containing the current, dramatic spread of drug resistance. To date, the presence and molecular basis of collateral

sensitivity has only been studied in few bacterial species and is unknown for opportunistic human pathogens such as

Pseudomonas aeruginosa. In the present study, we assessed patterns of collateral effects by experimentally evolving 160

independent populations of P. aeruginosa to high levels of resistance against eight commonly used antibiotics. The bacteria

evolved resistance rapidly and expressed both collateral sensitivity and cross-resistance. The pattern of such collateral effects

differed to those previously reported for other bacterial species, suggesting interspecific differences in the underlying

evolutionary trade-offs. Intriguingly, we also identified contrasting patterns of collateral sensitivity and cross-resistance

among the replicate populations adapted to the same drug. Whole-genome sequencing of 81 independently evolved

populations revealed distinct evolutionary paths of resistance to the selective drug, which determined whether bacteria

became cross-resistant or collaterally sensitive towards others. Based on genomic and functional genetic analysis, we

demonstrate that collateral sensitivity can result from resistance mutations in regulatory genes such as nalC or mexZ,

which mediate aminoglycoside sensitivity in b-lactam-adapted populations, or the two-component regulatory system gene

pmrB, which enhances penicillin sensitivity in gentamicin-resistant populations. Our findings highlight substantial variation

in the evolved collateral effects among replicates, which in turn determine their potential in antibiotic therapy.

Key words: antibiotic resistance, Pseudomonas aeruginosa, experimental evolution, trade-offs, collateral sensitivity.

Introduction

Bacteria have the potential to rapidly adapt to virtually any
natural or laboratory environment (Kussell 2013). The long-
term evolution experiment with Escherichia coli (LTEE) has
shown that even in simple constant environments, bacteria
can achieve comprehensive fitness increases of about 25%
within the first 2,000 generations (Lenski et al. 1991).
Although the LTEE populations show reduced adaptation
rates at later time points (e.g., after 50,000 generations),
they still continue to accumulate an almost constant number
of new beneficial mutations (Barrick et al. 2009; Tenaillon
et al. 2016). Thus, bacteria can adapt rapidly to new challenges
and subsequently continue to optimize their fitness. Such
remarkable adaptive potential was also observed under
more challenging conditions: Using evolution experiments
with antibiotics, E. coli evolved high levels of drug resistance
through the step-wise accumulation of multiple mutations
when drug concentrations increased over time (Toprak et al.
2012) or across space (Baym et al. 2016a). Bacteria also readily
adapted when they were challenged with two antibiotics si-
multaneously (Chait et al. 2007; Hegreness et al. 2008; Michel

et al. 2008; Pena-Miller et al. 2013), or sequentially (Kim et al.
2014; Fuentes-Hernandez et al. 2015; Roemhild et al. 2015).

Rapid bacterial adaptation to new environments often
involves evolutionary trade-offs in the form of reduced fitness
under alternative growth conditions (Kussell 2013). In the
case of antibiotic resistance evolution, two types of trade-
offs (or costs) are commonly observed: i) evolved resistance
is costly in the absence of the drugs, thus generating growth
deficiencies relative to the susceptible ancestor (Andersson
and Hughes 2010; Melnyk et al. 2015), and ii) resistance mu-
tations may exacerbate susceptibility against others (i.e. col-
lateral sensitivity (Szybalski and Bryson 1952; P�al et al. 2015);
also referred to as hypersensitivity, or negative cross-
resistance in previous publications). However, adaptive mu-
tations do not always entail a cost but instead may increase
resistance against other antibiotics (i.e., collateral resistance or
cross-resistance); thus favoring multidrug resistance.

The phenomenon of collateral sensitivity was first de-
scribed in the 1950s in a study by Szybalski and Bryson, in
which the authors tested if experimentally evolved resistant E.
coli was less, equally or more sensitive to previously unmet
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drugs (Szybalski and Bryson 1952). Despite finding that cross-
resistance was much more prevalent than collateral sensitiv-
ity, the authors hypothesized that these rare cases could then
be exploited by rationally using more than one drug during
treatment of resistant clinical strains. The employment of
drug pairs that produce reciprocal collateral sensitivity might
trap bacteria in an evolutionary “double-bind,” thus improv-
ing treatment efficacy and decreasing the evolution of resis-
tance. This ideawasmore recently tested by exposing bacteria
to such drug pairs being deployed sequentially (Imamovic
and Sommer 2013; Kim et al. 2014; Fuentes-Hernandez
et al. 2015; Roemhild et al. 2015) or simultaneously (Munck
et al. 2014; Evgrafov et al. 2015). Additionally, several other
studies have further evaluated what factors could help to
predict the changes in drug sensitivity in experimentally
evolved resistant E. coli. These showed that the strength of
selection and the chemogenomic profile similarity between
antibiotics play significant roles in the evolution of resistance
and hence influence the patterns of cross-resistance and hy-
persensitivity (L�az�ar et al. 2013, 2014; Oz et al. 2014).

To fully determine the importance of such trade-offs
during bacterial adaptation and also their therapeutic po-
tential, the patterns of collateral resistance/sensitivity ob-
served in E. coli need to be assessed in other, clinically
relevant bacterial taxa, including those known to possess
high adaptive capacity such as members of the genus
Pseudomonas. This group of bacteria are able to colonize
and thrive in a plethora of niches (Nikel et al. 2014), and act
as prominent plant and human pathogens (Loper et al.
2012; Rodr�ıguez-Rojas et al. 2012; Balasubramanian et al.
2013). For instance, the opportunistic human pathogen P.
aeruginosa is commonly associated with hospital-acquired
infections, and it is a major cause of chronic lung disease,
including the ultimately fatal infections in cystic fibrosis
patients (Govan and Deretic 1996; Arruda et al. 1999; Kang
et al. 2003; Folkesson et al. 2012). Its success as an oppor-
tunistic pathogen can be largely attributed to its vast array
of virulence factors, including the production of alginate to
form biofilms, its ability to survive oxidative stress, and the
availability of various secretion systems (Hauser 2009; Ma
et al. 2009; Burrows 2012; Jimenez et al. 2012; Korotkov
et al. 2012). Moreover, it carries a large array of intrinsic
antibiotic resistance mechanisms and an exceptional po-
tential to acquire resistance, both de novo or horizontally
transferred (Arruda et al. 1999; Carmeli et al. 1999;
Hancock and Speert 2000; Poole 2001; Drenkard and
Ausubel 2002; Livermore 2002; Overhage et al. 2008;
Breidenstein et al. 2011). To date, there is neither informa-
tion on the evolution of drug sensitivity trade-offs in P.
aeruginosa, nor on its genomic underpinnings. To rectify
this knowledge gap, we experimentally selected 160 highly
resistant populations of P. aeruginosa PA14 (plus 20 con-
trol populations) and evaluated the possibility of evolu-
tionary trade-offs in the form of fitness deficiencies in
the absence of antibiotics and hypersensitivity to other
drugs. We assessed the underlying molecular mechanisms
of such trade-offs through whole-genome sequencing of 81
evolved resistant populations.

