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Abstract—Data mining is defined as the process of discovering significant and potentially useful patterns in large volumes of data.

Discovering associations between items in a large database is one such data mining activity. In finding associations, support is used as

an indicator as to whether an association is interesting. In this paper, we discuss three alternative interest measures for associations:

any-confidence, all-confidence, and bond. We prove that the important downward closure property applies to both all-confidence and

bond. We show that downward closure does not hold for any-confidence. We also prove that, if associations have a minimum all-

confidence or minimum bond, then those associations will have a given lower bound on their minimum support and the rules produced

from those associations will have a given lower bound on their minimum confidence as well. However, associations that have that

minimum support (and likewise their rules that have minimum confidence) may not satisfy the minimum all-confidence or minimum

bond constraint. We describe the algorithms that efficiently find all associations with a minimum all-confidence or minimum bond and

present some experimental results.

Index Terms—Data mining, associations, interest measures, databases, performance.
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1 INTRODUCTION

THE past few years has seen a tremendous interest in the
area of data mining. Data mining is generally thought of

as the process of finding hidden, nontrivial, and previously
unknown information in a large collection of data [22].
Exploiting large volumes of data for superior decision
making by looking for interesting patterns in the data has
become a main task in today’s business environment. In
particular, finding associations between items in a database
of customer transactions, such as the sales data collected at
super market check out counters [3], [5], [11], [13], [14], [17],
[20], [25], [26], [27], [28] has become an important data
mining task. Association rules identify items that are most
often bought along with certain other items by a significant
fraction of the customers. For example, we may find that
“95 percent of the customers who bought bread also bought
milk.” A rule may contain more than one item in the
antecedent and the consequent of the rule. Every rule must
satisfy two user specified constraints: one is a measure of
statistical significance called support and the other a
measure of goodness of the rule called confidence.

In this paper, we concentrate on finding associations, but
with a different slant. That is, we take a different view of
significance. Instead of support, we consider three other
measures, which we call any-confidence, all-confidence, and
bond. We show that these are other measures of significance
that have their place in mining associations that are
interesting. All three measures are indicators of the degree
to which items in an association are related to each other.
These measures also resemble the similarity measures used
in information retrieval systems, (i.e., the degree to which
documents (terms) in a collection are related to each other).

In the next section, we review the necessary background
for studying the association rule problem and some of the
related work. In Section 3, we present the intuition behind
our interest measures and in Section 4, we formally define
our interest measures and prove some important properties
about them. In Section 5, we highlight the differences
between bond and all-confidence as well as some other
metrics. In Section 6, we present the algorithms for bond
and all-confidence and in Section 7, we present a perfor-
mance study of our algorithms.

2 BACKGROUND

Formally, the association rule problem can be stated as
follows [3], [5]: Let I ¼ fi1; i2; . . . ; img be a set of m
distinct literals called items. D is a set of variable length
transactions over I . Each transaction contains a set of
items ii; ij; . . . ; ik � I . A transaction also has an associated
unique identifier called TID. An association rule is an
implication of the form Xÿ!Y , where X;Y � I and
X \ Y ¼ ;. X is called the antecedent and Y is called the
consequent of the rule.

In general, a set of items (such as the antecedent or the
consequent of a rule) is called an itemset. The number of
items in an itemset is called the length of an itemset.
Itemsets of some length k are referred to as k-itemsets. For
an itemset X [ Y , if Y is an m-itemset then Y is called an
m-extension of X.

Each itemset has an associated measure of statistical
significance called support. For an itemset X � I ,
supportðXÞ ¼ s, if the fraction of transactions in D contain-
ing X equals s. A rule has a measure of its strength called
confidence defined as the ratio supportðX [ Y Þ=supportðXÞ.

The problem of mining association rules is to generate all
rules that have support and confidence greater than some
user specified minimum support and minimum confidence
thresholds, respectively. This problem can be decomposed
into the following subproblems:
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1. All itemsets that have support above the user
specified minimum support are generated. These
itemsets are called the large itemsets. All others are
said to be small.

2. For each large itemset, all the rules that have
minimum confidence are generated as follows: for
a large itemset X and any Y � X, if supportðXÞ/
supportðX ÿ Y Þ � minimum_confidence, then the rule
X ÿ Yÿ!Y is a valid rule.

To reduce the combinatorial search space, algorithms
exploit the following property, called antimonotonicity [19]:
whenever the support of a set S of items violates the
frequency constraint (i.e., the support falls below the
specified threshold), then all supersets of S must also
violate the frequency constraint. Some researchers refer to
an equivalent property called downward closure [7]: if an
itemset is large then every subset of that large itemset
must also be large. The antimonotonicity or equivalently,
the downward closure property is used by existing
algorithms for mining association rules (e.g., the Apriori
algorithm [5]) as follows. Initially, support for all itemsets
of length one (1-itemsets) are tested by scanning the
database. The itemsets that are found to be small are
discarded. A set of 2-itemsets called candidate itemsets are
generated by extending the large 1-itemsets generated in
the previous pass by one (1-extensions) and their support
is tested by scanning the database. Itemsets that are
found to be large are again extended by one and their
support is tested. In general, some kth iteration contains
the following steps:

1. The set of candidate k-itemsets is generated by
1-extensions of the large ðkÿ 1Þ-itemsets generated
in the previous iteration.

2. Supports for the candidate k-itemsets are generated
by a pass over the database.

3. Itemsets that do not have the minimum support are
discarded and the remaining itemsets are called
large k-itemsets.

This process is repeated until no more large itemsets are
found.

Recent work [7], [8], [18] deals with finding rules based
on other metrics besides support and confidence. Other
current work deals with efficiently supporting constraints
on the antecedent and/or consequent for association rule
mining [15], [19]. Still, other work involves computing large
itemsets online [13], computing association rules online [1],
mining for negative associations [26], and parallel mining of
association rules [4], [10]. Since our work is concerned with
alternative measures of interestingness, we will briefly
review some of the work which is most closely related.

