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The standard linear solid model (SLSM) is a typical and useful model for analyzing stress

relaxation and creep behaviors of viscoelastic solids for obtaining the corresponding

viscoelastic properties. However, the analysis results cannot be directly compared to

the parameters commonly adopted for defining the mechanical properties of viscoelastic

solids in the finite element simulation package such as the modulus of elasticity (Ee) and

the two parameters in the dimensionless form of the relaxation modulus (g and τ1). The

purpose of this paper is to introduce an alternative form of SLSM in terms of Ee, g, and τ1

for characterizing stress relaxation and creep behaviors. A series of stress relaxation and

creep curves with different Ee, g, and τ1 was simulated by finite element simulation. The

derived alternative form of SLSMwas used to curve fit the simulated stress relaxation and

creep curves to obtain the corresponding values of Ee, g, and τ1. The results showed

that the values of Ee, g, and τ1 obtained from the simulation were approximately equal

to the theoretical ones (i.e., those set in the simulation), showing that the alternative form

of SLSM can accurately evaluate the corresponding Ee, g, and τ1. In conclusion, the

alternative form is formulated in terms of the parameters used to define the mechanical

properties in the finite element simulation package, so that the parameters obtained

by curve fitting can be directly compared to those set in the finite element simulation

package. It was also found that the physical meaning of g is associated with the ratio of

viscous fluids to solids of a viscoelastic solid.

Keywords: viscoelasticity, mechanical properties, generalized Maxwell model, relaxation modulus, biomaterials,

finite element simulation

INTRODUCTION

Biomaterials play an important role in many areas of biomedicine, for example, as materials
of implants, as scaffolds for regeneration of engineered tissues for biomedical research or
for replacement of pathological natural tissues (Petit-Zeman, 2001; O’Brien, 2011; Smith and
Grande, 2015). Since biomaterials are intended to be used in living bodies or for mimicking
nature tissues, there are several important parameters that must be considered during the
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development of biomaterials, such as biocompatibility,
biodegradability, mechanical properties, structural properties,
and so on (O’Brien, 2011). Among these parameters, mechanical
properties of biomaterials are important in determining
biomechanical requirements for applications. As materials
of implants, they should have proper mechanical properties
for providing support, stabilization, adequate flexibility, and
satisfactory function (Agarwal and García, 2015). In tissue
engineering, mechanical properties of scaffolds in microscopic
and macroscopic scales play an important role in regulating cell
behaviors (Vedadghavami et al., 2017), and directly determine
the appropriateness of the environment for the development of
cells and tissues (Wright et al., 2011). In addition, the mechanical
properties of an engineered tissue should be carefully designed
such that it can emulate the biomechanical function of the
natural native tissue it replaces, and can drive the formation of
new tissues (Diego et al., 2007; Smith and Grande, 2015).

Since mechanical properties are important parameters to be
designed for biomaterials, it is essential to accurately characterize
mechanical properties during the development and maintenance
of biomaterials (Deng et al., 2016; Hong et al., 2016). The
ability to finely characterize and turn mechanical properties
of biomaterials can expedite their clinical uses and enable the
development of new biomaterials for biomedical applications
(Deng et al., 2016; Hong et al., 2016).

Like biological tissues, biomaterials exhibit viscoelastic
behaviors such as stress relaxation and creep (Stammen et al.,
2001; Hong et al., 2016, 2018). The standard linear solid model
(Figure 1) is a typical model used to analyze the experimentally
measured stress relaxation and creep behaviors for obtaining the
corresponding viscoelastic properties of materials (Plaseied and
Fatemi, 2008; Chester, 2012). The standard linear solid model
has two forms: Maxwell form and Kelvin form (Figure 1). In
this paper, the Maxwell form is used, and the term “standard
linear solid model” means the Maxwell form of the standard
linear solid model. The standard linear solid model consists of a
spring and a Maxwell body in parallel, where a Maxwell body is a
series connection of a spring and a dashpot. The standard linear
solid model is a special case of the generalized Maxwell model
(Figure 2), in which a spring and an arbitrary number ofMaxwell
bodies are connected in parallel. The standard linear solid model
is much simpler compared to other more general models like
the generalized Maxwell model and fractional-order viscoelastic
model (Xiao et al., 2016). Nevertheless, the standard linear
solid model is still useful for analyzing viscoelastic behaviors of
many biomaterials like polycaprolactone scaffolds (Sethuraman
et al., 2013) and hydrogels (Shazly et al., 2008; Feng et al.,
2010; Tirella et al., 2014; Cacopardo et al., 2019). In addition,
the results by using the standard linear solid model is easier
to interpret since the model produces only three parameters
(Braunsmann et al., 2014).

