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ABSTRACT 

Alternative Least-Squares Finite Element Models of Navier-Stokes Equations for  

Power-Law Fluids. (May 2009) 

Venkat Pradeep Vallala, B.E., Osmania University College of Engineering, Hyderabad 

Chair of Advisory Committee: Dr. J. N. Reddy 

 

The Navier-Stokes equations can be expressed in terms of the primary variables 

(e.g., velocities and pressure), secondary variables (velocity gradients, vorticity, stream 

function, stresses, etc.), or a combination of the two. The Least-Squares formulations of 

the original partial differential equations (PDE’s) in terms of primary variables require 

1C continuity of the finite element spaces across inter-element boundaries. This higher-

order continuity requirement for PDE’s in primary variables is a setback to Least-Squares 

formulation when compared to the weak form Galerkin formulation. To overcome this 

requirement, the PDE or PDE’s are first transformed into an equivalent lower order 

system by introducing additional independent variables, sometimes termed auxiliary 

variables, and then formulating the Least-Squares model based on the equivalent lower 

order system. These additional variables can be selected to represent physically 

meaningful variables, e.g., fluxes, stresses or rotations, and can be directly approximated 

in the model. Using these auxiliary variables, different alternative Least-Squares finite 

element models are developed and investigated. 

In this research, the vorticity and stress based alternative Least-Squares finite 

element formulations of Navier-Stokes equations are developed and are verified with the 
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benchmark problems. The Least-Squares formulations are developed for both the 

Newtonian and non-Newtonian fluids (based on the Power-Law model) and the effects of 

linearization before and after minimization are investigated using the benchmark 

problems. For the non-Newtonian fluids both the shear thinning and shear thickening 

fluids have been studied by varying the Power-Law index from 0.25 to 1.5. Also, the 

traditional weak form based penalty method is formulated for the non-Newtonian case 

and the results are compared with the Least-Squares formulation. 

The results matched with the benchmark problems for Newtonian and non-

Newtonian fluids, irrespective of the formulation. There was no effect of linerization in 

the case of Newtonian fluids. However for non-Newtonian fluids, there was some 

tangible effect of linearization on the accuracy of the solution. The effect was more 

pronounced for lower power-law indices compared to higher power-law indices. And 

there seemed to have some kind of locking that caused the matrices to be ill-conditioned 

especially for lower values of power-law indices. 
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CHAPTER I 

 

INTRODUCTION 

 

Background 

The Navier-Stokes equations are one of the most widely used equations in the 

area of computational fluid dynamics. Many methods have been proposed for the 

numerical solution of the Navier-Stokes equations governing flows of viscous 

incompressible fluids. In the past many researchers have used finite difference or finite 

volume techniques to study Navier-Stokes equations. However, during the last few 

decades researchers have started using the finite element method to study the Navier-

Stokes equations governing a variety of viscous incompressible fluids. The finite element 

method (FEM) has enjoyed a great success in solid mechanics and heat conduction 

applications but has not yet achieved the same level of success in computational fluid 

dynamics. However, the FEM can be used for a wide variety of problems that involve 

multiphysics and are complex in nature, such as non-Newtonian fluids and fluid-solid 

interaction problems. 

 Most of the finite element formulations are based on weighted-residual (integral) 

methods. Among these, the weak form Galerkin formulation is most commonly used.  

 

 
 
This thesis follows the style of Computer Methods in Applied Mechanics and 
Engineering. 
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Although the Least-Squares formulation can be considered as a special case of the  

weighted-residual method, it has its own standing as the true variational method as it 

involves the minimization of a functional, whereas the other weighted-residual methods 

may not have a corresponding functional whose first variation is equivalent to the 

governing equations. Variational methods (i.e., methods based on the existence of a 

functional whose extremum is equivalent to the governing equations) are considered to 

produce the ‘best’ approximation to the exact solution of the equations being modeled. 

Most solid mechanics problems allow the construction of a functional (based on energy 

considerations) whose extremum would provide the basis for the construction of 

associated finite element models. Unfortunately, such a functional based on the energy 

concept cannot be constructed for the Navier-Stokes equations. Consequently, most finite 

element models of the Navier-Stokes equations are based on the weak form Galerkin 

formulation. The only exception is that there exists few works that use the Least-Squares 

formulation to construct the finite element models.  