Results and Discussion

Rapid Evolution of Antibiotic Resistance
We used experimental evolution to generate independent
populations of P. aeruginosa PA14 with significantly increased
resistance against eight different antibiotics.We challenged 20
isogenic populations against increasing concentrations of one
out of eight different drugs (for abbreviations of all antibiotics
see table 1), and included an evolutionary control grown in
media only, resulting in a total of 180 independent popula-
tions. Experiments were initiated at half the concentration
inhibiting>90% of growth (abbreviated IC90), as determined
for the ancestral PA14. Populations were then serially trans-
ferred every 12 h for 24 days (48 transfers; approximately 58
generations) until reaching around 40 times the IC90, or until
less than half of the starting populations from a given anti-
biotic were still growing (fig. 1A). In the cases of DOR, IMI, and
CAR, more than half of the populations went extinct at trans-
fers 20, 28, and 40, respectively; we accordingly isolated ten
populations adapted to the 2�, 5� and 17� environments
for further analysis. In all other cases, we randomly chose ten
surviving populations per antibiotic for subsequent charac-
terization. Frozen populations adapted to GEN could not be
recovered after thawing; we could only revive ten of those
adapted to the 5� environment. Altogether, we obtained 80
populations adapted to eight different antibiotics and ten
additional ones adapted to media only.

For the selected populations, we quantified the changes in
resistance to the respective drug used during the evolution
experiment (see Materials and Methods). P. aeruginosa could
rapidly (within 58 generations or less) reach resistance levels
of at least 32 times the IC90 of the ancestral PA14 for most
antibiotics (fig. 1B–I). Interestingly, we observed substantial
variation within particular drug treatments, suggesting differ-
ent routes of adaptation to the antibiotic. Similar increases in
drug resistance were found in a recent study with the related
P. aeruginosa strain PAO1 (Cabot et al. 2016), highlighting the
adaptive potential of this species. The same study also re-
vealed in most cases an association of increased resistance
with genomic changes in well-known resistance pathways. P.
aeruginosa’s resistance thus appears to be achieved fast
through diverse mechanisms. Several comparable E. coli evo-
lution experiments resulted in similar levels of resistance, al-
though variation between populations adapted to the same
drug was less pronounced than observed here for P.

Table 1. List of Antibiotics Used During Selection Experiments.

Functional

Target

Class Drug Abbreviation

DNA repair Quinolones Ciprofloxacin CIP

Protein

synthesis

Aminoglycosides Gentamicin GEN

Streptomycin STR

Cell wall

synthesis

Penicillins Piperacillin þ
Tazobactam

PIT

Carbenicillin CAR

Carbapenems Doripenem DOR

Imipenem IMI

Cephalosporins Cefsulodin CEF
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FIG. 1. Directional selection of highly resistant P. aeruginosa. (A) Illustration of the experimental design used for the selection of resistant

populations. Twenty replicate populations for each of the eight included antibiotics (table 1) and a control without antibiotic (a total of 180

populations) were serially transferred every 12 h into freshmedium and, for the drug treatments, increasing concentrations of each drug. Selection

was initiated at 0.5 times the concentration inhibiting>90% of growth (IC90) and concluded at�40 times of the IC90. (B–I) Ten populations for

each antibiotic were subsequently evaluated for their growth on different concentrations of the drug experienced during the experiment. Dose-

response curves are shown in the left panels and IC90 fold changes in the right panels. The ten replicate populations are shown in different colors,

whereas the black line represents the ancestral P. aeruginosa PA14.
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aeruginosa (Imamovic and Sommer 2013; L�az�ar et al. 2013;
Oz et al. 2014).

Rapid Resistance Evolution Entails a Growth Cost
To evaluate whether the evolution of high drug resistance
levels was generally associated with a fitness deficiency, we
measured different growth parameters of all of the evolved
populations, and the ancestral PA14 in a drug-free environ-
ment. We found that the control populations, which evolved
without antibiotics, had significantly shorter lag phases and
lower growth rates relative to the ancestor (supplementary
fig. S1, Supplementary Material online). These results suggest
that adaptation to the medium alone can have strong effects
on fitness. These effects could in turn influence antibiotic
resistance. To evaluate this, we compared the sensitivity of
the evolved control populations and the ancestor against
each of the eight antibiotics. In general, we found no signif-
icant differences between the dose response curves of the
controls and the ancestor (supplementary fig. S2,
Supplementary Material online). The only exceptions refer
to cases at subinhibitory drug concentrations where the
evolved populations showed higher growth than the ances-
tral PA14. More importantly, with only a single exception,
none of the replicate populations showed a change in the
IC90, thus indicating that the fitness alterations of the evolved
controls do not translate into changes in drug sensitivity
(supplementary fig. S2, Supplementary Material online).

As evolution in the absence of drugs affected growth char-
acteristics, we specifically assessed the costs associated with
the adaptation to antibiotics by relating our growthmeasures
of the 80 resistant populations to those of the evolved con-
trols. Resistant populations showed changes in at least one of
the measured growth characteristics: lag time, growth rate,
and maximum yield (fig. 2). In all cases, we observed a signif-
icantly longer time spent in lag phase, and in most cases (five
out of eight drugs), a significant reduction of about 20–50% in
maximum yield. Only populations adapted to PIT and GEN
had significantly reduced growth rates. Overall, 90% of the
resistant populations spent longer times in lag phase, 49%
produced lower maximum yields, and 36% had lower growth
rates (supplementary table S1, Supplementary Material on-
line). Interestingly, 60% of the resistant populations had a
significant cost in at least two of the parameters, whereas
only five of the populations showed no fitness costs at all.

In most cases, there was substantial variation among pop-
ulations adapted to the same drug (fig. 2). This might have
been the result of at least two paths: a direct outcome of
costly adaptation resulting in varying lengths of lag phases
depending on the favored resistance mechanism, or, alterna-
tively, an indirect consequence of our experimental design in
which selection independently acted in favor of tolerance. In
the latter case, an extended lag phase could have allowed P.
aeruginosa to remain in the environment without immedi-
ately changing its initial resistance levels but instead increas-
ing antibiotic tolerance. This could have ultimately resulted in
varying levels of measured resistance among the various pop-
ulations (Levin-Reisman et al. 2017). However, we found no
significant correlation between the IC90 fold change and the

lag time (or any of the growth parameters) for any of the
antibiotics used (supplementary table S2 and fig. S3,
Supplementary Material online). This strongly suggests that
the differences in resistance are not a result of selection for
tolerance, but rather due to underlying differences in the
resistance mechanisms that in turn have distinct effects on
growth. This finding also means that the extent of the resis-
tance increase does not linearly translate into a fitness cost,
but most likely depends on the specific underlying
mechanism.