Although the standard linear solid model is a useful and
easy-to-interpret model for analyzing viscoelastic behaviors, the
analysis results (i.e., the obtained values of the three model
parameters by curve fitting) cannot be directly compared to
the parameters commonly adopted for defining the mechanical
properties of viscoelastic solids. For example, in several finite

FIGURE 1 | The standard linear solid model has two forms: Maxwell form (A)

and Kelvin form (B). In this paper, the Maxwell form is used, and the term

“standard linear solid model” means the Maxwell form of the standard linear

solid model.

FIGURE 2 | In the generalized Maxwell model, a spring and an arbitrary

number of Maxwell bodies are connected in parallel. The standard linear solid

model is a special case of the generalized Maxwell model with N = 1.

element simulation packages, the modulus of elasticity as well
as the parameters in the dimensionless form of the relaxation
modulus, are used to define the mechanical properties of a linear
viscoelastic solid. It introduces a problem that the parameters
set in the finite element simulation package cannot be directly
compared to those in the standard linear solid model, which
is the model commonly used to curve fit the experimentally
measured stress relaxation and creep curves. Since the parameters
set in the finite element simulation package are often served as
the standard for defining the mechanical properties of a linear
viscoelastic solid, it is important to evaluate these parameters
based on the experimental analysis results. In some applications,
it is also important to compare the experimental and simulation
results for the purpose of validation, as will be discussed in the
Discussion section.

The main purpose of this paper is to introduce an alternative
form of the standard linear solid model in terms of the modulus
of elasticity and the parameters in the dimensionless form of the
relaxation modulus for characterizing stress relaxation and creep
of viscoelastic solids. By using the alternative form to analyze
data, the experimental results can be directly compared to the
theoretical parameters set in the finite element simulation. In
this paper, the proposed model is validated by finite element
simulation. It is also applied to analyze the experimental data of
real materials. The physical meanings of the parameters in the
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dimensionless form of the relaxation modulus are investigated. It
will be shown that the physical meaning of a parameter in the
dimensionless form of the relaxation modulus, g is associated
with the ratio of viscous fluids to solids of a viscoelastic solid. The
theoretical background of the generalized Maxwell model, the
standard linear solid model and its solutions for stress relaxation
and creep are reviewed in the Appendix.

MATERIALS AND METHODS

Derivation of the Alternative Form of the
Standard Linear Solid Model for
Characterizing Stress Relaxation and
Creep
Please firstly note that the standard linear solid model has
two forms, Maxwell form and Kelvin form (Figure 1). In the
following derivation, the Maxwell form is used.

The stress as a function of time during the stress relaxation test
using a unit step strain function described by the standard linear
solid model:

σ (t) =
(

Ee + E1e
−

t
τ1

)

ǫ0 (1)

where τ1 = c1/E1 is the relaxation time constant, and ǫ0 is the
constant strain during the stress relaxation test.

The strain as a function of time during the creep test using
a unit step stress function described by the standard linear
solid model:

ǫ (t) =
σ0

Ee

(

1−
E1

E1 + Ee
· e

−
t
τ2

)

(2)

where τ2 = c1 (E1+Ee) /E1Ee is the creep time constant (or called
retardation time constant), and σ0 is the constant stress during
the creep test.

Please refer to the Appendix for the derivation and relevant
concepts of Equations (1) and (2).

Dividing Equation (1) by ǫ0, the relaxation modulus is
defined as:

E (t) =
σ (t)

ǫ0
= Ee + E1e

−
t
τ1 (3)

Equation (3) can be written as:

E (t) = E0 − E1

(

1− e
−

t
τ1

)

(4)

where E0 is equal to E1 + Ee. It is the relaxation modulus at the
beginning of stress relaxation, and is the stiffness of the material.

Ee is the constant relaxation modulus after the material is
totally relaxed as t → ∞, and is the modulus of elasticity of
the material.

E1 = E0 − Ee can be interpreted as how much the relaxation
modulus drops from the beginning of the stress relaxation to the
steady state as t → ∞.

Figure 3 illustrates the physical interpretations of E0,
Ee, and E1.

FIGURE 3 | Illustration of E0, Ee and E1. E0 is the relaxation modulus at the

beginning of stress relaxation. Ee is the constant relaxation modulus as

t → ∞, and is the modulus of elasticity of the material. E1 can be interpreted

as how much the relaxation modulus drops from the beginning of stress

relaxation to the constant relaxation modulus as t → ∞.