The Navier-Stokes equations can be expressed in terms of the primary variables 

(e.g., velocities and pressure), secondary variables (velocity gradients, vorticity, stream 

function, stresses, etc.), or a combination of the two. Consequently, a large number of 

finite element models, irrespective of the formulation, can be developed. The successful 

application of the finite element method to fluids requires a judicial choice of the method 

(i.e., weak form Galerkin, Least-Squares, etc.) and also the variables. The weak form 

Galerkin formulations of the Navier-Stokes equations in terms of the primitive variables 

(p,u,v) have several disadvantages. These are: 
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(i) the coefficient matrices are non-symmetric and ill-conditioned due to the absence of 

pressure variable in the continuity equation; 

(ii) the choice of approximation spaces must satisfy ‘in-sup’ or the Ladyzhenskaya-

Babuska-Brezzi (LBB) condition [1,2]. This precludes the use of compatible 

approximation spaces for velocity and pressure; 

(iii) for nonlinear equations, coefficient matrix is nonsymmetric and the computational 

cost is high; and 

(iv) the converged solution exhibits non-physical oscillations similar to those observed in 

finite difference schemes. 

Several methods of circumventing these problems have been reported in the 

literature ([3]-[7]). These methods are problem-dependent and require an arbitrary choice 

of parameters. The Least-Squares method gives a more general, flexible and robust 

formulation procedure than the weak form Galerkin-based methods. The first known 

mathematical analysis of Least-Squares finite element formulations can be traced back to 

the work of Bramble and Schatz [8] and Bramble and Nitsche [9]. Bramble and Schatz 

[8] analyzed Least-Squares models for the original elliptic boundary value problems, 

where the Least-Squares functional were defined in terms of the 2L norm. This implies a 

minimum of 1C continuity of the finite element spaces across inter-element boundaries. 

As a result, Least-Squares formulations lost appeal and failed to gain popularity due to 

the higher order continuity requirements when compared to the weak form Galerkin 

formulation. To overcome this requirement, the partial differential equations (PDE or 

PDE’s) are first transformed into an equivalent lower order system by introducing 
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additional independent variables, sometimes termed auxiliary variables, and then 

formulating the Least-Squares model based on the equivalent lower order system. These 

additional variables imply an increase in cost, but they can be selected to represent 

physically meaningful variables, e.g., fluxes, stresses or rotations, and can be directly 

approximated in the model. This approach is believed to be first explored by Jesperson 

[10] and is the preferred approach in modern implementations of Least-Squares finite 

element models. For second-order PDE’s, if an equivalent first order system is 

introduced, and the Least-Squares functional is defined in terms of the 2L norms only 

(which in turn is defined in terms of the first-order PDE’s only), the finite element model 

allows the use of  approximation spaces with merely 0C continuity. In this formulation the 

required boundary conditions can be imposed either strongly or, alternatively, in a weak 

sense through the Least-Squares functional.  

The Least-Squares method satisfies the criteria desirable in the variational 

method. This has drawn considerable attention to the solution of the Stokes and Navier-

Stokes equations ([11]-[17]). The Least-Squares formulation has several theoretical and 

computational advantages. Notably, it circumvents the ‘in-sup’ condition of LBB. As a 

result equal order interpolation can be used for all the variables. It also results in 

symmetric, positive-definite coefficient matrix; hence robust iterative solvers can be 

employed to solve the system of algebraic equations. Now it has been applied to elliptic 

[18], hyperbolic [19], and mixed [20] partial differential equations. Practical applications 

include boundary layer flow [21], gas dynamics [22], Stokes flow [23], inviscid 

compressible flow [24], convection-diffusion [25], and phase change problems [26]. 
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Present Status 

