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ABSTRACT: Two different issues relating to the score(S) test are

investigated. Firstly, we study the finite sample properties of a

number of asymptotically equivalent forms of the S test. From our
simulation results we observe that these forms can behave very dif-
ferently In finite samples. Secondly, we investigate the power prop-
erties of the S test and find that it compares favorably to those of

the likelihood ratio (LR) test although the former does not use infor-
mation about the precise forms of the alternatives.
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1. INTRODUCTION

In the statistical literature three basic principles are available

for hypothesis testing, namely the likelihood ratio (LR) , Wald (W) and

score (S) principles. In most cases, the LR and W tests are used.

However, when the alternative hypothesis is complicated, which arises

very frequently in econometric model specification tests, these two

tests tend to be unpopular because both require estimation under the

alternative hypothesis. Estimation under the alternative hypothesis

sometimes may prove to be difficult while test statistics based on the

S principle can usually be calculated easily because it requires esti-

mation only under the null hypothesis. Thus S tests can examine the

validity of a null model against a general alternative model without

estimating the latter and hence provide handy tools to tackle the

complex problem of model specification.

An uneasy feature of the S test is that a number of asymptotically

equivalent forms of the test can easily be developed. Some of them

can be discarded on analytical or computational grounds. Still there

remains a choice among the several asymptotically equivalent versions

of the test which could have very different finite sample properties.

The question is which one should be used in what situation. We

attempt to provide a partial answer to this question in the next sec-

tion through a simulation study. One interesting property of the LM

test is its invariance to a class of alternative hypotheses. In other

words, it does not utilize the precise information regarding the

alternative. In Section 3, we investigate whether this affects the
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power properties of Che S test. In general, the power is not

affected. In the last section we present some concluding remarks.

2. A COMPARATIVE STUDY OF ALTERNATIVE FORMS OF THE S STATISTIC

Let £.(9) denote the log-density function for the i-th observation,

where 9 is a p x 1 parameter vector. Say we have N independent obser-

N
vations. Then the log-likelihood function is i = £(9) = E I (9).

The hypothesis to be tested is H : h(9) = where h(9) is an r x 1

vector function of 9. It is assumed that H = H(9) = 3h(9)/39 has full

column rank, i.e., rank (H) r. The S statistic (or the Lagrange mul-

tiplier statistic as is usually known in the econometrics literature)

,

originally suggested by Rao (1948), for testing H can be written as

LM - d'f^d (1)

where d = d(9) = 3.Z./39 is the efficient score vector,

1.= 1(9) = E[-3
2
Z/3939»] = V[d(9)] is the information matrix and """

indicates that the quantities have been evaluated at the restricted

maximum likelihood estimate (MLE) of 9, say 9. Under H , S is asymp-

2 2
totically distributed as a x with r degrees of freedom (x )•

In the last few years, a number of different forms of the S sta-

tistic have been developed that differ only in their choice of an

estimator for the information matrix _I_. Let A be a positive definite

matrix such that

Engle (1982) suggests calculating the variance of d(9) directly
instead of obtaining the information matrix explicitly. Although in
most cases this would be a better approach to follow, it does not

remedy our difficulties since the variance can be calculated in a

number of ways which are all asymptotically equivalent.



-3-

then all the statistics of the form d'A d will be asymptotically

equivalent. Given their asymptotic equivalence, choices have been

based primarily on computational convenience. However, in many situa-

tions more than one form of the S statistic can be calculated easily,

so that computational simplicity does not offer much guidance. Also,

the asymptotic equivalence of tests is not necessarily indicative of

their small sample behavior. Some forms may have finite sample dis-

2
tributions that are much closer to the asymptotic x under the null

hypothesis. There may also be substantial differences in power. In

this section we study these problems, and we consider the following

versions of the S statistic suggested in the literature.

Whenever it is possible to take expectations of [d(9)d'(9)j or

3
2
£(9)/3939' , we can use

A
x

= E[d(9)d'(8)J

or

A = - E [
lmi

]A
2

L 3939* J

in place of A. If the specified probability model is correct then

A = A [see White (1982)]. When either A or A is used we will

denote the statistic by S(WE); "WE" stands for "with expectation."

In certain situations it may be difficult to take expectations,

for example, when testing linear and log-linear models using the

Godfrey and Wickens (1981a) approach. In such cases we can use either



— 4+—

. 3
2
Ji(e)

A„ =

or

3 3999*

A, = GG'
4

whe re G' has typical (i,j)-th element as 3£ (9)/36., (i=l, 2,..., N;

j=l, 2,..., p) . One problem with A. is that it may not be positive

definite in small samples and this may result in negative values of

the calculated test statistics. When A, is used, the LM statistic can
4

2 2
be calculated as N.R where R is the uncentred coefficient of deter-

mination from the regression of a vector of ones on G* [Godfrey and

Wickens (1981a, p. 490)]. Bera (1982a) argued that this statistic can

2
be written in Hotelling's T form and for finite samples it is approx-

imately distributed as an Nr/(N-r+l) multiple of F(r, N-r+1) under H .