Dividing Equation (4) by E0, the dimensionless form of the
relaxation modulus is:

f (t) =
E (t)

E0
= 1− g

(

1− e
−

t
τ1

)

(5)

where g = E1/E0 = E1/ (Ee + E1), and g is a real number
between 0 and 1. From this, the relationship between g (a
parameter in the dimensionless form of the relaxation modulus),
and E1 and Ee (two parameters in the standard linear solidmodel)
can be established.

In several finite element simulation packages, the modulus
of elasticity Ee, and the two parameters g and τ1 in the
dimensionless form of the relaxation modulus, are used to define
the mechanical properties of a linear viscoelastic solid.

Since g = E1/ (Ee + E1), E1 can be expressed as the function
of g and Ee:

E1 =
gEe

1− g
(6)

Substituting Equation (6) into Equation (1) yields:

σ (t) =

(

1+
g

1− g
e
−

t
τ1

)

Eeǫ0 (7)

It is the alternative form for describing the stress as a function
of time during the stress relaxation test using a unit step strain
function described by the standard linear solid model, in terms
of g, Ee and τ1.

Substituting Equation (6) into Equation (2) yields:

ǫ (t) =
σ0

Ee

(

1− g · e
−

1
τ2
t
)

(8)

It is the alternative form for describing the strain as a function
of time during the creep test using a unit step stress function
described by the standard linear solid model, in terms of g, Ee
and τ2.
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In practice, conventionally, we use the governing equation for
the stress relaxation, i.e., Equation (1), or the governing equation
for the creep, i.e., Equation (2), to curve fit the experimental stress
relaxation or creep data for obtaining the three parameters in
the standard linear solid model, Ee, E1, and c1. Next, we use the
equation g = E1/ (Ee + E1) to obtain the corresponding g, and
use the definitions of the relaxation and creep time constants
to obtain the two time constants. Now, we can directly use
Equations (7) or (8) to curve fit the experimental stress relaxation
or creep data to obtain the corresponding Ee, g and relaxation or
creep time constants. By using this technique, we will be able to
compare the experimental results (Ee, g, and τ1 obtained from
the experiment) to the theoretical parameters (Ee, g, and τ1 set
in the finite element simulation package). In this paper, finite
element simulation is used to validate this proposed technique,
as described in the next section.

Before closing this section, there are two important points to
be addressed:

First, let’s discuss the associated physical meaning of g. The
physical meaning of g can be understood by examining Equation
(4). There are two cases: first, if g → 1 as E1 → E0, f (t) drops
to zero as t → ∞, and it means that the material contains more
viscous fluids and less solids and behaves like a viscoelastic fluid;
second, if g → 0 as E1 → 0, f (t) remains a constant as t → ∞,
and it means that the material behaves more like an elastic solid.
Hence, g can be interpreted as a parameter governing the ratio of
viscous fluids to solids of a viscoelastic solid. The more g closes
to 1, the larger the ratio of viscous fluids to solids.

Second, let’s discuss the relationship between the relaxation
time constant τ1 and creep time constant τ2. From the definitions
of τ1 and τ2, i.e., τ1 = c1/E1, τ2 = c1 (E1+Ee) /E1Ee, and the
equation g = E1/ (Ee + E1), the relationship between τ1, τ2 and
g can be obtained:

τ1 =
(

1− g
)

τ2 (9)

This equation demonstrates that the relaxation time constant is
equal to 1−g times the creep time constant for the standard linear
solid model. Since g is a real number between 0 and 1, Equation
(9) implies that the creep time constant τ2 is always larger than
the relaxation time constant τ1.

Finite Element Simulation
Finite element simulation was performed using ABAQUS/CAE
2019 (Dassault Systems Simulia Corp., Johnson, RI, USA) to
validate the proposed alternative form of the standard linear
solid model, i.e., Equations (7) and (8). The idea is to utilize the
mechanical property parameters set in the computer simulation
as the golden standard to validate the proposed Equations (7)
and (8). More specifically, the simulation produces simulated
stress relaxation and creep curves based on the set mechanical
property parameters. Then, after using Equations (7) and (8)
to curve fit the simulated stress relaxation and creep curves,
respectively, the evaluated mechanical property parameters by
curve fitting can be obtained. If the evaluated parameters are
comparable to the parameters set in the computer simulation,
the equations used for curve fitting can be validated to be

effective. On the other hand, if the equations for curve fitting
are not valid, the evaluated parameters by curve fitting will not
be comparable to the parameters set in the computer simulation.
Figure 4 illustrates the flowchart of this finite element simulation
and numerical analysis.