The vorticity based first-order system is the most popular and widely accepted 

first-order system for the incompressible Navier–Stokes equations. This type of 

transformation is used by Jiang ([27]-[28]) and Jiang et al. ([29]-[30]). In two dimensions 

the total number of variables is only increased by one but vorticity, which is of physical 

significance, can be known directly from the program. Jiang and Sonnad [31] 

implemented a p-version Least-Squares formulation for the numerical solution of the 

stationary incompressible Navier–Stokes equations based on the velocity–pressure–

vorticity first-order system. However, no detail numerical results were reported. Yet 

another approach is to introduce the stresses as independent variables. This leads to a 

stress based first-order system. In two dimensions the total number of variables is 

increased by three; Surana and co-workers ([32]-[33]), presented numerical results for the 

stationary incompressible Navier–Stokes system using a p-version Least-Squares 

formulation. They used Newton’s method with Line-Search in their iterative process. A 

third option is to introduce all components of the gradient of the velocity vector field as 

independent variables. This is generally referred to as the velocity gradient based first-

order system. Such an approach was first suggested and studied by Cai  et al. [34] and 

Bochev et al. ([35]-[36]). In two dimensions the total number of variables is increased by 

four and this formulation has the added benefit to easily compute (in the post processing 

stage) physical quantities of interest that are linear combinations of the partial derivatives 

of the velocity vector field, e.g., vorticity and stresses. Each of the three formulations has 

practical and mathematical advantages and disadvantages. In general the vorticity based 
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formulation achieves the same order of accuracy at a lower degree-of-freedom count, and 

is thus the preferred formulation in this work. 

In previous works, Jiang and et al [28], concerning the Least-Squares finite 

element formulations for the Navier–Stokes equations, predominantly low-order nodal 

expansions have been used to develop the discrete finite element model. The low-order 

nodal expansions tend to lock and reduced integration techniques must be used to obtain 

acceptable numerical results. Even with reduced integration techniques the quality of 

solution is not always guaranteed. When enough redundant degrees of freedom are 

constrained the Least-Squares finite element solution using reduced integration may yield 

Least-Squares collocation finite element solution. Thus these are not bona-fide Least-

Squares based models, but rather collocation Least-Squares based models. The related 

work on this is done by Pontaza and Reddy [28] on Least-Squares finite element 

formulations for viscous incompressible and compressible fluid flows. In such a 

formulation, the Least-Squares functional are defined as the sum of the weighted Squares 

of the equations residuals evaluated at a finite number of (collocation) points. The 

concept of the effectivity (or reliability) index was introduced as a guideline to determine 

a priori whether or not a collocation Least-Squares solution is reliable. It is important to 

note that reduced integration techniques will only result in a collocation solution if a strict 

balance between the number of collocation points and total number of degrees of freedom 

is satisfied.  

In [37], the equivalent first-order systems for the incompressible and 

compressible Navier–Stokes equations obtained by introducing vorticity, stresses, or 
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velocity gradients as additional independent variables, with focus on the incompressible 

Navier–Stokes vorticity based first-order system and present a 2L Least-Squares 

formulation. The norm-equivalence is explained and how high p-levels can offset the ills 

of non-equivalence is discussed through a numerical example. The effectivity index 

notion is presented and its role in obtaining reliable Least-Squares collocation solutions at 

low p-levels is explained. Numerical results are verified for flow over a backward-facing 

step, steady flow past a circular cylinder, three-dimensional lid-driven cavity flow, and 

low-speed compressible buoyant flow inside a square enclosure with corresponding 

benchmark solutions. The effects of h-refinement, p-refinement and distorted meshes 

were studied using Kovasznay flow [38]. A discontinuous Least-Squares formulation 

where the finite element spaces are allowed to retain higher regularity across inter-

element boundaries is also presented. The first example of a discontinuous Least-Squares 

formulation is due to Aziz et al. [39] for a two-domain transmission problem, for which 

mathematical analysis and numerical results were given by Cao and Gunzburger [40]. 