For future reference we will denote this form as S(WOE) to mean "with-

out expectation."

Since A, and A_ contain fewer stochastic terms than does A. (or A_),12 4 3

S(WE) can be expected to behave better in finite samples and its con-

2
vergence to x under H may also be faster compared to S(WOE). Efron

and Hinkley (1978) argued that A (or A.) is "closer to the data" than

A„ and should be favored as a variance approximation of d(9). Also, in

the event of possible misspecif ication (such as testing heteroscedas-

ticity under normality when normality assumption is in fact violated),

we can expect A_ and A, to be more robust. Therefore, intuitively it
J 4

is not clear which of the two forms S(WE) and S(WOE) should be used in

practice when both can be calculated easily.
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Many hybrid forms of the S statistic can be constructed by select-

ing elements from either /L or A , i.e., by taking expectations of

certain elements whenever possible, otherwise simply choosing elements

from A, . This technique was used by Breusch (1978) in deriving a S
4

statistic for testing serial independence in the regression model.

However, the information matrix obtained in this manner is not neces-

sarily positive definite.

Recently Davidson and MacKinnon (1981) have proposed a new version

of the S statistic. Let the underlying model be written as

f.(y.,y .,e) - e,

where y. is the dependent variable, y .'s are its lagged values,

e. ~ N(0,1) and the Jacobian matrix of the transformation from y' s to

e's is lower triangular. Davidson and MacKinnon (1981) suggested that

the following matrix can be used in place of I

A - FF' + JJ'

where F' and J' have typical (i,j)-th elements as 3f./38. and

3 ( In I 3 f . /3y . f)/39. respectively. It is shown in Davidson and MacKinnon
1 i i J

(1981) that E(A-) = E(A,). Therefore, A provides a valid estimator

for J_. The S statistic using A will be denoted as S(DM) . Davidson

and MacKinnon (1983) argued that A_ provides a much more efficient

estimate of I than does A, and the S test based on A_ can be expected— 4 5

to behave better in small samples.

All the above versions are based on the assumption that the under-

lying probability model is correctly specified. When this assumption
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fails, the above statistics will not have the correct size even asymp-

totically. To overcome this problem, White (1982) proposed using

A
6

= A
3

A
4

A
3

and the operational form of his statistics is

S(W) = d' A"
1

S[H' A, H]"
1

H' A"
1

d.Jo J

An interesting feature of this statistic is that it is based not just

— I ~ -i , — i -

on the score vector d(6), but on [H' A H] H' A_ d which is the

estimate of the Lagrange multiplier vector. Statistic S(W) can also

2 2
be expressed in N.R form where R is the uncentred coefficient of

determination of the regression of a unit vector on D = G' A H.

This is easily seen by writing S(W) as

s(w) = v g 1 a"
1

h[h* a"
1

g g' a"
1

h]"
1

iv a^
1

gi

- N • [V 5(5' 5)" 1
D'J7J_'_1_]

where _1 is an N x 1 vector of ones. Therefore, S(W) can be calculated

2 —

1

using the N.R form, but the necessity to calculate A_ indicates its

computational complexity compared to S(WOE).

Harvey (1981, p. 173) has proposed a modified LM statistic

S(HM ) =
S(UE)

•
N - PbkHA)

N - SUE) r

which is approximately distributed as F(r,N-p) under the null hypothe-

sis. The justification for this modification lies in the relationship

between the S statistic and the usual F statistic for testing linear
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restrictions in the linear regression model with normal disturbances.

Kiviet (19S1) reports some simulation results in the context of test-

ing serial independence, suggesting that this modification can lead to

a closer correspondence between the nominal and actual significance

levels.

Davidson and MacKinnon (1983) have examined the small sample per-

formances of S(WOE) and S(DM) for testing linear and log-linear models

within a Box-Cox transformation framework. Their main findings are

2
that (i) under the null hypothesis S(DM) is closer to x distribution

in small samples than is S(WOE) and (ii) there is not much difference

in terms of power between these two statistics. We took a different

model for our simulation study since all the above S statistics cannot

be calculated for testing linear and log-linear models. Also we

wanted to have a sufficiently flexible model that permitted the study

of the behavior of all the statistics under different circumstances.

Our study examines the small sample performance of the S statistics

listed above for testing jointly the homoscedasticity (H) and serial

independence (I_) of normal regression disturbances. For the alterna-

tive hypothesis the data were gathered by violating _H, _I_ and normality

(N) as well as their various combinations. This provides us with an

opportunity to compare the performances of the statistics under dif-

ferent situations such as "undertesting" (when the statistic fails to

test all departures that occur), "exact testing" (the situation for

which the statistic is designed) and "overtesting" (when we test for

more departures than actually occur) [for a detailed discussion of

these concepts, see 3era and Jarque (1982)].
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We considered the following linear regression model

4

j - Z x 6 + u.

j-l

where we set x.. = 1 and generated x._ from N(10,25), x _ from the

2
uniform (U) distribution in the interval [7.5, 12. 5] and x , from X in »

These values of the regression matrix, X, were kept fixed from one

replication to another. Serially correlated (I_) disturbances were

generated from the first order autoregressive (AR) process

u. = Pu._, + e.,|p| < 1. "Weak" and "strong" autocorrelations were

represented by setting p = pi = 0.3 and p = p2 = 0.7, respectively.