The extent to which growth costs are associated with an-
tibiotic resistance evolution has been evaluated for a variety
of combinations of bacteria and drugs, including P. aeruginosa
(Kugelberg et al. 2005; Andersson and Hughes 2010; Melnyk
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FIG. 2. Relative fitness in the absence of antibiotics. Shown, from top

to bottom, is fitness relative to the average of the evolved control

populations, calculated for growth rate, lag time, andmaximum yield

for all populations adapted to one of the eight antibiotics (X-axis)

after 24 h of growth in antibiotic-freemedia. Colored points represent

the replicate populations and the horizontal grey crossbars indicate

the mean for each antibiotic. Black dashed lines highlight equality

to the controls; values above indicate a fitness advantage whereas

values below denote a cost. Plase note that for the lag phase, this is

inverted: values larger than 1 indicate a longer time spent in lag phase

and thus a fitness cost. Asterisks on top of each panel indicate sig-

nificant difference from 1 (i.e., a significant change in fitness) using a

Wilcoxon Rank test with probability adjustment based on the false

discovery rate (FDR) to account for multiple testing.
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et al. 2015). These studies demonstrated that mutations con-
ferring high levels of resistance usually lead to larger fitness
costs. Moreover, after adaptation to increasing drug concen-
trations, a higher number and more complex types of muta-
tions (i.e., large deletions) coincide with larger defects in
growth rate (L�az�ar et al. 2014). Considering such substantial
resistance costs, it is surprising that resistant mutants persist
both in clinical and experimental environments. Several fac-
tors were previously found to ameliorate or completely alle-
viate the effects of resistance mutations on growth. For
instance, quinolone resistant P. aeruginosa showed a high
prevalence of cost-free mutations as well as the emergence
of compensatory mutations in genes that, unexpectedly, are
not directly associated to the fitness defect (Kugelberg et al.
2005). In fact, some of our populations showed an increase in
fitness in some or all of the growth parameters measured,
emphasizing that the costs associated with some resistant
mechanisms can be ameliorated rapidly (within 58 genera-
tions) or incur no costs at all. Furthermore, the role of epi-
static effects, the genetic background in which mutations
occur, and the environment also seem to play an important
role in the magnitude of the cost (Melnyk et al. 2015).
Therefore, there is a lack of predictability, constraining the
potential clinical use of such information for a rational design
of treatment strategies.

Comprehensive Collateral Effects upon Antibiotic
Resistance Evolution
We then tested the evolved populations for the presence of
collateral sensitivity or resistance against all other drugs.

For this, we challenged each population against various con-
centrations (in triplicate) of all the antibiotics and compared
their growth to the ancestral PA14. To quantify the change in
resistance or sensitivity, we considered growth relative to the
no-drug environment, which accounts for general fitness
changes resulting from adaptation to the experimental envi-
ronment.We then calculated the area under the curve (AUC)
of the ancestral PA14 and subtracted it from that of each
population (fig. 3A and B, for the IC90 fold changes see sup-
plementary fig. S4, SupplementaryMaterial online). Finally, we
counted how often adaptation to one antibiotic led to resis-
tance against any other, hereby defined as direct adaptation,
and also; how many times resistance to a given drug evolved
after adaptation to another one, hereby defined as indirect
adaptation (fig. 3C). The same process was repeated to cal-
culate the number of cases of sensitivity by direct or indirect
adaptation.

Overall, we identified collateral effects in almost all popu-
lations with evolved resistances, whereby cross-resistance is
generally more common than collateral sensitivity (supple-
mentary fig. S5, SupplementaryMaterial online and fig. 3B and
C; direct adaptation). Essentially identical results are obtained
if IC90 fold change is used for the analysis rather than AUC
differences (supplementary fig. S4, Supplementary Material
online). Five main conclusions can be drawn from our anal-
ysis. i) Adaptation to a given antibiotic leads to collateral
resistance to drugs of similar classes (see the aminoglycosides
STR, and GEN, or the b-lactams CEF, PIT, and CAR). ii)
Resistance to most drugs leads to collateral sensitivity against
aminoglycosides, whereas resistance to aminoglycosides leads
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to collateral sensitivity almost exclusively to the penicillin-
type b-lactams (PIT and CAR; fig. 3B and C; indirect adapta-
tion). iii) Adaptation to CIP or DOR leads to enhanced
sensitivity against most other drugs, but interestingly this ef-
fect appears to be unidirectional: adaptation to other antibi-
otics rarely leads to sensitivity against these two drugs (fig. 3C;
indirect resistance). iv) Collateral resistance against CEF, a 3rd
generation cephalosporin with specific activity against P. aer-
uginosa, is found upon resistance evolution towards all other
drugs, suggesting that resistance to some cephalosporins may
be readily achieved indirectly, thus compromising its use as a
second-line drug. v) In several cases, substantial variation was
observed among populations adapted to the same drug, sug-
gesting that different resistance mechanisms may lead to
contrasting patterns of collateral effects.

The evolution of collateral resistance and sensitivity seems
to be a widespread trade-off in bacteria following drug resis-
tance evolution. For example, in E. coli, collateral resistance
towards drugs of the same class was repeatedly observed
(Imamovic and Sommer 2013; L�az�ar et al. 2013, 2014; Oz
et al. 2014). These previous studies also revealed interesting
exceptions. Some drugs, such as CIP, were often targets of
indirectmulti-drug resistance evolution, regardless of the sim-
ilarity of the drug used during experimental evolution. Also,
the strength of cross-resistance was variable even among
drugs with the same cellular targets. For instance, within
the cell-wall inhibitors, adaptation to penicillins seems to
lead to cross-resistance more often than adaptation to
carbapenems.

It is noteworthy that the direction of collateral sensitivity
differs in specific cases between P. aeruginosa and E. coli. In
particular, resistance to the aminoglycosides often preceded a
2-fold reduction in MIC against most other drugs in E. coli
(Imamovic and Sommer 2013; L�az�ar et al. 2013). In contrast,
adaptation to the same drugs in PA14 more often led to
cross-resistance, whereas in some individual populations col-
lateral sensitivity was observed almost exclusively towards the
penicillins. Moreover, CIP-adapted E. coli strains usually ex-
hibited cross-resistance to most other drugs (Imamovic and
Sommer 2013; L�az�ar et al. 2014), whereas our experiments
with P. aeruginosa produced hypersensitivity in such combi-
nations. These findings highlight the presence of key differ-
ences between species in the evolved collateral effects
following drug adaptation. Systematic evaluation of different
pathogen-drug combinations is thus essential for a full appre-
ciation of incidences and diversity of evolved collateral sensi-
tivity (Imamovic and Sommer 2013; L�az�ar et al. 2014).