In [7], the authors mine association rules that identify
correlations and consider both the absence and presence of
items as a basis for generating the rules. The measure of
significance of associations that is used is the chi-squared test
for correlation from classical statistics. In [8], the authors
still use support as part of their measure of interest of an
association. However, when rules are generated, instead of
using confidence, the authors use a metric they call
conviction, which is a measure of implication and not just
cooccurrence. In [18], the authors also look at alternative
measures of interest, namely the gini index, entropy gain, and

chi-squared. The problem examined in [18] is to find
association rules that segment large categorical databases
into two parts which are optimal according to some
objective function. The functions used are information-
theoretic measures which are used to indicate the extent of
which the divided data distribution differs from the original
data distribution. In [6], the notion of mining optimized
rules is presented where the authors show that rules which
satisfy a number of different interest metrics such as
support. Confidence, entropy, chi-squared, and conviction
reside along a support/confidence border. Hence, mining
rules along this border will retrieve rules satisfying all the
above metrics.

In [16], the authors present an approach to the rare item
problem. The dilemma that arises in the rare item problem is
that searching for rules that involve infrequent (i.e., rare)
items requires a low support but using a low support will
typically generate many rules that are of no interest. Using a
high support typically reduces the number of rules mined
but will eliminate the rules with rare items. The authors
attack this problem by allowing users to specify different
minimum supports for the various items in their mining
algorithm. So, frequent items may have high support and
infrequent items low support. They generate large itemsets
with possible combinations of frequent and rare items
based on their sorted closure property. As we will see, our
metrics will also allow us to find infrequent associations
that may be interesting to the user but by using one
minimum threshold value.

3 ANY-CONFIDENCE, ALL-CONFIDENCE, AND BOND

AS INTEREST MEASURES

Any-confidence is our first measure of the interestingness of
an association. With this measure, an association is deemed
interesting if any rule that can be produced from that
association has a confidence greater than or equal to our
minimum any-confidence value. Any-confidence is like the
Overlap similarity coefficient [24] in information retrieval
systems. In current association mining algorithms, this
would be the same as saying that we want all rules that
have a confidence greater than or equal to the minimum
confidence, without regard to any support criteria. How-
ever, the problem with this as mentioned in other work [7],
is that it cannot be computed efficiently. As we will later
see, it does not satisfy the important downward closure
property. We present this measure simply for completeness
and to show the relationship of it with our other measures
of interestingness.

All-confidence is our second measure of association
interestingness and is a variation of the first. With this
measure, an association is deemed interesting if all rules
that can be produced from that association have a
confidence greater than or equal to our minimum all-
confidence value. This indicates that there is a dependency
between all of the items in the association. The degree of the
dependency, of course, is based on the threshold value. For
example, if the all-confidence threshold is one, then, for any
itemset L, which satisfies the threshold, any subset of L
would imply the remaining items with a confidence of
100 percent. Certainly, in that case there is a high degree of
dependency between the items in L. However, if the all-
confidence threshold is 0.5, then any subset of L would
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imply the remaining items with a confidence of at least
50 percent. There still exists a dependency between the
items in L, but to a lesser degree. In contrast to the any-
confidence measure, all-confidence can be computed effi-
ciently. In other words, all-confidence satisfies the down-
ward closure property as we will later show.

For an example of the use of all-confidence, consider data
collected about a particular part maufactured by a
company. Assume we have data about n occurrences of
that part and a small number of those occurrences, �, show
all three defects: fD1; D2; D3g. It may be that �=n is much
lower than the minimum support needed to produce an
association between D1, D2, and D3. So, an association
involving the three defects would be considered uninterest-
ing. However, it may be that an occurence of any one of the
defects occurs in no more than �þ � parts, where � � �.
This would be indicative of a 3-way dependence between
the defects and could be of interest to the data miner. For
our purpose, a 3-way dependence (or a general n-way
dependence) refers to the fact that any combination of the
three (n) defects implies the remaining defects with a
confidence of at least �=ð�þ �Þ. This is the type of relation-
ship (pattern) that all-confidence will find.

Bond is our third measure of the interestingness of an
association. It is similar to the Jaccard similarity coeffi-
cient [24] in information retrieval systems and to the
support coverage ratio [9] used for web mining. With
regard to data mining, it is similar to support but with
respect to a subset of the data rather than the entire data
set. This has similarities to the work in [23] except in
their work they define data subsets based on the data
satisfying certain time constraints. The idea is to find all
itemsets that are frequent in a set of user-defined time
intervals. In our case, the characteristics of the data define
the subsets not the end-user.

For a practical example of the use of Bond, consider a
medical application where we have n patients, a small
number of those patients, �, exhibit at least one of the three
symptoms X, Y , and Z and a number of those patients, �,
exhibit all three symptoms X, Y , and Z. It may be that �=n is
lower (even much lower) than the minimum support
needed to produce an association between X; Y , and Z.
Hence, that association would be deemed uninteresting.
However, a physician may still be interested in that
association if � is close to �, that is �=� is greater than or
equal to some minimum value. The relationship of �=� is
what we call bond. To be more concrete, consider a data file
with 10,000 patients where five of those patients exhibit a
specific set of symptoms, S. It may also be that the number
of patients that exhibit any of those specific symptoms S is
10. The support for an association containing the symptoms
in S would only be 0:0005. However, the bond would be 0:5.

4 FORMAL PROPERTIES OF ANY-CONFIDENCE,
ALL-CONFIDENCE, AND BOND

In this section, we present a formal definition of any-
confidence, all-confidence, and bond, and prove a number
of properties about them. Regardless of the measure of
interestingness, it is important to be able to efficiently
determine the itemsets that have a value (for that measure)
greater than the minimum threshold. To accomplish this,
we would like to be able to prune the space of possible

itemsets. This was done with respect to support for the
Apriori algorithm [5] which used the property that if a set of
items is not a frequent itemset, then any superset of that set
is not a frequent itemset.

We previously defined the set of m items I as
fi1; i2; . . . ; img and the set of variable length transactions
over I as D. Each transaction contains a set of items which
are a subset of I . In the following definitions, we use PðLÞ
to represent the power set of L, i.e., the set of all subsets of
L. It is important to point out that the use of the power set
in the following definitions is used to more clearly convey
the meaning of the metrics. In the algorithm, which
implements our metrics, the power set will not be
computed. Since we will be comparing our metrics to
support, we will start by defining support using the
notation we will use for defining the other metrics.

Definition: The support of a set of items, L is

j fd j d 2 D ^ L � dg j
j D j :

The numerator represents the number of transactions where
each transaction contains the set of items L. The denominator
is simply the total number of transactions.