Heteroscedastic (H_) disturbances were generated by assuming

2 ,

—

V(c.) = o. = 25 + az., /z7 ~ N(10,25) and a was set to a = al = 0.2511 11
and a = a2 = 0.85 for "weak" and "strong" heteroscedasticity . Non-

normal (N) e ' s were obtained from the Student's distribution with

five degrees of freedom and the log-normal distribution (say t and

log). Combining these departures from H : u ~ NHI (or a = p =0), we

have 26 possible alternatives: 6 one-directional, 12 two-directional

and 8 three-directional departures. Observations of u. under H were10
generated by taking u. ~ N(0,25).

In every experiment, for a given sample size N, we generated the

data under the null and 26 alternatives, and calculated the above five

S statistics. Algebraic derivations of the statistics are given in

the Appendix. The experiments were performed for N = 20, 35, 50, 100

and 200, and for each N we carried out 500 replications. [Therefore,

the maximum standard errors of the estimates of type 1 errors and

powers in the following tables would be /.5( 1-. 5)/500 = .022]. The
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calculated statistics under H were used to study the closeness of
o J

2 .

their null distributions to x9 (° r tne appropriate F distribution)

through the Kolraogorov-Smirnov (K-S) test, and to estimate the type I

errors. These statistics values were also used to obtain the simulated

10 percent significance points which are the appropriate order statis-

tics (450-th) of the 500 values. The powers of a test were estimated

by counting the numbers of times the text statistic exceeded the cor-

responding empirical and asymptotic significance points and dividing

those by 500. We report the values of the K-S statistic (based on 100

replications because tabulated critical values are only available up

to 100) in Table I and estimates of the type I errors for all the sta-

tistics are presented in Table II.

TABLE I

Kolmogorov-Smirnov statistics for testing
2

departures from x and F distributions

Sample Size
S(WE)

2
X

S(WOE) S(DM)
2

X

S(W)
2

X

S(HM)
2

X F F

20 .108 .161* .118 .110 .075 .218*

35 .097 .139* .115 .064 .081 .157*

50 .077 .081 .064 .055 .083 .099

100 .083 .112 .106 .072 .091 .064

200 .047 .053 .049 .051 .040 .056

Statistic values with "*" are significant at 5 percent level.
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TABLE II

Estimated type I errors for different statistics
(nominal level .10)

Sample Size
S(WE)

2
X

S(WOE) S(DM)
2

X

S(W)
2

X

S(HM)
2

X F F

20 .092 .180 .134 .082 .116 .062

35 .078 .176 .144 .080 .146 .054

50 .084 .172 .162 .100 .142 .072

100 .088 .154 .148 .082 .150 .082

200 .098 .136 .136 .100 .128 .096

From Tables I and II we observe that S(WE) and S(DM) perform very

2
well. Even for small sample sizes, both follow x distributions and

actual type I errors are close to the nominal level of .10. The sta-

2
tistic S(WOE) does not follow the x distribution for N = 20 and 35.

2
Although its distribution is closer to x for N > 50, its performance

is not good in terms of type I error. However, the hypothesis of an F

distribution is accepted for S(WOE), thereby justifying the conjecture

made in Bera (1982a). When the appropriate critical values from the F

distribution are used, the modification reduces the type I errors of

S(WOE) for N = 20 and 35 only as seen from Table II. The statistic

2
S(W) follows x f° r aH sample sizes. However, the behavior of type I

errors corresponding to S(W) is very erratic and are much higher than

.10. This shows that although the overall distribution is close to

2
, the tail part which determines the type I error Is not. Lastly,
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Harvey's correction does not work in our case. This is in contrast to

the results obtained by Kiviet (1981).

The estimated powers of the tests, calculated using simulated crit-

ical points are presented in Table III for N » 50. Since the behavior

of the tests differs under the null hypothesis, as illustrated in

Tables I and II, any meaningful power comparison requires the use of

estimated (rather than asymptotic) critical values. For S(HM) , esti-

mated powers, using simulated critical points, are the same as those

for S(WE) since the former is a monotonic transformation of the latter,

The left hand column in Table III indicates the characteristics of the

regression disturbances. Recall that pi and p2 denote "weak" and

"strong" first order serial correlation, ctl and a2 denote "weak" and

"strong" heteroscedasticity and, "t" and "log" denote that the errors

e. were obtained from student t and log-normal distributions respec-

tively. So, for example, u ~ NHI (al ,p2) indicates the errors are nor-

mally distributed, "weakly" heteroscedastic and "strongly" serially

correlated.