Unexpectedly, our results further demonstrate the pres-
ence of substantial variation in collateral effects upon adap-
tation to one drug. In several cases, we even observed
contrasting patterns of either collateral sensitivity or resis-
tance. For example, CEF-adapted populations exposed to
GEN produced three cases of cross-resistance, five cases of
collateral sensitivity, and two neutral effects (fig. 3A; supple-
mentary fig. S4, Supplementary Material online). Similar var-
iation in collateral effects are also found for all other antibiotic
treatments, with the exception of IMI, most likely due to low
sample size (i.e., only two populations could be included in

the analysis). Moreover, such divergence in collateral effects
upon antibiotic resistance evolution has not yet been re-
ported for other bacterial species. These findings strongly
suggest that our replicate P. aeruginosa populations from a
particular antibiotic treatment achieved resistance through
different molecular mechanisms, which in turn had opposite
effects on the interaction with a second antibiotic.

Cross-Resistance May Result from the Chemical
Similarity between Drugs
Recent studies have followed Szybalski and Bryson’s hypoth-
esis that the chemical relatedness between different drugs
could explain the prevalence of cross-resistance, finding a
partial correlation between them in E. coli (L�az�ar et al.
2014). However, the reported relationship was strongly biased
by the aminoglycosides, since no cross-resistance to such
drugs was observed and these possess a chemical structure
that is fundamentally different to that of the other drugs. In
the case of P. aeruginosa, we often observed cross-resistance
to the aminoglycosides, thus allowing us to further explore
the range of relationships between drug similarities and the
frequency of cross-resistances. For such an analysis, we first
inferred the chemical similarity among all antibiotics by cal-
culating the Jaccard’s index obtained from the pairwise com-
parison of their chemical fingerprints (supplementary fig. S6,
Supplementary Material online). We then related these sim-
ilarities to the frequencies of collateral resistances (FCR) for all
drug pairs (see Materials and Methods, and L�az�ar et al. 2014).
Our analysis revealed a significant correlation between these
two parameters (fig. 4). Importantly, drugs targeting the same
cellular process are not necessarily chemically similar (e.g., IMI
and PIT or DOR and CAR) and in these cases we do not find
high levels of cross-resistance. Altogether, chemical similarity
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FIG. 4. Chemical similarity correlates with frequency of collateral

resistance. Pairwise Jaccard’s similarity indexes were calculated based

on the chemical fingerprints of each antibiotic. The frequency of

collateral resistance (FCR) was then determined as

FCR ¼ ðRA!B þ RB!AÞ=LAB, where RA!B is the number of popula-

tions resistant to drug A with cross-resistance to drug B (and vice

versa for RB!A), and LAB is the total number of populations adapted

to A and B. A significant correlation was then found between the

chemical similarity and the FCR (Spearman’s rank correlation). Each

point corresponds to a chemical comparison between any two given

drugs. Labels are shown for some, but not all, of these pairwise

comparisons.
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appears in most cases to be a key determinant of the prob-
ability of cross-resistance.

Distinct Mutations Underlie the Evolution of High
Antibiotic Resistance
To better understand the genetic mechanisms selected dur-
ing the evolution of high antibiotic resistance, we obtained
whole genome sequences for 81 evolved populations: 71 an-
tibiotic adapted populations and 10 controls. We character-
ized genomic variations using a previously established analysis
pipeline (see Materials and Methods; Jansen et al. 2015). An
important step of the pipeline is to remove substitutions
which occurred in the control populations, as these may re-
sult from adaptation to general experimental conditions and
could thus obscure the signals relevant for adaptation to the
antibiotics (see supplementary table S4, Supplementary
Material online for a list of mutations found in the evolved
control populations). We further annotated the genes with

mutations in coding regions using DAVID, the Pseudomonas
Database (available online at: http://pseudomonas.com; last
accessed May 19, 2017), and published information to group
them by function and their likely involvement in antibiotic
resistance. In general, we observed an average of 10.5 genes
affected per antibiotic environment (fig. 5A), but with differ-
ent degrees of mutational diversity (supplementary fig. S7,
SupplementaryMaterial online). Most mutations were nonsi-
lent andmay thus have contributed to adaptation (fig. 5B and
C): 89% of the mutations were observed in coding regions
(Intergenic vs. all other mutations, v2 test, v2¼ 50.94, df¼ 1,
P< 0.0001); 83% of the variants found in coding regions (e.g.,
different types of nonsynonymous, insertions/deletions
[indels], or frameshift mutations) led to partial or complete
loss of function (Intergenic and Synonymous SNPs vs. all
other type of variants, v2 test, v2¼ 39.15, df¼ 1,
P< 0.0001), and more than half of the variants observed
were fixed at levels above 40% (Number of variants<40%
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fixed vs. variants�40% fixed, v2 test, v2¼ 50.94, df¼ 1,
P¼ 0.003).

For subsequent analysis, we focused on genes having mu-
tations in their coding regions only (fig. 5D). Interestingly, the
only two surviving populations adapted to IMI showed mu-
tations in mutL, a gene coding for a DNA repair enzyme
generally associated with hypermutator phenotypes (Oliver
et al. 2002; Montanari et al. 2007; Ciofu et al. 2010); these
populations accumulated as many mutations in half the
number of generations as the others during the entire exper-
iment (supplementary table S5, Supplementary Material on-
line). The various DOR adapted populations produced a
unique SNP in a single gene, oprD: a membrane protein
(fig. 5D). The populations adapted to all other antibiotics
showed a larger number of genomic changes across a variety
of genes (fig. 5D).

The functional annotation revealed changes in three main
functions across evolved populations (fig. 5D): The first group
of affected genes is related to direct targets of the b-lactam
antibiotics and was primarily identified in populations
adapted to CEF, CAR, and PIT. This group included genes
associated with peptidoglycan synthesis (supplementary ta-
ble S5, Supplementary Material online): the penicillin-binding
protein 3 (PBP3) gene ftsI, and also the UDP-N-
acetylmuramate: L-alanyl-gamma-D-glutamyl-meso-diami-
nopimelate ligase gene mpI. Nonsilent mutations in these
genes were previously demonstrated to increase resistance
against b-lactams, either by limiting the interaction between
antibiotics and the products of these genes, or by indirectly
inducing SOS responses or enhanced efflux (Miller et al. 2004;
Tsutsumi et al. 2013).

The second group of genes is related to seven different two-
component regulatory systems (fig. 5D). This group was gen-
erally affected in response to adaptation to b-lactam and ami-
noglycoside antibiotics, whereby variation in mutated systems
seems to depend on the antibiotic class. Two-component sys-
tems are essential for bacteria to recognize different environ-
mental stimuli and coordinate a fine-tuned response via a
complex phosphorylation signal transduction system (Hoch
2000; Robinson et al. 2000; Ramos et al. 2005). P. aeruginosa
in particular possesses a large number of such regulatory sys-
tems, which it uses to control cellular division, development,
stress responses, and pathogenicity (Rodrigue et al. 2000).