Definition. The any-confidence of a set of items, L is

j fd j d 2 D ^ L � dg j
MINfi j8lðl2PðLÞ^ l 6¼ ; ^ l 6¼ L ^ i ¼ jfd jd 2 D^ l �dgjÞg :

The denominator is the minimum count of transactions that

contain any subset of L, excluding the empty set and the

improper subset. This formal definition simply states that any-

confidence is the largest confidence of any rule for the set of

items, L. Ideally, this measure allows a data miner to focus on

rules that have high confidence without regard to any other

stipulations about the data (e.g., ignoring support). However,

it cannot be determined efficiently by reducing the search space

of alternatives or, in other words, does not satisfy the

downward closure property. Although similar claims have

been shown in [7], but with a different name, we include a

simple counter example to the downward closure property here

for completeness. As an example, consider a database with the

following transactions (also shown in Table 1) T1 ¼ fA;Bg,
T2 ¼ fA;B;C;Gg, T3 ¼ fC;Dg, T4 ¼ fC;Dg, a n d

T5 ¼ fE;Fg, where I is fA;B;C;D;E; Fg. Suppose that

the minimum any-confidence which is required is one. Using

these transactions, any-confidence ðfA;CgÞ is 1=2, since

fA;Cg appears in one transaction, fAg appears in two

transactions, and fCg appears in three transactions. Although

the itemset fA;Cg does not satisfy the minimum threshold, we

see that an extension of this itemset does, namely fA;C;Gg,
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where any-confidenceðfA;C;GgÞ is 1. Hence, any-confidence

will not be used as a measure of interestingness in our work.

Definition. The all-confidence of a set of items, L is

j fd j d 2 D ^ L � dg j
MAXfi j8lðl2PðLÞ^ l 6¼ ; ^ l 6¼L^ i ¼ jfd jd2D^ l�dgjÞg :

The denominator is the maximum count of transactions
that contain any subset of L, excluding the empty set and the
improper subset. We should note that the maximum value will
occur when the subset of L consists of a single item. Adding
additional items cannot increase the count of transactions.
Hence, the power set need not be computed. This formal
definition simply states that all-confidence is the smallest
confidence of any rule for the set of items, L. That is, all rules
produced from this item set would have a confidence greater
than or equal to its all-confidence value.

Definition. The bond of a set of items, L is

j fd j d 2 D ^ L � dg j
j fd j d 2 D ^ 9lðl 2 PðLÞ ^ l 6¼ ; ^ l � dÞg j :

This formal definition simply states that bond is the ratio of

the cardinality of the set of transactions that contain all items

in L and the cardinality of the union of transactions that

contain any item of L. In the algorithm, which implements the

bond metric, the power set is not computed, instead each

transaction is checked to see if it contains any of the items in L.

We should note that the bond of L where j L j ¼ 1 is one. If a

set of items L does not appear in any transaction, then the

bond of L is zero. Once again, consider the database shown in

Table 1. The support and bond for all itemsets with a nonzero

support are shown in Table 2.

The relationship between the associations that satisfy the
different metrics is displayed in Fig. 1. From a practical point,

the relationship between all-confidence and bond is important.
This relationship tells us that if we compute associations using
the all-confidence metric for a minimum value v, then the
resulting associations will include those that satisfy the bond
criteria for the value v. To prove the relationship between the
three metrics, we present the following lemma.

Lemma 1. Given an itemset L, the following relationship holds

between the metrics as applied to L: any-confidence (L) � all-

confidence (L) � bond(L).

Proof. All three metrics have the same numerator and the

relationship between the denominator of any-confidence

(L), all-confidence (L), and bond (L), for j L j¼ k, where

n ¼ 2k ÿ 2, is

minðjA1j; jA2j; . . . ; jAnjÞ
� maxðjA1j; jA2j; . . . ; jAnjÞ
� jA1 [A2 [ . . . [Anj;

where Ai represents the set of transactions that contain a

subset of the items in L. tu
An important property for any measure of interesting-

ness is downward closure. We present the following two

lemmas and their proofs to show that the downward closure

property with respect to all-confidence and bond holds.

This will allow us to discard any itemset that does not meet

the minimum all-confidence (or bond) threshold. Three

basic properties are used in the lemmas and are proven in

the appendix. Similar observations for our all-confidence

metric, but with regard to mining with constraints, have

appeared in [21].

Lemma 2. The downward closure property holds with respect to

all-confidence. That is, If L is an itemset and all-confidence(L)

is greater than or equal to minall then the all-confidence of

every subset, L0, of L will be greater than or equal to minall.

More formally, if
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j fd j d 2 D ^ L � dg j
MAXfi j8lðl2PðLÞ^l 6¼;^l 6¼ L ^ i ¼ jfd jd2D^ l�dgjÞg
� minall:

Then, 8L0 � L

j fd j d 2 D ^ L0 � dg j
MAXfi j8lðl2PðL0Þ^l 6¼ ;^l 6¼L0^i¼ jfd jd2D^ l�dgjÞg
� minall:

Proof. Since L0 � L, we know that

j fd j d 2 D ^ L0 � dg j�j fd j d 2 D ^ L � dg j :

This is Property 1 in the Appendix. Also, since

PðL0Þ � PðLÞ, we know that

MAXfi j 8lðl 2 PðL0Þ ^ l 6¼ ; ^ l 6¼ L0 ^ i
¼ j fd j d 2 D ^ l � dg jÞg
�MAXfi j 8lðl 2 PðLÞ ^ l 6¼ ; ^ l 6¼ L ^ i
¼ j fd j d 2 D ^ l � dg jÞg:

This is Property 2 in the Appendix. So, all-confidence (L0)
� all-confidence (L) � minall. tu

Lemma 3. The downward closure property holds with respect to

bond. That is, if L is an itemset and bondðLÞ is greater than or

equal to minbond, then, the bond of every subset, L0 of L will

be greater than or equal to minbond. More formally, if

j fd j d 2 D ^ L � dg j
j fd j d 2 D ^ 9lðl 2 PðLÞ ^ l 6¼ ; ^ l � dÞg j � minbond:

Then, 8L0 � L

j fd j d 2 D ^ L0 � dg j
j fd j d 2 D ^ 9lðl 2 PðL0Þ ^ l 6¼ ; ^ l � dÞg j � minbond:

Proof. Since L0 � L, we know that

j fd j d 2 D ^ L0 � dg j�j fd j d 2 D ^ L � dg j :

This is Property 1 in the Appendix. Also, since

PðL0Þ � PðLÞ, we know that

j fd j d 2 D ^ 9lðl 2 PðL0Þ ^ l 6¼ ; ^ l � dÞg j
� j fd j d 2 D ^ 9lðl 2 PðLÞ ^ l 6¼ ; ^ l � dÞg j :

This is Property 3 in the Appendix. So,

bondðL0Þ � bondðLÞ � minbond:
ut

The following two lemmas provide information about

the relationship between bond and support. Lemma 4

shows that the support for an itemset will be less than or

equal to the bond of the itemset. Lemma 5 shows that the

minimum support for an itemset that satisfies a minimum

bond threshold can be as low as the smallest possible

support.