All the test statistics being investigated are designed to test

the null hypothesis of white noise, homoscedastic and normal distur-

bances (u ~ NHI ) against the alternative of first order serially cor-

related and heteroscedastic but normal errors (u ~ NHI ) . For such

alternatives, on the basis of the relative numerical magnitudes of the

powers, the preference ordering would be S(WE) , S(DM) , S(W) , and

S( T.vOE). Although it should be said that the power differences are not

substantial (maximum power difference between the most powerful and

least powerful test is only 0.06). In the case of overtesting, where
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TABLE III

Estimated powers of the tests

(N=50, with empirical 10 percent significance level)

S(WE) S(WOE) S(DM) S(W)

One-directional

NHI (t)

dog)

NHI (al)

(a2)

nhT(pD
(p2)

Two-directional

NHI( t , al

)

(log.al)
(t,a2)
(log,a2)

NHI (al,pl)
(a2,pl)
(al,p2)
(a2,p2)

NHl"(t,pl)

(log.pl)
(t,p2)
(log,p2)

Three-directional

.188 .156 .176 .190

.530 .528 .554 .242

.642 .530 .580 .572

.858 .778 .832 .800

.470 .418 .452 .452

.986 .974 .984 .978

.636 .502 .580 .486

.524 .498 .528 .226

.816 .702 .786 .640

.578 .538 .584 .220

.780 .720 .764 .752

.908 .870 .902 .878

.994 .988 .994 .990

.996 .994 .998 .998

.530 .460 .522 .466

.708 .582 .726 .158

.990 .964 .990 .964

.990 .928 .994 .790

NHI(t,al,pl) .786 .670 .772 .672

(log,al,pl) .704 .582 .704 .182

(t,a2,pl) 1.000 .992 .998 .990

(log,o2,pl) .990 .912 .992 .800

(t,al, P 2) .998 .986 .998 .980

(log,al,p2) .992 .918 .994 .798

(t,a2,p2) 1.000 .992 .998 .990

(log,a2,p2) .990 .912 .992 .802
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we test for more departures from the null hypothesis than actually

occur, i.e., u ~ NHI or u ~ NHI , the preference ordering remains the

same. When the underlying assumption of normality is violated, i.e.,

u ~ NHI , u ~ NHI, u ~ NHI or u ~ NHI, some interesting results arise.

For example, when there is undertesting, u ~ NHI , the powers of S(WE)

,

S(WOE) and S(DM) are not adversely affected. However, quite surpris-

ingly, that is not the case for S(W) . It loses substantial power when

the alternative is contaminated by the log-normal distribution. For

example, when u ~ NHI(al ,pl) the power is 0.752 but this falls to

0.182 when u ~ NHI (log,al ,pl) . The power loss is smaller but still

significant for the other log-normal cases. The S(W) statistic

suffers a similar loss of power when the alternative of serially

correlated errors or heteroscedastic errors is contaminated by the

log-normal distribution. The other tests also tend to have lower

power in these cases. For the alternatives u ~ NHI and u ~ NHI , S(WE)

is best followed by S(DM) , S(WOE) and S(W). When the model is com-

pletely misspecif ied , such as when the alternative is NHI , one would

expect S(W) to perform "better" with a power around 0.10 since it is

designed for the case when the probability model is not correctly spec-

ified. For NHI ( t) , the performance of LM(W) and all the other statis-

tics is not good. However, when the alternative is NHI (log) , S(W)'s

performance while still not good is far superior to the other tests.

Similar observations can be made on the power of the tests for N =

20 35 100 and 200. ^n fact > f° r these values of N, S(DM) performs

+

Results corresponding to these values of N are available from the
authors on request.
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marginally better than S(WE). On the basis of the above limited simu-

lation study our recommendation would be to use S(DM) or S(WE) , and

when there is a possibility of raisspecif ication S(W) can be used with

some caution. In certain cases, S(WE) cannot be obtained whereas S(DM)

can be obtained easily, for example, while testing linear and log-

linear models within Box-Cox framework. There are also circumstances

where S(DM) is not applicable such as for specification tests in the

limited dependent variable models [see Bera et al. (1983)]. When both

are available either of them can be used since in terms of type I

error and power there is not much difference among these two versions

of the S test.

3. INVARIANCE OF THE S STATISTIC

A striking feature of the S test is its invariance to different

alternatives. There are many interesting examples of this, but here

we will mention only a few. The S statistic for testing normality

suggested in Bera and Jarque (1981) with the Pearson family of distri-

butions as the alternative, remains unchanged under Gram-Charlier

(type A) alternatives [see Bera (1982b, p. 98)]. Statistics for test-

ing homoscedasticity are invariant to different forms of alternatives

such as multiplicative and additive heteroscedasticity , as has been

noted by Breusch and Pagan (1979) and Godfrey and Wickens (1981b).

Testing serial independence against q-th order autoregressive [AR(q)J

or q-th order moving average [MA(q)] processes lead to the same test

statistic; see for instance, Breusch (1978) and Godfrey (1978).