In the finite element simulation, an asymmetric homogeneous
model was constructed for simulating the viscoelastic behaviors,
including stress relaxation and creep, of a viscoelastic solid. The
radius of the cross-sectional area and thickness of the model
were 50 and 100mm, respectively. The model was meshed
by quadrilateral elements of dimensions 1.25 × 1.25mm. The
setting of the boundary conditions of the model was that the
top and sides of the model were not fixed (i.e., displacements
and rotations were allowed along all directions) while the bottom
was fixed along the depth direction (i.e., displacements were not
allowed along the depth direction, and rotations were not allowed
along the lateral direction). The geometry and basic setting of the
model are shown in Figure 5.

The model was constructed by an isotropic linearly
viscoelastic solid. The mechanical properties of the material were
defined by four parameters, including the modulus of elasticity
(or called the Young’s modulus), Poisson’s ratio (set as 0.495 in
this paper since the material was assumed to be incompressible),
and the two parameters g and τ1 in the one-branch Prony series
of the dimensionless relaxation modulus in Equation (5).

In the stress relaxation simulation, the top edge of the model
was uniformly applied by a deformation of the magnitude of
2.5mm for a very short duration of 500 µs for simulating a
step forcing function. The deformation was then kept constant
at 2.5mm until the stress response (i.e., the stress over time) of
each element in themodel reached the steady state. The stress and
strain responses of all of the elements in the model were taken for
analysis. The stress and strain responses along the depth direction
of each element were collected, and then imported intoMATLAB
(R2019a; Mathworks, Natick MA) for analysis. Equation (7) was
used to curve fit the stress response (i.e., stress relaxation curve)
of each element for obtaining the corresponding Ee, g, and τ1.
During the curve fitting using Equation (8), ǫ0 was taken as the
strain value at the beginning of stress relaxation. The average
value obtained from all of the elements for each parameter (Ee,
g and τ1) was used to compared to the theoretical value, i.e., the
one set in ABAQUS during the simulation.

In the creep simulation, a uniform pressure was applied on
the top edge of the model for a very short duration of 500 µs
for simulating a step forcing function. The magnitude of pressure
was such that the strain in the steady state was 5%. The pressure
was then kept constant until the strain response (i.e., the strain
over time) of each element in the model reached the steady state.
Similar to themethod used in the stress relaxation simulation, the
stress and strain responses of each element were collected, and
then imported into MATLAB for analysis. Equation (8) was used
to curve fit the strain response (i.e., creep curve) of each element
for obtaining the corresponding Ee, g and τ2. During the curve
fitting using Equation (8), σ0 was taken as the stress value at the
beginning of creep. Both g and τ2 obtained by curve fitting and
Equation (9) were used to obtain the corresponding τ1. Similar to
the method in the stress relaxation simulation, the average value
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FIGURE 4 | Flowchart of the finite element simulation and numerical analysis.

for each parameter (Ee, g, and τ1) was compared to the theoretical
value set in ABAQUS during the simulation.

For each simulation scenario (stress relaxation or creep), three
groups of materials were studied. In the first group, Ee = 1,000,
5,000, 10,000, 50,000, and 100,000 Pa while τ1 = 5 s and g =

0.8. In the second group, τ1 = 0.5, 1, 5, 10, and 20 s while Ee =
5,000 Pa and g = 0.8. Finally, in the third group, g = 0.01, 0.2,
0.4, 0.6, 0.8, 0.85, 0.9, 0.95, 0.99 while Ee = 5,000 Pa and τ1 = 5 s.
In each group, the value for each parameter obtained from the
simulated curve by curve fitting was compared to the theoretical
one set in ABAQUS.

Experimental Data Analysis
Equations (7) and (8) were used to curve fit the experimental
data of stress relaxation and creep, respectively, for preliminarily
investigating how the alternative form of the standard linear solid
model works on the experimental data.

First, the stress relaxation behaviors of magnetorheological
gels with different carbonyl iron particle concentrations (40, 50,
60, and 70 wt%) under shear loading (Figure 6A) were analyzed
(curve fitted) by Equation (7). The data were reproduced from the
paper by Xu et al. (2017). ǫ0 in Equation (7) was set as 0.2% during
the curve fitting (Xu et al., 2017). The three parameters, Ee, g, and
τ1, of each sample with a specific concentration obtained by curve
fitting were descriptively reported.