Lemma 4. The support for a set of items, L, will be less than or

equal to the bond for L.

Proof. This can be seen directly from the definition of bond

and support. Since the number of transactions that

contain subsets of L must be less than or equal to the

total number of transactions, we have that

j fd j d 2 D ^ 9lðl 2 PðLÞ ^ l 6¼ ; ^ l � dÞg j�j D j :

Hence, supportðLÞ � bondðLÞ. tu

Lemma 5. The support for a set of items, supportðLÞ, where

bondðLÞ is greater than or equal to any minimum bond

threshold, can be as low as 1= j D j .
Proof. Consider a set of transactions D, itemset L and any

minimum bond value minbond where 0 < minbond � 1.

Since the greatest value for the minimum bond threshold

is one, any itemset with a bond value of one will satisfy

every minimum bond requirement for itemsets. Consider

a transaction that contains the items in L and the items in

L appear in only one transaction. This gives a bondðLÞ of

one. The supportðLÞ is 1= j D j . Hence, for bondðLÞ �
minbond we have supportðLÞ ¼ 1= j D j . tu

The significance of Lemma 5 is that using a metric based

on support to find large itemsets that meet a given bond

threshold can be extremely inefficient. That is, using

support to find the itemsets that satisfy any minimum

bond threshold can result in generating every possible

association. Whereas, by using the bond metric directly, the

search space of itemsets can be pruned as indicated by

Lemma 3.
We formalize the relationship between bond and con-

fidence by way of Theorem 1.

Theorem 1. The lower bound for the confidence of any rule

produced from a set of items L such that L has bondðLÞ is

minbond.

Proof. Suppose we have a set of items L such that bondðLÞ �
minbond. The confidence of a rule, L0ÿ!Lÿ L0, where

L0 � L, is defined as

supportðLÞ
supportðL0Þ

which is in our notation,

j fd j d 2 D ^ L � dg j
j fd j d 2 D ^ L0 � dg j :

The bondðLÞ is

j fd j d 2 D ^ L � dg j
j fd j d 2 D ^ 9lðl 2 PðLÞ ^ l 6¼ ; ^ l � dÞg j :

Since L0 � L, we know the following:

j fd j d 2 D ^ 9lðl 2 PðL0Þ ^ l 6¼ ; ^ l � dÞg j
� j fd j d 2 D ^ 9lðl 2 PðLÞ ^ l 6¼ ; ^ l � dÞg j :

This is Property 3 in the Appendix. We also know that

since L0 2 PðL0Þ that j fd j d 2 D ^ L0 � dg j�j fd j d 2
D ^ 9lðl 2 PðL0Þ ^ l 6¼ ; ^ l � dÞg j : So,
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j fd j d 2 D ^ L � dg j
j fd j d 2 D ^ L0 � dg j � bondðLÞ � minbond:

Hence, the confidence (L0ÿ!Lÿ L0) � minbond. tu
To illustrate the meaning of Lemma 5 and Theorem 1, we

examine the transactions shown in Table 1. We will use a
minbond of 0:6, i.e., 60 percent. From Lemma 5, we know
that any association that satisfies this minimum bond value
will have a support of 1=5, at least. We also know, from
Theorem 1, that any rule produced by an association with
minimum bond will have a confidence of at least 0:6. If we
examine Table 2, we see that there are three associations (of
size greater than 1), that satisfy the minimum bond
requirement. They are displayed in Table 3 along with
their associated rules. One point to make is that, just
because an association has the lower bound for support and
confidence, it does not necessarily satisfy the minbond
requirement. In Table 2, all itemsets satisfy the lower bound
for support but only the itemsets in Table 3 satisfy the
minimum bond requirement. If we were to lower the
minimum bond to 0:5, we would still have the results
shown in Table 3. However, the itemset fA;Cg would not
only satisfy the equivalent lower bound for support (i.e.,
0:2), but also the rule Aÿ!C would satisfy the lower bound
for confidence (i.e., 0:5). However, the itemset fA;Cgwould
not satisfy the minimum bond requirement of 0:5. Hence,
generating associations and rules that satisfy the lower
bound for support and confidence would not produce only
associations and rules that satisfy the minimum bond
requirement. The bottom line is that the output from such
an approach (e.g., a priori [5]) would be a superset of the
solution but the exact subset (for the bond metric) could not
be determined without having to make an additional pass
over the transaction data.

5 COMPARISON OF ALL-CONFIDENCE, BOND, AND

OTHER METRICS

In this section, we relate some of the metrics presented in
Section 1 to our own metrics of all-confidence and bond.
The conviction [8] and lift [6] metrics can be used to
determine which rules, generated from a large itemset, are
the most interesting. Interest (lift) is a measure of departure
from independence and is symmetric. Interest is defined [8]
for an itemset fA;Bg as supportðfA;BgÞ

supportðfAgÞ�supportðfBgÞ. As such,
interest is a measure of cooccurrence as is bond. Although

bond does provide some measure of implication (w.r.t.
confidence) as shown by Theorem 1. All-confidence also
provides information about implication in that it ensures a
lower bound on confidence for any rule of an itemset, which
satisfies the minumim threshold for all-confidence. Con-
sider the data in Table 4. The interest of itemset fA;Bg is
computed as 1.05, which is only slightly above one (the
interest for items that are independent). However, the
support (fA;Bg) is 0.6, the bond (fA;Bg) is 0.64, and the all-
confidence (fA;Bg) is 0.67. The high value for these metrics
indicate to the user that the items fA;Bg occur very often in
the data set (according to the metric used) and may be of
interest to the user. On the other hand, such a high value
may indicate an obvious relationship, which the user may
already know. However, if few itemsets have such a high
support, bond, or all-confidence, those itemsets may be
interesting. Consider a second example where the data is
shown in Table 5. The interest value for itemset fA;Bg is
1.11 while the support, bond, and all-confidence values are
0.05, 0.056, and 0.056, respectively. Since the itemset fA;Bg
occurs in only 5 percent of the transactions, it may be very
interesting and not obvious to the user, although the
interest measure indicates that A and B are independent.
We should point out that the minimum threshold value for
bond and all-confidence (as well as support) is domain
(data) dependent. The data mining task will typically be an
iterative process where the threshold value is adjusted so as
to find a value where the algorithm discovers the interest-
ing associations (not too many and not too few).