Pesaran (1979) found that the S test is "incapable of differentiating
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between polynomial lags and rational distributed lags." These exam-

ples raise the question whether the S test will be inferior to other

asymptotically equivalent tests with respect to power since it does

not use precise information of the alternative.

Godfrey (1981) took up this question and compared the powers of

the S and LR tests for local alternatives in the context of testing

serial independence when the alternatives are AR(1) and MA(1) pro-

cesses. Using his analysis it can be shown that AR(1) and MA(1) pro-

cesses are "almost the same" for local alternatives. To illustrate

this point, consider the following AR(1) and MA(1) processes

and

a - pu e (3)

u. = PVl + e. (4)

where p = 6(1//>T), 5 < ». An equivalent expression for (4) is

u
i

= £
i
+ pU

i-l " p2u
i-2

+ •'•

For p = 6(1//n), each term beyond Pu._
n
will be at least of order

0(1/N). Therefore, it follows that both of these alternatives are

basically the same.

To make a power comparison it might be desirable to consider fixed

alternatives where substantial differences in power can be expected.

To achieve this, we consider testing horaoscedasticity against additive

and multiplicative heteroscedasticity , and through a simulation experi-

ment we compare the powers of the S and LR statistics. The model is
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the same as in Section 2, with the only difference being the alterna-

tives are now additive heteroscedasticity (AH )

2 2
a. = a + az. (5)
i i

and multiplicative heteroscedasticity (MH )

2 2
a. = exp[ a + az.

]

(6)

with normal and serially independent disturbances. For the same values

2
of a and a, the degree of heteroscedasticity can be expected to be

higher in MH than in AH . In our simulation study we set a = 1.0 and

generated z. from a U[0,1]. We selected two values of a, 3.0 and 6.0,

to represent "weak" and "strong" heteroscedasticity and to obtain

powers within a convenient illustrative range.

The S statistic [S(WE) version] for testing H : a = against MH

or AH is [Breusch and Pagan (1979, p. 1290)]

u' u

where Q = diag[N(z. - 7)/{2Z.(z. - T)
2
}

fl
] , u = y - XS and 7 = Z . z./N.

1 11 11
The LR statistic when the alternative is _MH, is given by [Harvey

(1976, p. 464)]

-2 -2
...a - NaLR., = N Ina - Ma - a„E , z

"7. 2
where a" and a are the unrestricted MLEs of a" and a respectively.

1*1 M

To obtain the estimates we have used Harvey's (1976, pp. 463-464)

algorithm. The expression for the LR statistic when we take AH as the

alternative, is
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1

LR
A

= N(lna + 1) - E. ln(a
t
+ a

A
z.)

A i A A l

.
( -vi" xiV

2

i -2
a. + a z.
A A l

where a., a, and 3. are the unrestricted MLEs of a , a and 3 respec-
A A A

tively. These estimates were obtained by using the method of scoring.

In all cases, the iteration process was terminated when the difference

between two successive values of the likelihood function was less than

6 = .01 or after the 40-th iteration whichever came first. In some

cases we set the value of € to .001, but this did not have any signif-

icant effects on the results. A by-product of our study is the obser-

vation that the inequality LR > S established for testing linear or

nonlinear restrictions in the linear regression model, does not hold

for our nonlinear model. A similar observation was made by Mizon

(1977, p. 1237) in relation to the inequality W > LR.

The results for type I errors are given in Table IV, and on power

in Table V, for sample sizes N = 20, 40 and 80. All these results are

based on 500 replications. In Table V, alternatives 1 and 2 are AH

with a = 3.0 and 6.0, respectively, and alternatives 3 and 4 are MH

with a = 3.0 and 6.0, respectively.

From Table IV we observe that for the S statistic type I errors

are less than .10 for all sample sizes, whereas for LR,. and LR, they

are much higher than .10 for N = 20 and 40. However, for N = 80 both

LR,, and LR, have significance levels of around .10. Since type I
A A

errors of the three statistics differs substantially, especially when
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TABLE IV

Estimated type I errors for the three statistics
(nominal level .10)

Sample size S LR
>1

LR
A

20 .068 .204 .332

40 .070 .140 .188

80 .072 .082 .102

TABLE V

a
Estimated powers of the three statistics

(with empirical 10 percent significance level)