Second, the creep behaviors of nanocomposite thin films with
different CdSe quantum dot concentrations (50, 75, 95, and 100
wt%) under nanoindentation (Figure 6B) were analyzed (curve
fitted) by Equation (8). The data were reproduced from the
paper by McCumiskey et al. (2010). σ0 in Equation (8) was
set as 24.3 µN during the curve fitting (McCumiskey et al.,
2010). The three parameters, Ee, g, and τ1, of each sample
with a specific concentration obtained by curve fitting were
descriptively reported.
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RESULTS

Results of the Finite Element Simulation
The finite element simulation results are shown in Table 1. The
r2 values for curve fitting of all of the cases were higher than
0.98. The results show that the values of Ee, g, and τ1 obtained
from the simulated curve by curve fitting were approximately
equal to the theoretical ones (i.e., those set in ABAQUS) both
for stress relaxation and creep. However, in the group 3, it
can be observed that the error of τ1 increased nonlinearly with
increasing g (Figure 7). The error of τ1 became significant when
g approached 0.95 (error = 6.3 and 7.0% for stress relaxation
and creep, respectively, when g = 0.95), and was unacceptable
when g was larger than 0.95 (error = 33.0 and 41.6% for
stress relaxation and creep, respectively, when g = 0.99). The

FIGURE 5 | Geometry and basic setting of the model for the finite element

simulation.

results suggest that the alternative form of the standard linear
solid model for characterizing stress relaxation and creep of
viscoelastic solids, i.e., Equations (7) and (8), can accurately
evaluate the corresponding Ee, g. and τ1, except for a material
with a value of g approximately larger than 0.95.

Figure 8A shows several stress and strain responses over
time of different materials in the group 3 during the stress
relaxation test. Figure 8B shows the corresponding relaxation
moduli. It should be reminded that the values of Ee and τ1
were the same (Ee = 5,000 Pa and τ1 = 5 s) while the g values
were different for different materials in the group 3. It can be
observed that the stress and relaxation modulus values at the
beginning of stress relaxation were larger for larger g. The stress
and relaxation modulus values after the material was totally
relaxed were the same for different g. The strain responses were
the same for different g. Figure 8C shows the corresponding
dimensionless form of the relaxation moduli. It can be observed
that the dimensionless relaxation modulus dropped more as
t → ∞ for larger g, and dropped less for small g. For
g = 0.01, the dimensionless relaxation modulus dropped just a
little bit.

Figure 9A shows several stress and strain responses over time
of different materials in the group 3 during the creep test.
Figure 9B shows the corresponding creep compliance. It can
be observed that the strain and creep compliance values at the
beginning of creep were smaller for larger g. The strain and creep
compliance values after the material was totally creeped were
the same for different g. The stress responses were the same for
different g.

Results of the Experimental Data Analysis
Figure 6A shows that Equation (7) fitted the stress relaxation
behaviors of magnetorheological gels quite well (the r2 values for
curve fitting of all of the cases were higher than 0.98). The values
of Ee were 9.82, 16.7, 25.4, and 80.0 kPa, the values of g were
0.85, 0.84, 0.79 and 0.65, the values of τ1 were 13.99, 18.15, 24.39
and 44.68 s, for carbonyl iron particle concentrations of 40, 50,
60, and 70 wt%, respectively. It means that the gel’s modulus of

FIGURE 6 | (A) The stress relaxation behaviors of magnetorheological gels with different carbonyl iron particle concentrations (40, 50, 60, and 70 wt%) were curve

fitted by Equation (7). (B) The creep behaviors of nanocomposite thin films with different CdSe quantum dot concentrations (50, 75, 95, and 100 wt%) were curve

fitted by Equation (8).
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TABLE 1 | Comparison between the values of properties set in ABAQUS and the ones obtained from the simulation.

Properties set in ABAQUS Properties obtained from the simulation (left: stress relaxation/right: creep)