The third main group of mutated genes was found in b-
lactam and aminoglycoside adapted populations, and in-
cluded different efflux regulatory systems (fig. 5D). These
genes modulate the activity of distinct efflux pumps which
can lead to single or multi-drug resistance (Hancock and
Speert 2000; Li et al. 2000; Poole 2001; Piddock 2006).
Importantly, two of them (mexZ and nalC) are closely related
to those regulating the tet efflux pumps (TetR-like repressors),
which were previously demonstrated to contribute to collat-
eral sensitivity against aminoglycosides in tetracycline resis-
tant E. coli (reviewed in Baym et al. 2016b). These genes were
further proposed as a pivotal group to be exploited in se-
quential treatment strategies (Baym et al. 2016b).

We additionally identified changes in several other known
or at least suggested antibiotic resistance genes (fig. 5D),

including the membrane protein main component gene
oprD, the DNA gyrase subunit genes gyrA and gyrB, as well
as other genes involved in cellular processes such as cell divi-
sion and motility (Macfarlane et al. 2000; Drenkard and
Ausubel 2002; Livermore 2002; Amin et al. 2005). Our analysis
further revealed changes in genes with currently unknown
function and/or no previous implication in antibiotic resis-
tance, and/or mutations in noncoding regions, which may
still influence resistance if regulatory regions are affected (e.g.,
possibly relevant for DOR-adapted populations). Some of
these changes occurred at lower frequency within the repli-
cate populations, but their exact contribution to the observed
evolutionary pattern is uncertain and may be interesting to
address in future studies. Furthermore, among the PIT-
adapted populations we also found substantial variation in
the sets of mutated genes, even though they almost all con-
sistently affected the same two functional categories: pepti-
doglycan synthesis and efflux regulatory systems. This
variation could explain the different levels of resistance ob-
served for these populations, whereby different groups of
mutated genes lead to higher or lower levels of resistance.

Specific Resistance Mechanism Associate with High
Growth Costs
The accumulation of multiple mutations during adaptation
to antibiotics could translate into stronger reductions in fit-
ness under drug-free conditions. In fact, in a similar study with
E. coli, populations accumulating a large number ofmutations
or deletions had also very low fitness in drug-free environ-
ments (L�az�ar et al. 2014). Similarly, in P. aeruginosa we found
that the populations with the strongest decrease in growth
rate have a significantly larger number of mutations in their
genomes (supplementary fig. S8A, Supplementary Material
online). However, none of the other measured fitness param-
eters correlated with the number of mutations, suggesting
that this alone is not enough to explain the observed variation
in fitness. Moreover, when we looked for overrepresented
genes in populations with the most extreme growth costs,
we observed some functions to be more prevalent than
others (supplementary fig. S8B–D, Supplementary Material
online). In particular, genes involved in peptidoglycan synthe-
sis (mpl, dacC, or ftsI), regulation of efflux (nalC) or part of
two-component regulatory systems (pmrB) were more fre-
quently found in populations with lower relative fitness
across the measured growth parameters. Interestingly, multi-
ple genes affecting these cellular processes were found within
the same populations having strong fitness reductions (nalC
together withmpl and dacCwere often found in PIT resistant
populations). Altogether, the costs of adaptation seem to be
dependent on both the number of mutations accumulated
and the specific mutated resistance mechanism.

Parallel Patterns of Collateral Resistance across
Treatments Is Not Linked to Similar Mutational
Profiles
Next, we assessed whether parallel mutational changes could
explain the observed patterns of collateral resistance across
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different treatments in P. aeruginosa (Fig. 3B). In contrast to
the findings for E. coli (L�az�ar et al. 2014), we found compar-
atively little mutational overlap between the populations
from different antibiotic treatments (supplementary fig.
S9A, Supplementary Material online). Interestingly, in the
few cases where similar mutational profiles were observed
among populations resistant to different drugs, the two com-
pared antibiotics appear to be chemically related, and the
populations showed cross-resistance (supplementary fig.
S9B and C). However, these correlations were not statistically
significant, because our data set also included several popu-
lations with high cross-resistance against chemically similar
drugs, but with completely distinct mutational profiles (sup-
plementary fig. S9B and C). Therefore, it seems that the par-
allel patterns of cross-resistance across treatments are based
on different sets of mutations.

This is also true for populations from different treatments
that adapted to drugs of the same class. For instance, the
populations that adapted to the two aminoglycosides
showed high levels of cross-resistance among them, but ad-
aptation to GEN was more often accompanied by mutations
in the two-component regulatory gene pmrB, whereas those
adapted to STR predominantly showed mutations in genes
involved in cellular division (i.e., gidA or gidB), or in efflux
regulation (i.e., mexZ; fig. 5D and supplementary table S5,
Supplementary Material online).

Contrasting Collateral Effects Have Unique Genomic
Profiles
We identified substantial variation in the incidence of collat-
eral sensitivity and cross-resistance within particular evolu-
tion experiments. For instance, five of the CEF adapted
populations showed collateral sensitivity against GEN and
STR, whereas the rest suffered cross-resistance or neutral ef-
fects against the same drugs (fig. 3B). Similarly, three of the
GEN adapted populations displayed collateral sensitivity
against CAR and PIT, whereas the others were resistant (fig.
3B). Such variation could be the result of distinct resistance
mechanisms selected during adaptation to each drug, which
in turn led to contrasting sensitivities against other antibi-
otics. To explore this possibility, we focused on four exem-
plary cases, for each of whichwe repeatedly found contrasting
variation in collateral effects to other antibiotics. These in-
cluded the populations adapted to the two aminoglycosides
(GEN, STR), which both showed such variation towards PIT
and CAR (fig. 3B). We also considered the reverse two cases,
for which populations that had adapted to either PIT or CAR
produced contrasting collateral patterns towards GEN and
STR (fig. 3B). For these four cases, we used hierarchical cluster
analysis (based on Ward’s criterion method and bootstrap-
ping to assess cluster stability [Murtagh and Legendre 2014])
to relate populations with varying collateral effects to corre-
sponding genomic variation. In particular, we first assessed
whether populations adapted to a given drug would cluster
together based on their sensitivity against the two other an-
tibiotics (fig. 6A, C, E, and G). Then, we asked whether the
same populations would also cluster together based on their
sets of mutated genes (fig. 6B, D, F, and H).