Alternatives S LR
M

LR
A

1 .266 .288 .258

N=20
2

3

.366

.706

.390

.776

.356

.606
4 .960 .990 .960

1 .404 .388 .382

N=40
2

3

.556

.924

.568

.936

.570

.934
4 1.000 1.000 1.000

1 .746 .750 .752

N=80
2

3

.906

1.000
.922

1.000
.936

1.000
4 1.000 1.000 1.000

a
Alternatives 1 and 2 are _AH with a = 3.0 and 6.0 respectively,

and alternatives 3 and 4 are !IH with a = 3.0 and 6.0 respectively.
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the sample size is small, we have used simulated critical points for

calculating power. It is observed from Table V that powers for alter-

natives 3 and 4 are higher than those for alternatives 1 and 2, as

expected. For alternatives 3 and 4, LR,, does better than LR. as one
M A

would expect. However, for alternatives 1 and 2, LR does not always
A

have higher power than LR^ . Comparing the powers for S with those for

LR, and LR , it is seen that for N = 20 , the power of S lies between
A A

the powers of LK^ and LR , and for N = 40 and 80, S has slightly less

power than the other two statistics. Therefore, the S test is effec-

tive in detecting both kinds of heteroscedasticity. Godfrey (1981)

reached to a similar conclusion when he compared the S and LR proce-

dures in the context of testing serial independence against AR(1) and

MA(1) alternatives. These observations show that although the alge-

braic form of the S statistic does not take account of the specific

alternatives, its numerical values do take account of the data.

Therefore, the invariance of the S test to a class of alternatives is

not necessarily a drawback of the procedure. Given the computational

complexities of the LR procedure, the S test may be preferred. More-

over, even though the LR statistic uses specific information concern-

ing the alternative, it does not provide any guidance about the exact

nature of the alternative. For instance, from Table V it is seen that

LR^ ( LR
A

) has very high power against aTT(MH). Therefore, if the LR

statistic is found to be significant, we cannot infer much about the

alternative - the same complaint levelled against the S test.
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4. CONCLUSION

In this paper we have studied some of the properties of the S test

procedure. It has been observed that various asymptotically equiva-

lent forms of the S test can have different finite sample properties.

On the basis of the results of Section 2, we recommend the use of S(WE)

and S(DM) versions. We found that the S test has good power to detect

heteroscedasticity per se, in spite of its inability to discriminate

between various forms of the alternative hypothesis..

As an end-note on this paper, we should add that since our conclu-

sions are based on the simulation results they are open to many criti-

cisms. However, in the absence of analytical results, we do feel, our

study sheds further lights on the behavior of the S statistics in

addition to the findings of Davidson and MacKinnon (1983) and Godfrey

(1981). And since our primary interest is the relative performances

of various statistics which have been calculated from the same samples

(and hence are positively correlated), the standard errors of the dif-

ferences of powers can be expected to be less than those of the esti-

mates of powers [see Godfrey (1981, p. 1451)].
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APPENDIX

Formulae for the S statistics used in section 2 .

2
For our model 9 = (0' ,a ,a,p) f

, H : a = p = and the log-likelihood

function 4(9) is given by

2
N N N £7

£(9) = Z £.(9) = - (N/2)ln2ir - i- E lno\ - i- Z -|- (A.l)

i=l
1

i=l
X Z

i=l af
i

2 2 »

where a. = a + az. and e, = u. - pu. , with u. = y. - x.3. From the
l l i l l-l l J \ l

above equation following first order derivatives are easily obtained

34.(9) ,

(x. - px. ,)e. (A. 2)
33 2

v~i
K i-1 i

a.
i

34.(3) , e
2

i l,i
i 2 4

3a 2a? 2a
i l

(A. 3)

34,(9) z. eV
+-M (A.4)3a

2a
2

2a
4

i l

34.(9)
and —Tp

-

=

"T (yi-l " x
'i-l

B)e
i*

(A * 5)
a.
i

Using these derivatives we get

-2
« a ,- ^ \ £ . z . Z.u.z. Z.u.u.,

d =1-39— J " 10, 0, "-T2-+ 4 . T2 ''

2a 2a a
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I =

X'X

N

2i"

2.z.
1 1

2 a
2

25
4

r 2

-9
2a""

N

o
where u. = y x.3 and a = S.u./N. Using (1) we can then obtain SCUTO.

To obtain S(WOE) and S(DM) , block diagonality of J_ between and

2
(a ,a,p) is employed. For S(WOE) we need the matrix G whose element

are obtained from equations (A. 3) to (A. 5), evaluated at the restricted

estimates. To obtain S(DM) we can define the function f(.) as

f. =
1

u
i

~ pu
i-i h

(a
2 + a2 .)

V2" °1

This statistic requires construction of two matrices F and J evaluated

under H . The following derivatives provide the different elements of F:

z.e

.

1 1
3f, , 3f. £. 3f.

1 1 , v _1 X_ 1
"

a.
^ x

i
px

i-l
;

' 2 ' 3* 3a ' 3
1 do la . 2a

.

1 1

30

and
3f

i

~3p~
'i-1
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Let f. ln|3f./3v.l = - lna. , then the elements of J are obtained fron
1 1 ' 1 i

3~f~. 37. . if. z.—i- o —i- --i 1---L.
da za. la,

i i

3f
i

and — = 0.
3p

Derivation of the other forms of the S statistic is straightforward.