Material number Ee g τ1 Ee g τ1

Group 1

1 1,000 0.80 5 1,000/1,000 0.7973/0.7972 5.0667/5.0705

2 5,000 0.80 5 5,000/5,001 0.7973/0.7972 5.0667/5.0705

3 10,000 0.80 5 10,000/10,003 0.7973/0.7972 5.0667/5.0705

4 50,000 0.80 5 50,000/50,013 0.7973/0.7972 5.0667/5.0705

5 100,000 0.80 5 100,000/100,026 0.7973/0.7972 5.0667/5.0705

Group 2

1 5,000 0.80 0.5 5,000/5,001 0.7973/0.7972 0.5067/0.5071

2 5,000 0.80 1 5,000/5,001 0.7973/0.7972 1.0133/1.0142

3 5,000 0.80 5 5,000/5,001 0.7973/0.7972 5.0667/5.0705

4 5,000 0.80 10 5,000/5,001 0.7973/0.7972 10.1334/10.1411

5 5,000 0.80 20 5,000/5,001 0.7973/0.7972 20.2668/20.2822

Group 3

1 5,000 0.01 5 5,000/5,000 0.01/0.01 5.0002/5.0008

2 5,000 0.20 5 5,000/5,000 0.1993/0.1993 5.0042/5.0050

3 5,000 0.40 5 5,000/5,000 0.3987/0.3986 5.0111/5.0122

4 5,000 0.60 5 5,000/5,000 0.5980/0.5979 5.0250/5.0267

5 5,000 0.80 5 5,000/5,001 0.7973/0.7972 5.0667/5.0705

6 5,000 0.85 5 5,000/5,001 0.8472/0.8471 5.0945/5.1022

7 5,000 0.90 5 5,000/5,002 0.8970/0.8968 5.1500/5.1636

8 5,000 0.95 5 5,001/5,005 0.9468/0.9466 5.3168/5.3515

9 5,000 0.99 5 5,010/5,008 0.9867/0.9860 6.6504/7.0780

FIGURE 7 | The error of τ1 increased nonlinearly with increasing g.

elasticity increases, and ratio of viscous fluids to solids decreases
with increasing particle concentrations.

Figure 6B shows that Equation (8) provided a very good fit
to the creep behaviors of nanocomposite thin films (the r2 values
for curve fitting of all of the cases were higher than 0.98). The
values of Ee were 1.91, 3.53, 5.80, and 11.0 kPa, the values of g

were 0.61, 0.63, 0.66, and 0.67, the values of τ1 were 3.11, 2.90,
2.78, and 1.54 s, for CdSe quantum dot concentrations of 50, 75,
95 and 100 wt%, respectively. It means that the film’s modulus of
elasticity increases, and ratio of viscous fluids to solids increases
with increasing quantum dot concentrations.

DISCUSSION

There are two main and important findings in the present study,
as summarized and discussed in the next four paragraphs.

First, the alternative form of standard linear solid model
introduced in the present study provides a link between
the parameters in the traditional linear viscoelastic models
(experimental results obtained by curve fitting the experimental
data) and those in the dimensionless form of the relaxation
modulus (theoretical parameters set in the finite element
simulation package), so that they can be compared to each
other. In some applications, it is very important to compare
the parameters set in the finite element simulation package
to those in the traditional standard linear solid model. For
example, a technology for noninvasive measurement of the
viscoelastic properties of materials is going to be developed.
Before constructing the real system, it would be better to use
finite element computer simulation to implement the theories
and mechanisms of the technology to simulate the performance
of the technology for understanding if it can accurately measure
the viscoelastic properties of materials or not, according to the
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FIGURE 8 | (A) Stress and strain responses over time of different materials in the group 3 during the stress relaxation test. (B) Corresponding relaxation moduli.

(C) Corresponding dimensionless form of the relaxation moduli.

FIGURE 9 | (A) Strain and stress responses over time of different materials in the group 3 during the creep test. (B) Corresponding creep compliance.

logic described below. First, the simulated data of viscoelastic
behaviors (stress relaxation and creep curves) can be obtained
from the computer simulation. Second, a viscoelastic model is

used to curve fit the simulated viscoelastic behavior to obtain
the corresponding viscoelastic properties. Third, if the evaluated
viscoelastic properties obtained by curve fitting are similar to
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the ones set in the finite element simulation package during
the computer simulation, it can be claimed that the design of
the technology is proper; on the other hand, if the theories and
mechanisms of the technology are not proper, the evaluated
viscoelastic properties obtained by curve fitting will not be
similar to the ones set in the finite element simulation package
during the computer simulation. The problem is, the standard
linear solid model frequently used to curve fit the data of
viscoelastic behaviors is not the same as the model used to
define the viscoelastic properties in the finite element simulation
package (the dimensionless form of the relaxation modulus)
such as ABAQUS, ANSYS and COMSOL and FEBio. Hence,
the viscoelastic properties obtained by curve fitting cannot be
compared directly to those set in the finite element simulation
package. Since the alternative form is formulated in terms of the
parameters used to define the mechanical properties in the finite
element simulation package, the parameters obtained by curve
fitting can be directly compared to those set in the finite element
simulation package.