Application of the discontinuous Least-Squares finite element formulation has been also 

demonstrated by Gerritsma and Proot [41] in the context of a first-order one-dimensional 

model problem, and by Heinrichs [42] in the context of a one-dimensional singular 

perturbation model problem. Such formulations do not require that auxiliary variables be 

introduced and may result in better Least-Squares finite element formulations, in the 

sense that a better compromise between optimality and practicality may be achieved. But 

this requires the use of higher conditioning number than the corresponding first-order 

forms.  
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Recently, interest has shifted towards high-order accurate numerical solutions of 

the Navier–Stokes equations and its here that spectral/hp finite element formulations have 

proven to be more efficient [15]. Encouraged by the success of spectral/hp methods in 

computational fluid dynamics, Pontaza and Reddy [15], combined these ideas with Least-

Squares variational principles, which offer many theoretical and computational 

advantages in the implementation of the corresponding finite element model that are not 

present in the weak form Galerkin finite element model. The Navier–Stokes equations are 

expressed as an equivalent set of first-order equations by introducing vorticity or velocity 

gradients as additional independent variables and the Least-Squares method is used to 

develop the finite element model. Outflow boundary conditions were imposed in a weak 

sense through the Least-Squares functional. High-order element expansions were used to 

construct the discrete model and linearized by Newton’s method, resulting in a linear 

system of equations with a symmetric positive definite coefficient matrix that is solved in 

a fully coupled manner by a preconditioned conjugate gradient method. Spectral 

convergence of the 2L Least-Squares functional and 2L error norms is verified using 

smooth solutions to the two-dimensional stationary Poisson and incompressible Navier–

Stokes equations. Numerical results for incompressible flow over a backward-facing step, 

steady flow past a circular cylinder, three-dimensional lid-driven cavity flow, and low-

speed compressible buoyant flow inside a square enclosure were presented and found to 

be in excellent agreement with benchmark solutions. Low-order nodal expansions were 

used to verify the locking phenomenon in Navier–Stokes equations by Least-Squares 

finite element formulations. Low-order nodal expansions have been found to lock for 
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non-equivalent formulations and reduced integration was needed to yield acceptable 

numerical results. With the reduced integration, it is found that the resulting assembled 

matrix is nearly singular. Furthermore, the numerical solution may not be smooth at the 

nodes and post-processing is needed to recover nodal values from the reduced integration 

points. The vorticity based first-order systems were found to give equally accurate results 

when compared to the velocity gradient based first-order systems, at significantly lower 

CPU solve times due to having introduced fewer additional degrees of freedom. Hence it 

can be conclude that, for the incompressible and low-speed compressible Navier–Stokes 

equations, the vorticity based formulations are the most efficient. Pontaza and Reddy 

have extended the formulation to the non-stationary Navier–Stokes equations [43] and 

viscous compressible flows for subsonic/transonic flow conditions. 

When the standard weak form Galerkin method is for velocity–pressure finite 

element formulation, the biggest problem faced is that of ‘in-sup’ (or LBB) condition 

([1]-[2]). The penalty finite element formulation [44] circumvents this problem. It also 

reduces one independent variable (pressure). However, in the penalty formulation a very 

high penalty parameter of ( 8 1210 10− ) is required to obtain accurate solutions. For high 

penalty parameters, the contribution from the viscous terms would be negligibly small 

compared to the penalty terms in the computer, and a trivial solution is obtained. This is 

termed as ‘locking’. To circumvent locking and to obtain acceptable solution, under 

integration (reduced integration) of penalty terms has been proposed [45]. The other 

problem with this formulation is inaccurate prediction of the pressure from the penalty 

equation. 
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When 0C -continuous shape functions are used to interpolate velocities, pressure 

is discontinuous along element boundaries, and an averaging is needed to obtain 

acceptable pressure field [3]. However, pressure field computed in this manner is not 

very accurate; a very high penalty parameter is needed to obtain accurate pressure. For 

large values of penalty parameters, the condition number of the finite element coefficient 

matrix is very high and hence the convergence of iterative solvers is very poor. Due to ill-

conditioning of coefficient matrix penalty based weak form Galerkin finite element 

formulation did not gain much popularity.  

Bochov and Gunzburger [46] proposed Least-Squares based penalty formulation 

for Stokes equations but their study was mathematical and no numerical results were 

reported. Hasthaven and co-workers ([47]-[48]) have proposed spectral/hp penalty 

methods where they implemented boundary conditions using this approach. Prabhakar 

and Reddy [16] studied Spectral/hp penalty Least-Squares finite element formulation for 

the steady incompressible Navier–Stokes equations. The continuity equation is treated as 

a constraint on velocity field and the constraint is enforced using the penalty method. 