-24-

ACKXOWLEDGEMENTS

We would like to thank Ray Byron, Michael McAleer, Grayham Mizon,

Adrian Pagan, Jean Marie Rolin, Deane Terrell and especially Jan

Kiviet for helpful comments, Russell Davidson and James MacKinnon for

permission to refer to their unpublished paper and helpful suggestions,

Errors, of course, remain our sole responsibility. The second author

gratefully acknowledges the financial support provided by the Japanese

Government's Department of Education and the research support provided

by the Economic Planning Agency. The views and opinions expressed in

this paper are not necessarily those of the Economic Planning Agency.



-25-

REFERENCES

Bera, A. K. (1982a), "A new test for normality," Economics Letters , 9,
263-268.

Bera, A. K. (1982b), Aspects of Econometric Modelling , unpublished
Ph.D. dissertation, The Australian National University.

Bera, A. K. and C. M. Jarque (1981), "An efficient large-sample test

for normality of observations and regression residuals," Working
Papers in Economics and Econometrics, N° 040, The Australian
National University.

Bera, A. K. and C. M. Jarque (1982), "Model specification tests: A
simultaneous approach," Journal of Econometrics , 20 , 59-82.

Bera, A. K. , C. M. Jarque and L. F. Lee (1983), "Testing for the
normality assumption in limited dependent variable models,"
International Economic Review , 25 , (forthcoming).

Breusch, T. S. (1978), "Testing for autocorrelation in dynamic linear
models," Australian Economic Papers , 17 , 334-355.

Breusch, T. S. and A. R. Pagan (1979), "A simple test for heterosce-
dasticity and random coefficient variation," Econometrica , 47

,

1287-1294.

Davidson, R. and J. G. MacKinnon (1981), "Model specification tests
based on artificial linear regressions," Discussion Paper N° 426,
Department of Economics, Queen's University.

Davidson, R. and J. G. MacKinnon (1983), "Small sample properties of

alternative forms of the Lagrange multiplier test," Economics
Letters , 12 , 269-275.

Efron, B. and D. V. Hinkley (1978), "Assessing the accuracy of the

maximum likelihood estimator: Observed versus expected Fisher
information," Biometrika , 65 , 457-487.

Engle, R. F. (1982), "A general approach to Lagrange multiplier model
diagnostics," Journal of Econometrics , 20 , 83-104.

Godfrey, L. G. (1978), "Testing against general autoregressive and
moving average error models when the regressors include lagged
dependent variables," Econometrica , 46 , 1293-1302.

Godfrey, L. G. (1981), "On the invariance of the Lagrange multiplier
test with respect to certain changes in the alternative hypothesis,
Econometrica, 49, 1443-1455.



-26-

Godfrey, L. G. and M. R. Wickens (1981a), "Testing linear and log-
linear regressions for functional form," Review of Economic
Studies , 48 , 487-496.

Godfrey, L. G. and M. R. Wickens (1981b), "Tests of misspecif ication
using locally equivalent alternative models," Discussion Paper 66,
Department of Economics and Related Studies, University of York.

Harvey, A. C. (1976), "Estimating regression models with multiplicative
heteroscedasticity," Econometrica , 44 , 461-465.

Harvey, A. C. (1981), The Econometric Analysis of Time Series , (Oxford:
Philip Allan)

.

Kiviet, J. F. (1981), "On the rigour of some specification tests for
modelling dynamic relationships," Report AE 11/81, Faculty of

Actuarial Science and Econometrics, University of Amsterdam.

Mizon, G. E. (1977), "Inferential procedures in nonlinear models:
An application in a UK industrial cross section study of factor
substitution and return to scale," Econometrica , 45 , 1221-1242.

Pesaran, M. H. (1979), "Diagnostic testing and exact maximum likelihood
estimation of dynamic models," in Proceedings of the Econometric
Society European Meeting , 1979, ed. E. G. Charatsis, (Amsterdam:
North Holland), pp. 63-87.

Rao, C. R. (1948), "Large sample tests of statistical hypotheses
concerning several parameters with applications to problems of

estimation," Proceedings of the Cambridge Philosophical Society
,

44 , 50-57.

White, H. (1982), "Maximum likelihood estimation of misspecified
models," Econometrica, 50, 1-25.

D/74



TABLE IIIA

Estimated powers of the tests
(N = 20, with 10 percent empirical significance level)

S(WE) S(WOE) S(DM) S(W)

One-directional

NHI( t)

(log)

NHI( al)
(a2)

nhT(pD
(P2)

Two-directional

NHI ( t , al

)

(log,al)
(t,a2)
(log,a2)

NHI( al.pl)
(a2,pl)
(al,p2)
(a2,p2)

KHUt.pl)
(log, pi)

(t,p2)
(log,p2)