It should be emphasized again that the important role of
the traditional standard linear solid model cannot be replaced.
The purpose of using the alternative form is not to replace
the traditional form. The main purpose of using the alternative
form to curve fit the data is that, the parameters obtained
by curve fitting can be compared directly to the parameters
used to define the mechanical property parameters in the finite
element simulation package. It is because the alternative form
is formulated in terms of the parameters used to define the
mechanical properties in the finite element simulation package.
Or, researchers can also use the traditional standard linear solid
model to curve fit the data, and then construct the parameters
used to define the mechanical properties in the finite element
simulation package by using the parameters in the traditional
standard linear solid model (Ee E1, and c1), based on the
equations g = E1/ (Ee + E1) and τ1 = c1/E1.

The other main finding is the introduction of the physical
meaning of g. How g affects the behaviors of stress relaxation
and creep curves was also studied. To the best knowledge, it
could be the first time that the associated physical meaning of
g is proposed. g is a parameter in the dimensionless form of
the relaxation modulus used to define the linear viscoelastic
properties in the simulation finite element simulation package.
In the past, the physical meaning of g is unclear, therefore
there would be a problem of setting the numerical value of this
parameter during the simulation. In the present study, it was
found that g is associated with the ratio of viscous fluids to solids
of a viscoelastic solid; the more g closes to 1, the larger the
ratio of viscous fluids to solids. This parameter can be applied to
quantify the ratio of viscous fluids to solids of a viscoelastic solid,
and could lead to many interesting and important applications.
For example, this parameter can be used to determine the
characteristics of biomaterials, since biomaterials with different
characteristics may have different ratios of fluids to solids. This
parameter can also be used to evaluate the degree of injury
of a tissue, since tissues with different degrees of injuries may
have different ratios of fluids to solids. Researchers can use the
alternative form of the standard linear solid model introduced in
the present study to calculate g. Or, researchers can measure Ee

and E1 of the traditional standard linear solid model firstly and
then calculate g, since g = E1/ (Ee + E1) as demonstrated in the
present study.

The parameters in the traditional standard linear solid model
are still important since they have clear physical meanings and
are strictly related with the elastic and viscous properties (Shahidi
et al., 2014, 2015a,b, 2016). Introducing the role of g is not
for replacing the parameters in the traditional standard linear
solid model, but is for providing another parameter having
physical meaning that may have interesting and important
application value.

The physical meaning of gi in the generalized Maxwell model
can be explained in a similar manner. Let’s consider Equation
(A.16) (Please see the Appendix), the dimensionless form of the
relaxation modulus in the generalized Maxwell model:

f (t) = 1−
∑N

i=1
gi

(

1− e
−

t
τi

)

= 1− g1

(

1− e
−

t
τ1

)

−g2

(

1− e
−

t
τ2

)

· · · (A.16)

Each gi
(

1− e−t/τi
)

in the equation can be interpreted as a
viscoelastic component, corresponding to a local region of the
material. Generally, the relaxation modulus of a viscoelastic
solid can be described by Equation (A.16), consisting of many
viscoelastic components. The more complicated the internal
structure of a viscoelastic solid, the more non-linear the
viscoelastic behavior and the more viscoelastic components the
equation should have for describing the material behavior well.
In each viscoelastic component gi

(

1− e−t/τi
)

, gi is the ratio of
viscous fluids to solids in this component.

The relationship between the relaxation and creep time
constants and g was also demonstrated, i.e., Equation (9).
Since g is between 0 and 1, this equation shows that the
creep time constant must be always larger than the relaxation
time constant. It is an important fact, especially for an
accurate parameter setting during numerical simulation. In some
numerical simulation scenarios like dynamic viscoelasticity test,
the properties that we intend to investigate are functions of the
creep and relaxation time constants, such as the amplitude of the
complexmodulus and phase shift (Fung, 1993; Banks et al., 2011).
Hence, we have to set the proper numerical values for the creep
and relaxation time constants during simulation. Based on the
finding, we must comprehend that the numerical value of the
creep time constant must be larger than that of the relaxation
time constant during the parameter setting of the simulation, or
the simulation will produce an unreasonable result.