Conviction is a measure of implication because it is
directional. It is complimentary to our metrics. All-con-
fidence and bond find items that cooccur, and once they are
found, the conviction metric could be used to determine the
most interesting rules from the large itemsets.

The chi-squared [7] metric is used to determine the
(in)dependence between items. It is based on statistical
theory and takes into account all combinations of both the
presence and absence of items. Thus, positive and negative
correlations can be determined. All-confidence and bond
(like support and confidence) only take into account the
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TABLE 4
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presence of items and requires a minimum threshold value.
However, there are conditions when the chi-squared test
would be appropriate for data analysis and in typical basket
data analysis the necessary conditions for use do not always
hold [7]. For example, when the expected values in the
contingency table are small, which typically happens when
the number of cells becomes large, the chi-squared statistic
becomes increasingly inaccurate [7].

To conclude this section, we give a simple example
comparing the bond and all-confidence metrics. The data is
shown in Table 6. In both files, bond (fA;B;Cg) is 0.5.

However, in File 1, the all-confidence (fA;B;Cg) is 0.5
while in File 2, the all-confidence (fA;B;Cg) is 0.75. All of
the rules generated from itemset fA;B;Cg have a con-
fidence greater than or equal to 50 percent in File 1 and
greater than or equal to 75 percent in File 2. A higher value
of all-confidence indicates a greater dependency between
all of the attributes in the itemset. As a further point of
interest, the support (fA;B;Cg) is only 0.0003.

6 ASSOCIATION FINDING ALGORITHM USING

ALL-CONFIDENCE OR BOND METRICS

The main task of the association finding algorithm, shown in
Fig. 2, is to generate the large itemsets that satisfy either the
minimum all-confidence requirement or the minimum bond
requirement. We adapted our Partition algorithm [25], which
efficiently computes large itemsets based on support. How-
ever, there are other newer algorithms [2], [12] that appear to
be more efficent, which we could have adapted as well.

Associated with each itemset is a list, called the tidlist.
The tidlist consists of all transaction identifiers of the
transactions containing the itemset. Included with the tidlist
is its size (i.e., the count of the number of transaction
identifiers in the list). The count value for 1-itemsets will be
used if the all-confidence metric is chosen. If the bond
metric is chosen, then, also associated with an itemset is the
union_tidlist, (i.e., the set of transactions that contain any of
the individual items in that itemset). The cardinality of the
tidlist divided by the cardinality of the union_tidlist is the
bond for the associated itemset. The bond for an extension
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TABLE 6
Two Files Containing 10,000 Transactions

(Only Three Items Are Shown)

Fig. 2. Procedure gen_large_itemsets.



of the itemset is determined as follows: suppose t1 and t2
are the tidlists associated with itemsets l1 and l2, and c3 is an
itemset obtained by extending l1 with l2 (as explained
below). The bond for c3 is given by the number of
transactions that contain c3 (i.e., the intersection) divided
by the number of unique transactions that contain any item
in c3 (i.e., the union). The main computational difference in
computing bond versus all-confidence is the cost of
computing the union_tidlist versus the cost of finding the
maximum of the counts of the 1-itemsets belonging to the
current k-itemset.

For example, let fT1; T3; T4g be the list of transactions
associated with itemset f1; 2g and fT1; T4; T7g be the list
associated with f1; 3g. Now, the transactions that contain
the candidate itemset f1; 2; 3g are given by the intersec-
tion of the lists of transactions associated with itemsets
f1; 2g and f1; 3g, i.e., fT1; T4g. Let the tidlist for itemset
f1g be fT1; T3; T4; T5; T7g, the tidlist for itemset f2g be
fT1; T3; T4; T6g and the tidlist for itemset f3g be
fT1; T4; T7g. The bond for itemset f1; 2; 3g is the cardin-
ality of the intersection of tids for f1; 2g and f1; 3g
divided by the cardinality of the union of tids for
f1g; f2g, and f3g. If this satisfies the minimum bond
then f1; 2; 3g is a large itemset. The all-confidence value
for itemset f1; 2; 3g is the cardinality of the intersection
of tids for f1; 2g and f1; 3g divided by the maximum of
the counts of the 1-itemsets for f1g; f2g, and f3g. If this
satisfies the minimum all-confidence then, f1; 2; 3g is a
large itemset.

Initially, a 1-itemset is created for every item in the
database. The tidlists for these itemsets are generated by
reading the database. For all 1-extensions (2-itemsets) of
these itemsets, the tidlist is generated by intersecting the
tidlists of both the itemsets in the extension. For the 2-
itemsets, the union of the 1-itemsets is simply computed as
the sum of the counts of the two 1-itemsets minus the count
of the 2-itemset. The 2-itemsets that do not satisfy the
minimum bond are discarded. The remaining itemsets are
the large itemsets. These itemsets are extended by one and
the process is repeated. The extensions of the itemsets are
created as follows: let l1 and l2 be two k-itemsets, containing
fij; ik; . . . ; img and fip; iq; . . . ; itg, respectively. A 1-extension
of l1 (a (kþ 1Þ-itemset) is generated if the following
condition is satisfied: ij ¼ ip ^ ik ¼ iq ^ . . . ^ im � it. The
(kþ 1Þ-itemset consists of fij; ik; . . . ; im; itg. This technique
is similar to the candidate generation step described in [5].

For fast computation of the intersection, the tidlists are
maintained as arrays and the sort-merge join algorithm is
used. Recall that the TIDs are in ascending order in the
database. Hence, the tidlists are in the sort order initially
and all resulting tidlists are automatically generated in the
sort order. This operation is of linear complexity on the
length of the tidlist.