Three-directional

.126 .124 .122 .118

.198 .340 .282 .154

.266 .220 .234 .144

.376 .316 .346 .168

.126 .146 .152 .152

.540 .538 .614 .610

284 .234 .272 .152
232 .374 .270 .150
372 .286 .340 .168
280 .372 .296 .166

284 .244 .298 .226
378 .370 .380 .250
626 .594 .696 .650
650 .644 .744 .650

184 .188 .204 .174

200 .354 .304 .088
584 .542 .620 .558
606 .492 .710 .344

NHI(t,al,pl) .322 .292 .336 .244
(log,al,pl) .238 .356 .314 .102

(t,a2,pl) .662 .634 .718 .614

(log,a2,pl) .644 .494 .730 .406
(t,al, P 2) .642 .588 .680 .590

(log,al, P 2) .626 .496 .716 .382
(t,a2,p2) .662 .634 .718 .614
(log,a2,p2) .638 .506 .734 .404



TABLE IIIB

Estimated powers of the tests
(N = 35, with 10 percent empirical significance level)

S(WE) S(WOE) S(DM) S(W)

One-directional

NHI (t)

(log)

NHI ( al

)

(a2)

NH~(pl)
(P2)

Two-directional

NHI( t,al)
(log,al)
(t,a2)
(log,a2)

NHlC al.pl)
(a2,pl)
(al,p2)
(a2,p2)

~NHl"(t,pl)

(log, pi)
(t,p2)
(log,p2)

Three-directional

.160 .132 .172 .110

.488 .470 .496 .144

.362 .234 .310 .238

.552 .450 .524 .396

.318 .252 .326 .274

.924 .898 .920 .902

.342 .254 .320 .192

.498 .484 .500 .132

.508 .370 .472 .262

.482 .472 .486 .122

.520 .414 .504 .426

.678 .560 .672 .532

.938 .920 .942 .916

.952 .924 .962 .926

.388 .322 .380 .296

.586 .480 .598 .112

.906 .842 .912 .854

.974 .800 .976 .570

NHI(t,al,pl) .504 .402 .482 .356

(log,al,pl) .588 .506 .594 .120

(t,a2,pl) .9^6 .894 .952 .874

(log,a2,pl) .982 .792 .980 .622

(t,al,p2) .942 .880 .936 .858

(log,al,p2) .978 .804 .978 .604

(t,a2,p2) .946 .894 .952 .874

(log,a2,p2) .982 .790 .980 .620



TABLE IIIC

Estimated powers of the tests

(N = 100, with 10 percent empirical significance level)

S(WE) S(WOE) S(DM) S(W)

One-directional

NHI(t)
(log)

NTTl(al)

(a2)

nhT(pD
(P2)

Two-directional

~NHI (t,al)
(log,al)
(t,a2)
(log,a2)

NHl"( al.pl)
(a2,pl)
(al,p2)
(o2,p2)

NHI(t,pl)
(log, pi)

(t,p2)
(log,p2)

Three-directional

.208 .160 .222 .178

.590 .566 .652 .232

.876 .794 .874 .816

.986 .974 .986 .980

.776 .752 .796 .758

1.000 1.000 1.000 1.000

.740 .590 .746 .576

.592 .518 .630 .222

.938 .856 .944 .816

.614 .562 .642 .242

.970 .960 .978 .966

.994 .992 .998 .998
1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000

.818 .752 .840 .738

.958 .710 .962 .284

1.000 1.000 1.000 1.000
1.000 .970 1.000 .910

NHI(t,al,pl) .954 .902 .960 .874

(log,al,pl) .946 .716 .956 .276

(t,a2,pl) 1.000 1.000 1.000 1.000
Uog,a2,pl) 1.000 .972 1.000 .886

(t,al,p2) 1.000 1.000 1.000 1.000
(log,al,p2) 1.000 .976 1.000 .894
(t,a2,p2) 1.000 1.000 1.000 1.000
(log,a2,p2) 1.000 .974 1.000 .886



TABLE HID

Estimated powers of the tests

(N = 200, with 10 percent empirical significance level)

S(WE) S(WOE) S(DM) S(W)

One-directional

NHI( t)

(log)

NHI( al)
(o2)

nhT(pD
(P2)

Two-directional

NHI ( t , ol

)

(log,al)
(t,a2)

(log,o2)

NHI( al,pl)
(a2,pl)
(ol,p2)
(a2,p2)

NHI(t,pl)
(log, pi)

(t,p2)
(log,p2)

Three-directional

.204 .132 .202 .134

.696 .580 .738 .302

.970 .946 .970 .952

1.000 .998 1.000 1.000

.980 .976 .980 .976

1.000 1.000 1.000 1.000

.888 .744 .894 .734

.702 .554 .738 .296

.994 .966 .994 .930

.724 .580 .748 .252

1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000

.990 .986 .994 .978

1.000 .836 1.000 .370

1.000 1.000 1.000 1.000
1.000 .992 1.000 .952

NHI(t,al,pl) .996 .992 .998 .986

(log,al,pl) 1.000 .830 1.000 .364

(t,a2,pl) 1.000 1.000 1.000 1.000
(log,a2,pl) 1.000 .990 1.000 .942

(t,al,p2) 1.000 1.000 1.000 1.000

(log,al,p2) 1.000 .990 1.000 .944

(t,a2,p2) 1.000 1.000 1.000 1.000

(log,a2,p2) 1.000 .990 1.000 .942
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