We identified clusters that consistently link the contrasting
patterns of collateral sensitivity to particular genomic varia-
tions. Intriguingly, the two-component regulatory system and
TetR-like repressors appear to play a pivotal role in determin-
ing these patterns. For the GEN-adapted populations, sensi-
tivity to PIT and CAR was associated with mutations in pmrB
(fig. 6A and B), a sensor kinase implicated in resistance against
cationic antimicrobial peptides, polymyxins, and aminoglyco-
sides in Salmonella and P. aeruginosa (McPhee et al. 2003).
Aminoglycoside resistance mediated by pmrB is hierarchically
controlled by two regulatory systems (PhoP-PhoQ and PmrB-
PmrA) that ultimately remodel lipid A in the outer mem-
brane resulting in a reduction of the membrane’s negative
charge. Such alterations were shown to enhance sensitivity to
b-lactams in aminoglycoside resistant E. coli (L�az�ar et al. 2013;
Baym et al. 2016b). Altogether, this suggests that pmrB could
be the main driver of b-lactam sensitivity in GEN resistant
populations.

Collateral sensitivity against penicillins in STR-adapted
populations is linked to mutations in the gene mexZ (fig.
6C and D), a TetR-like repressor modulating the expression
of the MexXY-OprM efflux system (Aires et al. 1999). This
gene was found to mediate aminoglycoside resistance in P.
aeruginosa PAO1 and clinical isolates from cystic fibrosis pa-
tients by increasing cellular drug efflux, through an up-
regulation of the mexXY genes (Westbrock-Wadman et al.
1999). Interestingly, in P. aeruginosa, extrusion of the amino-
glycosides appears to be exclusively mediated by MexXY-
OprM, which, when overexpressed, is also able to extrude
most penicillins (except for carbenicillin and sulbenicillin),
some cephalosporins, and meropenem (Masuda et al.
2000). However, to the best of our knowledge, its possible
role in mediating collateral sensitivity against penicillins has
not been reported before. In addition, the expression of col-
lateral sensitivity could be further influenced by other muta-
tions. For instance, a mutation in motB, a gene required for
flagellar motility in P. aeruginosa (Doyle et al. 2004), is present
in addition to mutatedmexZ in population ten, which shows
collateral sensitivity to CAR but not PIT (fig. 6C and D).

In the case of the penicillin-adapted populations, collateral
sensitivity against aminoglycosides appears to be associ-
ated—among others—with mutations in the gene nalC, an
efflux regulator of theMexAB-OprM system known to confer
intermediate to high levels of resistance to multiple drugs
(Cao et al. 2004). Populations adapted to CAR and PIT with
mutations in this gene consistently showed a more sensitive
phenotype against both aminoglycosides (fig. 6E–H).
Interestingly, tet efflux regulators, which are related in their
function to nalC, were previously shown tomediate collateral
sensitivity against aminoglycosides in tetracycline resistant E.
coli (reviewed in Baym et al. 2016b), thus suggesting a pivotal
role of this type of resistance mechanism in determining an-
tibiotic susceptibility trade-offs.

It is noteworthy that the exact distribution of the variation
in sensitivity against aminoglycosides in CAR-adapted popu-
lations is not well captured by our approach. All the identified
clusters show genomic changes that affect the same three
functions, yet the exact mutations and their frequencies
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A: Peptidoglycan synthesis

B: Two-component regulatory systems

C: Regulation of efflux

D: Membrane

E: DNA binding and repair

F: Protein processing
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FIG. 6. Genomic determinants of collateral sensitivity. We employed a hierarchical clustering analysis using the Ward’s criterion method and

bootstrapping to identify the genomic determinants of variation in collateral profiles in four treatments. In two of these treatments, replicate

populations that had adapted to either GEN (A, B) or STR (C, D) produced variation in collateral profile to PIT and CAR. In the other two

treatments, replicate populations that had adapted to either PIT (E, F) or CAR (G, H) showed such variation towards GEN and STR. We first

evaluated the clustering of populations adapted to GEN (A), STR (C), PIT (E), and CAR (G) based on the strength of collateral effects to the other

two drugs (fig. 3B), highlighting clusters of those with collateral sensitivity (lines in different shades of purple, see legend to the right) versus those

with collateral resistance (lines in different shades of green). The circled numbers always indicate the same replicate populations from a particular

treatment across the related panels. Populations clustering together based on their collateral effects also often clustered together based on their

genomic profile (B,D, F,H). Themutated genes present in the various clusters are given to the right of the dendrograms, followed by letters for their

functional annotation in brackets (see legend to the right for the annotation categories). If a specific cluster mainly included populations

associated with collateral sensitivity, then the gene names are given in purple. In cases, where clusters mainly included populations associated

with collateral resistance, the gene name is given in green.
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within the populations differ (fig. 6G and H, supplementary
fig. S10 and table S5, Supplementary Material online). The
observed phenotypic variation may then be caused by only
some of the variable genes, by specific mutations only, by the
combination of specific allelic variants, or by the frequency
difference of certain mutations. Therefore, the observed col-
lateral effects are likely influenced by additional factors, which
could not be identified directly by the cluster analysis.

Mutations in nalC, mexZ, and pmrB Can Cause
Collateral Sensitivity
Different regulatory systems were generally associated with
collateral sensitivities in the evaluated populations. To further
evaluate such a role, we assessed antibiotic sensitivity in ge-
netically modified ancestral PA14, in which we reintroduced a
selection of four of the identified mutational changes
(Materials and methods), namely the inferred �500 bp

deletion in nalC, a SNP inmexZ leading to an early stop codon
(Q95stop), and two nonsynonymous mutations in pmrB
causing a P254L and a V136E amino acid substitution. In all
cases, the constructed mutants showed almost the exact
same response as the evolved populations against at least
two of the considered antibiotics (fig. 7 and supplementary
table S6, Supplementary Material online). In particular, the
SNPs introduced in pmrB andmexZ, originally observed in the
GEN- and STR-adapted populations, caused high resistance
to these aminoglycosides, and led to significantly increased
sensitivity to the penicillins PIT and CAR (fig. 7; supplemen-
tary table S6, Supplementary Material online). Similarly, the
introduced deletion in nalC, originally observed in CAR-
adapted populations, caused resistance to the tested penicil-
lins while significantly increasing sensitivity to both GEN and
STR (fig. 7; supplementary table S6, Supplementary Material
online). Thus, two-component regulatory systems and efflux
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FIG. 7. Functional analysis of different regulatory genes. We focused on four specific mutations identified in the evolved populations to associate

with collateral sensitivity and introduced these into the ancestral PA14 strain. The resulting mutants were then tested against various concen-

trations of CAR, PIT, GEN, and STR (from left to right). In all cases, the ancestral PA14 (always in black) and the adapted population (always in

darker colors), fromwhich the particularmutationwas extracted, were tested simultaneouslywith the corresponding constructedmutants. Points

and error bars show the mean OD6 SD of five technical replicates per antibiotic concentration. For each set of bacterial populations challenged

against a particular drug, we performed a GLM followed by Tukey’s honest significant difference (HSD) test. For a summary of the statistical results

see supplementary table S6, Supplementary Material online.
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regulators can be responsible for the observed collateral sen-
sitivity in P. aeruginosa.