In our implementation, the tidlists of itemsets of length
greater than one are not materialized. For example, to
compute the support for fA;B;C;Dg, the tidlists for A, B, C,
and D are intersected. No tidlist is generated for the itemset
fA;B;C;Dg. The advantage of this approach is that we need
storage for the tidlists of only the 1-itemsets and, hence, the
memory requirement can be estimated quite accurately.

The procedure gen_large_itemsets generates all
large itemsets (of all lengths). The procedure is the same
as used in our previous work [25]. The prune step is
performed as follows:

prune(c: k-itemset)

forall ðkÿ 1Þ-subsets s of c do

if s =2Lkÿ1 then

return “c can be pruned”

The prune step eliminates extensions of ðkÿ 1Þ-itemsets
which are not found to be large, from being considered for
calculating the bond. For example, if L3 is found to be
ff1; 2; 3g; f1; 2; 4g; f1; 3; 4g; f1; 3; 5g; f2; 3; 4gg, the candidate
generation initially generates the itemsets f1; 2; 3; 4g and
f1; 3; 4; 5g. However, itemset f1; 3; 4; 5g is pruned since
f1; 4; 5g is not in L3. This technique is same as the one
described in [5] except in our case, as each candidate
itemset is generated, its bond is determined immediately.

7 PERFORMANCE RESULTS

In this section, we describe the experimental results of using
our technique for generating associations with a minimum
bond. We performed two sets of experiments, one using
synthetic data and the other using a subset of the
1990 United States census data. We should point out that,
if the threshold value is set too low, then, many large
itemsets will be produced and this will negatively impact
our algorithm’s performance. This is also true for the a priori
algorithm [5]. However, there are newer and more efficient
algorithms such as the FP-tree [12] that we could adapt for
use with our interest measures, in place of our Partition
algorithm [25].

7.1 Synthetic Data

The synthetic data is generated such that it simulates
customer buying patterns in a retail market environment.
We have used the same basic method as described in [27].
All of the synthetic data sets consisted of 100,000 transac-
tions taken over 1,000 items. The data labeled T10.I4 had an
average transaction size of 10 and a maximum transaction
size of 40. The data labeled T20.I4 had an average
transaction size of 20 and a maximum transaction size of
50. The data labeled T10.I4Y consisted of 99,900 transactions
generated by the synthetic data generator and 100 addi-
tional transactions. Those 100 transactions were made up of
subsets of seven items which only appear in those
100 transactions. All of the 100 transactions contain the
same three items and a random number of the remaining
four items.

A comparison of the running time for the algorithm
using the all-confidence metric for data sets T10.I4 and
T20.I4 is shown in Fig. 3. A comparison of the algorithm’s
running time using bond for data sets T10.I4 and T20.I4 is
shown in Fig. 4. The amount of data processed (in bytes) for
T20.I4 was approximately twice the amount of data
processed for T10.I4. This was simply due to the larger
average transaction size. In Fig. 3 and Fig. 4, we see that the
running time for each given data set was fairly constant,
regardless of the all-confidence or bond value. The reason
for this is due to the relatively small number of large
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itemsets generated for any of the desired all-confidence or

bond values. For the T10.I4 data set and the all-confidence

metric, the number of large itemsets ranged from zero to 70.

For the T20.I4 data set and the all-confidence metric, the

number of large itemsets ranged from zero to 136. For the

T10.I4 data set and the bond metric, the number of large

itemsets ranged from zero to 16. For the T20.I4 data set and

the bond metric, the number of large itemsets ranged from

zero to 64. If the number of large itemsets were to increase
dramatically, the running time would do so as well. This

can be seen in the association finding algorithms that use

support as well.
The results of running the algorithm for data set T10.I4Y

using all-confidence is shown in Fig. 5 and using bond is

shown in Fig. 6. In these experiments, we intentionally

placed sets of items in transactions so as to satisfy the bond

requirement and hence satisfy the all-confidence metric as

well. The number of large itemsets varied from four for a

bond of 1.0 to 44 for a bond of 0.5. For all-confidence, the

number of large itemsets varied from four for a value of 1.0

to 98 for a value of 0.5. Once again, since the number of

large itemsets did not vary much, the running times
remained fairly constant.

In Table 7, we show what the corresponding minimum
support would be for the large itemsets that were
determined based on bond. For a minimum bond value of
0.5, the algorithm determined 27 large itemsets of size two,
of which the minimum support was 0.02 percent.

7.2 Census Data

The data used in the next set of experiments was obtained
from the US Census Bureau through their online data
extraction system available on the Web at www.census.
gov/DES/www/welcome.html. The data is a subset of the
1990 Decennial Census Public Use Microdata 5 percent
Samples. The data consisted of 53,847 records for people
living in Florida of Hispanic origin. For these experiments,
we chose a subset of the available record fields, which
included age, citizenship, disability1, disability2, English, fertile,
Hispanic origin, hours89, income1, language, martial, means,
military, race, sex, year, school, and immigrated. Since the fields
were not all Boolean valued, we converted the numeric
values into disjoint ranges and associated a unique field
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with each. The ranges were chosen based on the online
summaries provided by the US Census Bureau. The data
was converted into 118 items, but each record only
contained a maximum of 20 items.

The result of running the association finding algorithm
for this census data subset using the all-confidence metric is
shown in Fig. 7 and using the bond metric in Fig. 8. The
number of large itemsets varied from four for an all-
confidence value of 1.0 to 183 for a value of 0.5. The number
of large itemsets varied from four for a bond of 1.0 to 102 for
a bond of 0.5. In these experiments, the running time using
the different all-confidence and bond values was not
relatively constant (as with the synthetic data) since the
number of large itemsets increased much more with a lower
bond value. An interesting point about the all-confidence
metric can be seen when we compare the results from Fig. 7
and Fig. 8. Although the bond metric generates fewer
itemsets than the all-confidence metric (e.g., for a value of
0.5, bond produces 102 and all-confidence produces 183),
the running time using bond is much higher. This is due to
the fact that the all-confidence metric (i.e., the denominator)
is computed once for the 1-itemsets and reused for larger

itemsets whereas, the bond metric involves a union

operation that has to be computed for each itemset.
If we examine the associations produced for a minimum

bond value of 1.0, and look at the largest association (i.e.,

size three) produced, we see that it includes the following

items: work limitation status is not applicable, person is less than

16 years of age AND work prevention status is not applicable,

person is less than 16 years of age AND military service is not

applicable, person is less than 16 years of age. These three items

appeared in 11,427 records out of the 53,847 records. The

same set of associations is obtained using 1.0 as the

minimum all-confidence value. The results show us that

the three items always appeared together in the data. We

also see that these highly correlated items are not very

interesting.
If we examine some of the associations produced for a

lower minimum bond value, we find somewhat more

interesting associations. For example, with a minimum

bond value of 0.7, one association that was found was the

following: not limited from working AND not prevented from

working AND speaks another language. If we look at the

66 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2003
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associations produced for all-confidence, using 0.7, con-
sidering only itemsets of length four, we have:

. not limited from working AND not prevented from
working AND speaks another language AND no military
service and

. not limited from working AND not prevented from
working AND no military service AND immigrated to
the United States.