There are some interesting findings in Figure 8: (1) the
stress and relaxation modulus values at the beginning of stress
relaxation were larger for larger g, suggesting that the stiffness
of the material is larger for larger g. This observation could be
explained as follows. Both elastic property and fluid property
can affect the stiffness of a material. The larger the modulus of
elasticity and the larger amount of viscous fluid of a material,
the larger the stiffness. Since g could be a parameter associated
with the ratio of viscous fluids to solids of a viscoelastic solid, a
viscoelastic solid with larger g means that this material contains
a larger amount of viscous fluid that can increase the stiffness
of this material when subjected to an external load. In other
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words, the increased stiffness with larger g is contributed by
the larger viscous fluid effect, while the elastic property stays
the same; (2) the stress and relaxation modulus values after the
material was totally relaxed were the same for different g. It is
because this long-term relaxation modulus is just the modulus
of elasticity of the material. Since the modulus of elasticity was
set as constant for each material during this simulation, the long-
term relaxation modulus must be the same for each material; (3)
the dimensionless relaxation modulus dropped more as t → ∞

for larger g, and dropped less for small g. This simulation results
justifies our inference that g could be a parameter associated with
the ratio of viscous fluids to solids of a viscoelastic solid. The
more g closes to 1, the larger the ratio of viscous fluids to solids.
On the other hand, the material behaves more like an elastic solid
when g approaches zero. Similar explanations in (1) and (2) above
can be used to explain the findings in Figure 9 for the creep test.

The use of the alternative form of the standard linear
solid model for analyzing the experimental data shows
interesting findings. For the stress relaxation behaviors of
magnetorheological gels with different carbonyl iron particle
concentrations, it was reasonable to find that the gel became
stiffer and more like a solid when the particle concentration
was higher. For the creep behaviors of nanocomposite thin
films with different CdSe quantum dot concentrations, it was
interesting to find that the film behaved more like a viscous
fluidic material when the quantum dot concentration was higher,
although the modulus of elasticity of the film increased with
increasing quantum dot concentration as expected. In the future,
the alternative form can be applied to analyze the viscoelastic
behaviors of various biomaterials for better understanding their
physical properties and the effects of mixtures.

There are some limitations in the present study. The first
limitation is that, the physical meanings of the parameters in
the alternative form of the standard linear solid model are
demonstrated based on theories and derivations, combined with
the known phenomena of behaviors of viscoelastic solids. In the
future, rigorous experiments must be conducted to verify the
physical meanings of the parameters. The second limitation is
that, the relationship between g and the two elastic parameters
in the standard linear solid model was derived in the present
study, but not for the more general generalized Maxwell model.
It is necessary to derive a similar relationship for the generalized
Maxwell model for providing a more general model that can be
applied to a wider variety of applications. The third limitation
is that, the constitutive equations derived in this paper can only
be applied when the input approaches a unit step function. It is
necessary to derive a more general set of constitutive equations
that can be applied when another type of input like a ramp
input is used. The final limitation is that, linear viscoelastic
models are not the most general models for describing the
viscoelastic behaviors of materials. They can only be applied to
analyze some specific types of materials. Quasi-linear and non-
linear viscoelastic models, internal variable and finite differential
models, are more general for describing viscoelastic behaviors
of most materials (Wineman, 2009; Chatelin et al., 2010;
Rashid et al., 2014). Despite the limited application of linear
viscoelastic models, they are still useful from two different
points of view. First, they are still useful and widely applied

to describe the viscoelastic behaviors of a variety of materials
like biomaterials, polymers and biological tissues having simpler
structures, especially in applications where the material strain
is tiny such as that induced by ultrasound (Deng et al., 2016;
Hong et al., 2016, 2018) and photoacoustic imaging (Ishihara
et al., 2003). Second, since the mathematics for understanding
linear viscoelastic theory is much simpler, it is a nice first step
for newcomers to learn viscoelastic theory and apply to describe
viscoelastic behaviors of materials.

CONCLUSIONS

In conclusion, the alternative form is formulated in terms of the
parameters used to define the mechanical properties in the finite
element simulation package, so that the parameters obtained
by curve fitting can be directly compared to those set in the
finite element simulation package. It was also found that, the
physical meaning of g, a parameter in the dimensionless form
of the relaxation modulus, is associated with the ratio of viscous
fluids to solids of a viscoelastic solid. Quantifying the ratio
of viscous fluids to solids of a viscoelastic solid could lead to
many interesting and important applications. In the future, a
rigorous experiment will be conducted to verify the physical
meanings of the parameters in the alternative form. It is planned
to make several gel phantoms having different fluid contents
and viscoelastic properties. The modulus of elasticity, stress
relaxation and creep curves of each phantom will be measured by
amaterial testingmachine, and the fluid content will bemeasured
by a moisture analyzer. The parameters in the alternative form of
each phantom can be obtained after using the alternative form
to curve fit the stress relaxation and creep curves. The physical
meaning of each parameter can be verified by investigating
the correlation between the values of parameter obtained by
curve fitting and associated physical quantity measured by the
associated instrument.
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