The tested genes nalC,mexZ, and pmrB are involved in the
regulation of efflux pumps or alteration of the outer mem-
brane, and can thus influence antibiotic resistance
(Westbrock-Wadman et al. 1999; McPhee et al. 2003; Cao
et al. 2004; Daigle et al. 2007; L�az�ar et al. 2013; Baym et al.
2016b). To the best of our knowledge, the results of our
functional genetic analysis demonstrated for the first time
in P. aeruginosa that such genes can also differentially lead
to collateral sensitivity against aminoglycosides (nalC) and
penicillins (mexZ and pmrB). Importantly, two distinct ami-
noglycoside resistance mechanisms independently led to
penicillin hypersensitivity: a loss of function (LOF) mutation
inmexZ, and two different nonsynonymous mutations in the
two-component regulatory system gene pmrB. Intriguingly,
contrasting collateral effects emerged from alterations in
functionally related genes: both mexZ and nalC are from
the TetR-family of repressors, and LOF mutations in each of
them led to completely opposite susceptibilities against pen-
icillins and aminoglycosides. Such contrasting results could be
due to an impairment of one of the efflux pumps upon up-
regulation of the other, a phenomenon previously seen in
other efflux systems such as MexCD and MexAB, or MexEF
and MexAB (Gotoh et al. 1998; Maseda et al. 2000; Jeannot
et al. 2008), but not between MexXY and MexAB.

Conclusions

We here demonstrated that P. aeruginosa adapts rapidly to
high-level antibiotic stress and that such adaptation may in-
fluence resistance against other antibiotics. Cross-resistance
correlates well with chemical similarity of the antibiotics, in
agreement with previous work. Collateral sensitivity was iden-
tified in several cases, yet different in direction to those cases
previously reported for other bacteria, such as E. coli.
Surprisingly, adaptation to a particular antibiotic produced
both cross-resistance and collateral sensitivity across the rep-
licate populations. Our genomic analysis suggests that alter-
native mechanisms were favored during resistance evolution,
which then resulted in these contrasting cross-resistance pat-
terns. Intriguingly, regulatory systems appear to play a key role
in mediating the observed collateral effects. Functional ge-
netic analysis revealed that four of the identified mutations
in three regulatory genes (nalC,mexZ, and pmrB) can indeed
cause collateral sensitivities in P. aeruginosa. Overall, we ex-
pect our results to help the development of novel antibiotic
therapy that exploits fitness trade-offs during drug resistance
evolution.

Materials and Methods

Bacteria and Media
All experiments were conducted with Pseudomonas aerugi-
nosa PA14. Cells were grown at 37 �C in sterile M9 minimal
medium supplemented with 0.2% glucose and 0.1% casamino
acids. All antibiotics were prepared according to manufac-
turer’s instructions (table 1). All experiments were carried out
in 96-well plates shaken and incubated at 37 �C for 12 h and

treatments being randomized across each plate. After 12 h of
growth, optical density (OD) measurements were taken in
BioTek plate readers. Randomization schemes of plates for
each experiment were different from each other.

Selection of Highly Resistant Mutants
We challenged 20 isogenic populations of PA14 against in-
creasing concentrations of each of the studied antibiotics
(160 populations in total; fig. 1A). As a control for the adap-
tation to growth in medium without antibiotics, we also in-
cluded 20 populations growing inM9 only, resulting in a total
of 180 populations. Experiments were initiated with half the
antibiotic concentration that causes growth inhibition of at
least 90% (IC90) for each drug in a final volume of 100 ml per
well. Every 12 h 50% volume was transferred into a freshly
prepared plate. Every fourth transfer (four generations), OD
wasmeasured and the antibiotic concentration was increased
1.5 times. Experiments were concluded when reaching �40
times the IC90 (48 transfers) or when ten or less of the 20
populations had reached extinction. Whenever the antibiotic
concentration was increased, the preceding plates were fro-
zen at �80 �C in 1:4 (v/v) of 86% glycerol.

Fitness Measurements
All evolved populations were grown overnight (ON) at 37 �C
and 180 rpm in M9 media with the corresponding antibiotic
they were adapted to. Cultures were then centrifuged,
washed with fresh M9 media and diluted in 100 ml of M9
without any drug to a starting OD of 0.08 (�105CFU/ml). For
each population, four technical replicates were considered,
and then incubated inside a plate reader at 37 �C for 24 h.
Within the plate reader, OD measurements were taken at
regular intervals of 15min, for a total of 96 measurements per
population and replicate. The collected growth data was then
analyzed using the R package “grofit” to obtain three growth
parameters: growth rate, length of lag time, and maximum
yield. We standardized the fitness of each population relative
to the mean of the evolved controls (adapted to M9 media
only).

Collateral Sensitivity and Resistance Assays
Wemeasured collateral effects for the experimentally evolved
populations with high levels of resistance. We tested these
populations and also the ancestral PA14 against ten different
concentrations of a given antibiotic in randomized order
(each concentration was replicated three times; total of
21,120 concentration and population combinations). To
quantify the change in resistance or sensitivity, we first con-
sidered growth relative to the no-drug environment in order
to account for differences in fitness defects among popula-
tions originated after adaptation.We then calculated the area
under the curve using a spline approximation of the ancestral
PA14 and subtracted the one obtained for each population.
Positive values reflect a higher cumulative growth at increas-
ing concentrations in the population compared with the an-
cestor, thus indicating cross-resistance; conversely, negative
values represent collateral sensitivity. To derive significant
sensitivity or resistance, we performed a Wilcox on rank
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test for all populations adapted to a given environment when
challenged against a given antibiotic, comparing significant
differences from 0. P values were adjusted for multiple testing
using the false discovery rate, FDR (supplementary fig. S5,
Supplementary Material online). We subsequently asked
howmany cases of direct or indirect adaptation had occurred
for each antibiotic. Direct adaptation considers how often
adaptation to a given drug leads to resistance (or sensitivity)
against other drugs, whilst indirect adaptation reflects how
often adaptation to other drugs lead to resistance (or sensi-
tivity) against a particular antibiotic. For example, we asked
how many cases of resistance against all other drugs were
observed upon adaptation to CIP (direct adaptation); as well
as howmany cases of resistance against CIP were found upon
adaptation to any other drug (indirect adaptation).

Chemical Similarity
We inferred chemical relatedness as previously described by
using the Jaccard’s similarity index contrasting the chemical
fingerprints of all antimicrobial compounds used here (L�az�ar
et al. 2014). We then correlated these pairwise comparisons
to the frequency of cross-resistance calculated by:

FCR ¼ ðRA!B þ RB!AÞ=LAB;

where RA!B is the number of populations resistant to drug A
with cross-resistance to drug B, RB!A is the number of pop-
ulations resistant to drug Bwith cross-resistance toA, and LAB
is the total number of populations adapted to A and B.