For a minimum bond value of 0.5, some of the

associations included Hispanic origin is Puerto Rican AND

born in Puerto Rico. About half of the people of Puerto Rican

origin were born in Puerto Rico. A corresponding associa-

tion was not found for persons of other Hispanic origin

such as Mexican or Cuban. Another sample association was

Hispanic origin is Cuban AND speaks another language. Of the

32,934 persons of Cuban origin and the 45,000 people that
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Fig. 7. Algorithm performance with all-confidence metric using US census data.

Fig. 8. Algorithm performance with bond metric using US census data.



speak another language, 29,709 persons speak another

language and are of Cuban origin. Using 0.5 for the all-

confidence metric, we have additional associations which

include (as a sample):

. not limited from working AND not prevented from
working AND Hispanic origin is Cuban AND speaks
another language AND no military service and

. not limited from working AND not prevented from
working AND speaks another language AND no military
service AND race is white AND immigrated to the
United States.

However, since the all-confidence metric is useful for

finding dependencies in the data, a minimum value of 0.5

may be too low to produce interesting results.

8 CONCLUSION

In this paper, we presented three alternative interest

measures for associations: any-confidence, all-confidence,

and bond. We proved that the important downward closure

property applies to both all-confidence and bond. We

showed that downward closure does not hold for any-

confidence. We also proved that if associations have a

minimum all-confidence or minimum bond, then those

associations will have a given lower bound on their

minimum support and the rules produced from those

associations will have a given lower bound on their

minimum confidence as well. We described the algorithms

that find all associations with a minimum all-confidence or

minimum bond and presented some experimental results

using both synthetic data and real-world census data. The

performance results showed that the algorithm can find

large itemsets efficiently.

APPENDIX

Here, we provide the basic properties that are used in the

proofs of the lemmas and theorem.

Property 1. If L0 � L, then, j fd j d 2 D ^ L0 � dg j �
j fd j d 2 D ^ L � dg j .

Proof. Let L0 ¼ fa1; a2; . . . ; akg and

L ¼ fa1; a2; . . . ; ak; akþ1; . . . ; ang:

A transaction that contains the set of items L must

obviously contain items in L0. So, j fd j d 2 D ^ L � dg j
cannot be greater than j fd j d 2 D ^ L0 � dg j . If all

transactions that contain the set of items L0 also contain

the set of items fak; akþ1; . . . ; ang then,

j fd j d 2 D ^ L0 � dg j¼j fd j d 2 D ^ L � dg j :

If at least one transaction contains the set of items L0 but

not the set of items fak; akþ1; . . . ; ang then j fd j d 2
D ^ L0 � dg j � j fd j d 2 D ^ L � dg j . Hence, j fd j d 2
D ^ L0 � dg j � j fd j d 2 D ^ L � dg j . tu

Property 2. If L0 � L, then

MAXfi j 8lðl 2 PðL0Þ ^ l 6¼ ; ^ l 6¼ L0 ^ i
¼ j fd j d 2 D ^ l � dg jÞg
�MAXfi j 8lðl 2 PðLÞ ^ l 6¼ ; ^ l 6¼ L ^ i
¼ j fd j d 2 D ^ l � dg jÞg:

Proof. Since PðLÞ contains all the members of PðL0Þ, we

have two cases:

1. A member of PðL0Þ is contained in the most
transactions. Hence, we have equality between
the left-hand and right-hand side of the expression.

2. If the member of PðLÞ which is not an element of
PðL0Þ is contained in the most transactions, then,
the left-hand side of the expression is less than the
right hand side.

Hence,

MAXfi j 8lðl 2 PðL0Þ ^ l 6¼ ; ^ l 6¼ L0 ^ i

¼ j fd j d 2 D ^ l � dg jÞg

�MAXfi j 8lðl 2 PðLÞ ^ l 6¼ ; ^ l 6¼ L ^ i

¼ j fd j d 2 D ^ l � dg jÞg:
ut

Property 3. If L0 � L, then,

j fd j d 2 D ^ 9lðl 2 PðL0Þ ^ l 6¼ ; ^ l � dÞg j
�j fd j d 2 D ^ 9lðl 2 PðLÞ ^ l 6¼ ; ^ l � dÞg j :

Proof. Since PðLÞ contains all members of PðL0Þ, the
number of transactions that contain members of PðL0Þ
cannot be greater than the number of transactions that
contain members of PðLÞ. The left-hand side of the
expression can be equal when transactions that contain
any of the items in L0 are the same transactions that
contain any of the items in L. The left-hand side can be
less when there are transactions that contain any of the
additional items in L ÿ L0 and those transactions do not
contain any of the items in L0. Hence,

j fd j d 2 D ^ 9lðl 2 PðL0Þ ^ l 6¼ ; ^ l � dÞg j

�j fd j d 2 D ^ 9lðl 2 PðLÞ ^ l 6¼ ; ^ l � dÞg j :
ut

ACKNOWLEDGMENTS

This work was supported in part by Grant LM 06726 from
the National Library of Medicine. The author would like to
thank Carlos Ordonez for his comments on an earlier draft
of this paper and would also like to thank the anonymous
referees for their invaluable comments.

REFERENCES

[1] C. Aggarwal and P. Yu, ”Online Generation of Association Rules,”
Proc. Int’l Conf. Data Eng., Feb. 1998.