Instead of traditional penalty method, iterative penalty method proposed by Gunzberger 

[49] is used. The modified Navier–Stokes equations are expressed as an equivalent set of 

first-order equations by introducing vorticity–dilatation or stresses as additional 

independent variables and the Least-Squares method is used to develop the finite element 

model. High-order basis functions are used to construct the discrete model. Unlike other 

penalty finite element formulations, equal order integration is used for all terms of the 

coefficient matrix. The best feature of this formulation is that it requires very small 
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penalty parameter, 10–40 to yield very accurate solution. For such small penalty 

parameters, the coefficient matrix is better conditioned and convergence is not slow as in 

the traditional penalty finite element model. Due to the use of high-order expansions, a 

very accurate velocity as well as pressure fields is obtained. Thus, the disadvantages of 

the weak form penalty finite element model are overcome by the penalty Least-Squares 

finite element model. 

The formulation is an alternative to the spectral/hp Least-Squares finite element 

formulation presented by Pontaza and Reddy ([15], [43]) for steady and unsteady 

problems. In their formulation the divergence-free constraint on the velocity field is 

enforced directly through the Least-Squares functional, and pressure is retained as an 

independent variable. For unsteady problems, this approach seems to have disadvantages 

as the time-evolution of the pressure field is not well-behaved. It is believed that it lacks a 

strong pressure–velocity coupling. The present formulation avoids this problem 

altogether by eliminating pressure via iterative penalty method proposed by Gunzberger 

[49]. First, the spectral convergence is verified using the exact solution of the Kovasznay 

flow problem. Then, the results for 2D lid-driven cavity problem are compared with Jiang 

et al.[50]. Next, the 2D flow over a backward-facing step is compared with the 

benchmark solutions of Gartling [51] and Pontaza and Reddy [15] and flow past a 

circular cylinder at low Reynolds number is compared with experimental measurements 

of Grove et al. [52]. The mass conservation is tested by solving 2D flow past a large 

circular cylinder in a channel. Lastly, this formulation is developed for velocity–
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temperature coupled problems and results for buoyant flow inside a square enclosure are 

compared with the benchmark solution of Davis et al. [53]. 

In case of non-Newtonian fluids the viscosity in not constant. For Power-Law 

fluids the viscosity varies with the second invariant of the strain rate tensor and 

introduces further nonlinearity in case of Navier-Stokes equations. Fluids for which, the 

viscosity decreases with increase in shear rate, are called shear-thinning fluids and they 

have Power-Law index lees than unity. Fluids with Power-Law index greater than unity 

are called shear-thickening. Padhye and Reddy [54] worked on penalty finite element 

model for axisymmetric flows of non-Newtonian fluids. Padhye and Reddy also solved 

unsteady, plane and axisymmetric flows of Power-Law and viscoelastic fluids using 

penalty finite element models. For Power-Law fluids they used both velocity formulation 

and mixed formulation. Iga and Reddy [55] applied it to the free surface flows of Power-

Law fluids. Finite element models based on the velocity-pressure (and stress) formulation 

for flows of incompressible, viscous, Power-Law fluids in axisymmetric or plane flows 

were developed by many authors ([56]-[65]). But most of them evaluated the viscosity 

based on latest know values of the velocities (lagging velocities). This is generally called 

linearization before minimization of Least-square functional. Even though this gave 

correct numerical results, it is not in accordance with the principles of mathematics.  

For Least-Squares especially, the velocity-stress formulation is very attractive for 

the use in conjunction with Non-Newtonian fluids because the stresses are available as 

unknowns. Publications from Bell and Surana [66], Edgar and Surana [67], Surana and 

others ([68]-[71]), analyze this application of the Least-Squares formulation. They do not 
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use any linearization techniques before minimization of the Least-square functional. 