DNA Extraction
To identify the genetic changes leading to high-level resis-
tance evolution, we sequenced full genomes for whole pop-
ulations of the ancestral P. aeruginosa PA14, ten evolved
controls and 71 populations adapted to different drugs.
Frozen material from all populations was thawed, and 10 ml
of each were transferred into 15ml of M9 minimal medium
with the corresponding antibiotic. All populations were
shaken and incubated at 37 �C O/N. DNA was extracted
using the DNeasy Blood and Tissue Kit (Qiagen, Hilden,
Germany) following manufacturer’s recommendations for
Gram-negative bacteria. Eighty-one populations in total
were sequenced at the Institute for Clinical Microbiology,
Kiel University Hospital, using the Illumina HiSeq paired-
end technology (Bentley et al. 2008) with an insert size of
150 bp and 300� coverage.

Genomic Analysis
We employed an established pipeline encoded in serial bash
and Perl scripts used previously for the genomic analysis of P.
aeruginosa PA14 (Jansen et al. 2015). Briefly, reads with unre-
liable quality were removed using Skewer (Jiang et al. 2014).
Samples were then mapped to the published P.
aeruginosa_UCBPP_PA14_NC008463 reference genome
available at (http://pseudomonas.com/strain/download; last
accessed May 19, 2017). Mapping was performed using bwa
and samtools (Li et al. 2009; Li and Durbin 2010) and then
visually inspected for low-quality areas using IGV (Integrated

genome viewer, Broad Institute; www.broadinstitute.org/soft-
ware/igv/; last accessed May 19, 2017).

Duplicated regions were removed for single nucleotide
polymorphisms and structural variant calling (SNPs and
SV) using MarkDuplicates in Picardtools (https://braod.in-
stitute.github.io/picard/; last accessed May 19, 2017). To
call SNPs and small indels above a threshold frequency of
0.1 and base quality above 20, we employed both frequent-
ist and heuristic methods using respectively SNVer and
VarScan (Wei et al. 2011; Koboldt et al. 2012). To identify
larger indels and other SV, we used Pindel and CNVnator
(Ye et al. 2009; Abyzov et al. 2011). The resulting output
files were filtered for duplicates, ancestral variants, and
variants found in the evolved controls. We used a combi-
nation of sources to identify and annotate the variants
using snpEff (Cingolani et al. 2012), DAVID, the
Pseudomonas database (available online at: http://pseudo-
monas.com; last accessed May 19, 2017) and information
from published work. Further count statistics, analysis and
visualizations were done in the R platform (R Core Team).

Mutational diversity was calculated as in (Chevereau
et al. 2015). Briefly, we calculated the entropy H ¼
�
P

½pjð log2pj þ ð1� pj log2ð1� pjÞ�, where pj is the
probability that a given locus j is mutated in a random pop-
ulation. H then measures the diversity of mutated loci in the
populations adapted to a given drug. Standard error was ob-
tained from jackknife resampling in the R platform.

In order to link the observed collateral effects to the un-
derlying genetic changes we performed a hierarchical cluster-
ing analysis. For this, we focused on four treatments, which
repeatedly produced contrasting patterns of collateral effects.
These included populations adapted to either GEN or STR
(the two aminoglycosides), which produced variation in their
collateral profiles towards PIT and CAR. We also considered
the reverse two cases, for which replicated populations that
had adapted to PIT and CAR showed contrasting patterns of
collateral effects towards GEN and STR. For these four cases,
we first obtained the Euclidean similarity of the sensitivities of
evolved populations against the considered drugs. Then we
used hierarchical clustering based on Ward’s minimum vari-
ance method, including the Ward’s criterion, which aims at
finding compact, spherical clusters, and combined it with
bootstrapping to asses cluster stability (Murtagh and
Legendre 2014). The same process was then used to infer
clusters based on the genomic profiles of the same popula-
tions, including only genes with mutations within their cod-
ing regions. For each antibiotic, we then built dendograms for
the clustering results and assessed to what extent given ge-
nomic clusters coincided with clusters having collateral resis-
tance or sensitivity phenotypes.

The obtained genome sequences are available from NCBI
SRA database under the BioProject number: PRJNA355367.

P. aeruginosa PA14 Genome Editing
Deletion of nalC and single nucleotidemutations in pmrB and
mexZ were introduced in P. aeruginosa PA14 based on a two-
step recombination method previously described (Trebosc
et al. 2016). DNA fragments corresponding to 700-bp up-
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and downstream of the nalC region to be deleted (position
1,391,565–1,390,977 on PA14 genome, GenBank CP000438.1)
were amplified by PCR using primers oVT464/oVT465 and
oVT466/oVT467, respectively. The resulting DNA fragments
were introduced into pVT77 previously digested with EcoRI/
XbaI using NEBuilder HiFi DNA assembly (New England
Biolabs). For the allelic replacement of wildtype pmrB and
mexZ, 1.4-kb DNA fragments were amplified by PCR using
primers oVT468/469, oVT470/471 and oVT472/473 on the
evolved populations GEN-3, GEN-10, and STR-2, which re-
spectively contained the PmrB_V136E, PmrB_P254L and
MexZ_Q95stop mutations. The resulting DNA fragments
were cloned into pVT77, digested with EcoRI/XbaI, using
NEBuilder HiFi DNA assembly.

The obtained plasmids were transformed into E. coli con-
jugative strains MFDpir or S17-1 and transferred into P. aer-
uginosa PA14 as described previously (Trebosc et al. 2016).
After conjugation, genomic plasmid integrationwas tested on
LB agar plates containing 100 mg/ml sodium tellurite—when
E. coli S17-1 was used additional 30 mg/ml Chloramphenicol
were added to selection plates to eradicate the E. coli cells.
Plasmid integration into the PA14 genome was confirmed by
PCR with primers oVT8 and oVT474, oVT476, oVT478, and
oVT480 for nalC deletion, PmrB V136E, PmrB P254L, and
MexZ Q95stop mutations, respectively. PA14 clones were
transferred to LB agar plates containing 1mM isopropyl-b-
D-1-thiogalactopyranoside and 200 mg/ml 30-azido-30-deoxy-
thymidine to select for plasmid removal from the genome.
Clones were screened by PCR using primers oVT474/oVT475,
oVT476/oVT477, oVT478/oVT479, and oVT480/oVT481 for
nalC deletion, PmrB V136E, PmrB P254L, and MexZ Q95stop

mutations, respectively. The genomic deletion andmutations
were finally confirmed by DNA sequencing (Microsynth AG,
Balgach, Switzerland) (table 2).

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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and mode of genome evolution in a 50,000-generation experiment.
Nature 536:165–170.

Toprak E, Veres A, Michel J-B, Chait R, Hartl DL, Kishony R. 2012.
Evolutionary paths to antibiotic resistance under dynamically sus-
tained drug selection. Nat Genet. 44:101–105.

Trebosc V, Gartenmann S, Royet K, Manfredi P, Tötzl M, Schellhorn B,
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