[2] R. Agrawal, C. Aggarwal, and V. Prasad, ”Depth-First Generation
of Large Itemsets for Association Rules,” Proc. 2000 ACM
Knowledge Discovery and Data Mining Conf., pp. 108-118, 2000.

68 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2003



[3] R. Agrawal, T. Imielinski, and A. Swami, ”Mining Association
Rules Between Sets of Items in Large Databases,” Proc. 1993 ACM
SIGMOD Int’l Conf. Management of Data, pp. 207-216, May 1993.

[4] R. Agrawal and J. Shafer, ”Parallel Mining of Association Rules,”
IEEE Trans. Knowledge and Data Eng., vol. 8, no. 6, pp. 962-969, Dec.
1996.

[5] R. Agrawal and R. Srikant, ”Fast Algorithms for Mining
Association Rules in Large Databases,” Proc. 20th Int’l Conf. Very
Large Data Bases, Aug. 1994.

[6] R. Bayardo and R. Agrawal, ”Mining the Most Interesting Rules,”
Proc. Knowledge Discovery and Data Mining Conf., pp. 145-154, Aug.
1999.

[7] S. Brin, R. Motwani, and C. Silverstein, ”Beyond Market Baskets:
Generalizing Association Rules to Correlations,” Proc. ACM
SIGMOD Conf., pp. 265-276, May 1997.

[8] S. Brin, R. Motwani, J. Ullman, and S. Tsur, ”Dynamic Itemset
Counting and Implication Rules for Market Basket Data,” Proc.
ACM SIGMOD Conf., pp. 255-264, May 1997.

[9] R. Cooley, P. Tan, and J. Srivastava, ”Discovery of Interesting
Usage Patterns from Web Data,” Proc. WEBKDD Workshop., 1999.

[10] E. Han, G. Karypis, and V. Kumar, ”Scalable Parallel Data Mining
for Association Rules,” Proc. 1997 ACM SIGMOD Int’l Conf.
Management of Data, pp. 277-288, May 1997.

[11] J. Han and Y. Fu, ”Discovery of Multiple-Level Association Rules
from Large Databases,” Proc. Very Large Databases Conf., pp. 420-
431, Sept. 1995.

[12] J. Han, J. Pei, and Y. Yin, ”Mining Frequent Patterns without
Candidate Generation,” Proc. 2000 ACM SIGMOD Int’l Conf.
Management of Data, pp. 1-12, May 2000.

[13] C. Hidber, ”Online Association Rule Mining,” Proc. ACM-
SIGMOD Conf. Management of Data, pp. 145-156, June 1999.

[14] M. Houtsma and A. Swami, ”Set-Oriented Mining of Association
Rules,” Proc. Int’l Conf. Data Eng., Mar. 1995.

[15] L. Lakshmanan, R. Ng, J. Han, and A. Pang, ”Optimization of
Constrained Frequent Set Queries with 2-Variable Constraints,”
Proc. ACM-SIGMOD Conf. Management of Data, pp. 157-168, June
1999.

[16] B. Liu, W. Hsu, and Y. Ma, ”Mining Association Rules with
Multiple Minimum Supports,” Proc. Knowledge Discovery and Data
Mining Conf., pp. 337-341, Aug. 1999.

[17] H. Mannila, H. Toivonen, and A.I. Verkamo, ”Efficient Algo-
rithms for Discovering Association Rules,” Proc. Knowledge
Discovery and Data Mining ’94: AAAI Workshop Knowledge Discovery
in Databases, pp. 181-192, July 1994.

[18] Y. Morimoto, T. Fukuda, H. Matsuzawa, T. Tkuyama, and K.
Yoda, ”Algorithms for Mining Associations Rules for Binary
Segmentation of Huge Categorical Databases,” Proc. Very Large
Databases Conf., pp. 380-391, Sept. 1998.

[19] R. Ng, L. Lakshmanan, J. Han, and A. Pang, ”Exploratory Mining
and Pruning Optimizations of Constrained Associations Rules,”
Proc. ACM-SIGMOD Conf. Management of Data, pp. 13-24, June
1998.

[20] J.S. Park, M-S. Chen, and P.S. Yu, ”An Effective Hash Based
Algorithm for Mining Association Rules,” Proc. ACM-SIGMOD
Conf. Management of Data, pp. 229-248, May 1995.

[21] J. Pei and J. Han, ”Can We Push More Constraints into Frequent
Pattern Mining?” Proc. 2000 ACM Knowledge Discovery and Data
Mining Conf., 2000.

[22] Knowledge Discovery in Databases, G. Piatetsky-Shapiro and
W.J. Frawley, eds. MIT Press, 1991.

[23] S. Ramaswamy, S. Mahajan, and A. Silbershatz, ”On the Discovery
of Interesting Patterns in Association Rules,” Proc. Very Large
Databases Conf., pp. 368-379, Sept. 1998.

[24] G. Salton and M. McGill, Introduction to Modern Information
Retrieval. New York: McGraw Hill, 1983.

[25] A. Savasere, E. Omiecinski, and S. Navathe, ”An Efficient
Algorithm for Mining Association Rules,” Proc. Very Large
Databases Conf., pp. 432-444, Sept. 1995.

[26] A. Savasere, E. Omiecinski, and S. Navathe, ”Mining for Strong
Negative Associations in a Large Database of Customer Transac-
tions,” Proc. IEEE Data Eng. Conf., Feb. 1998.

[27] R. Srikant and R. Agrawal, ”Mining Generalized Association
Rules,” Proc. Very Large Databases Conf., pp. 407-419, Sept. 1995.

[28] M. Zaki, ”Generating Non-Redundant Association Rules,” Proc.
2000 ACM Knowledge Discovery and Data Mining Conf., pp. 34-43,
2000.

Edward R. Omiecinski received the PhD
degree from Northwestern University in 1984.
He is currently an associate professor at
Georgia Tech in the College of Computing. He
has published more than 50 papers in interna-
tional journals and conferences dealing with
database systems. His research has been
funded by the US National Science Foundation,
the Defense Advanced Research Projects
Agency (DARPA), and the National Library of

Medicine (NLM). His currently funded work deals with the discovery of
knowledge in cardiac imagebases which is a collaborative effort
between Georgia Tech and Emory University researchers. He is a
member of the ACM and IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

OMIECINSKI: ALTERNATIVE INTEREST MEASURES FOR MINING ASSOCIATIONS IN DATABASES 69