However the second variation terms of the viscosity are dropped after minimization. This 

makes the coefficient matrix symmetric and hence robust iterative solvers can be 

employed to solve the algebraic equations. Newton’s Method with Line-Search is 

employed to improve the convergence rate. Dropping the second variation of the viscous 

terms, reduces the complexity of the problem and is believed drastically improve the rate 

of convergence. Some say it only alters the direction of search, but no mathematical 

reasoning given in any of the papers. Others consider it more or less a heuristic approach, 

which seems to work through the general robustness of the LSFEM. From the 

mathematical point of view it is not clear, if that approach works or converges under all 

circumstances. 

In [67] the equations of the axisymmetric case are examined, while [66] uses the 

two-dimensional form in Cartesian coordinates. The constitutive equation for the fluid is 

a Power-Law that leads to a nonlinear variation of governing equations. In [66] this 

model is enriched by the energy equation, which models the heat transfer inside the fluid. 

Two interdependencies between the fluid and the temperature field are modeled. The 

viscosity depends on the temperature and the heat is generated by viscous dissipation. 

Both papers present a shear flow, a driven cavity and a sudden expansion as numerical 

examples for the non-Newtonian fluid. A driven cavity flow is used as the test case for 

isothermal case. A shear flow and a sudden contraction are the test cases for the non-

isothermal coupled model. For higher polynomial degrees the results are in good 

agreement with analytical solutions or benchmark problems. The results are only 
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compared with the bench mark solutions for Newtonian cases as they are the only ones 

available in literature. For non-Newtonian case there are no available results for the 

bench mark problems. 

 

Research Objectives 

For Newtonian fluids the viscosity is constant and generally the convective terms 

are linearized by lagging velocities (u, v). This method is called linearization before 

minimization. Though this method gave good results in many (Least-square) cases, this is 

not in accordance with the principles of mathematics. In Least-Squares formulation, there 

are no studies on the effects of linearization (before and after minimization) on the 

convergence of Newtonian fluids. For Newtonian fluids, as only convective terms are 

nonlinear, it is quite simple to linearize them, but it is not easy and some times not 

possible to linearize (without dropping some terms) for Power-Law fluids due to the non 

linearity of the viscous terms. One simple way is to linearize both convective and viscous 

terms before minimization (which is not mathematically correct). The other way is to 

linearize after minimization of the Least-square functional. For non-Newtonian fluids, 

too, there are no studies on the effects of linearizations (before and after minimization) on 

the accuracy and convergence of the solution. Most work on Power-Law fluids is done on 

the stress based Navier-Stokes equations; Least-Squares formulation for vorticity based 

Power-Law fluids has not been explored yet. Also there has been no work on the weak 

form Galerkin formulation using the Reduced Integration Penalty method (RIP) for 

Power-Law fluids. The objectives can be summarized as below: 
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(i) To study the effects of linearization before and after minimization for Newtonian 

fluids. 

(ii) To formulate the Least-Squares finite element model for Power-Law fluids and study 

the effects of linearization before and after minimization. 

(iii) To formulate the weak form Galerkin formulation using Reduced Integration 

Penalty  

method (RIP) for Power-Law fluids and compare it with Least-Squares formulations. 

 

Procedure 

Newtonian Fluids 

(i) Formulate Least-Squares finite element model (LSFEM) for Poisson’s equation and 

verify the LSFEM procedure using a manufactured flow problem. Study the effects of p-

refinement on the accuracy and convergence of solution. 

(ii) Formulate the vorticity based LSFEM for steady state, incompressible, Navier-

Stokes equations in two-dimensions. Study the effects of linearization before and after 

minimization on the accuracy and convergence by using the Kovasznay flow. Also 

perform a p-refinement study on the same. 

(iii) Formulate the stress based LSFEM for steady state, incompressible, Navier-Stokes 

equations in two-dimensions. Study the effects of linearization before and after 

minimization on the accuracy and convergence of solution. Also perform a p-refinement 

study on the same.  
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Non-Newtonian Fluids (Power-Law) 

(iv) Formulate the stress based LSFEM for steady state, incompressible, Navier-Stokes 

equations in two-dimensions with variable viscosity as per Power-Law model. Study the 

effects of linearization before and after minimization on the accuracy and convergence 

by using 2D lid-driven cavity flow. Also study any possible occurrences of ‘locking’ 

phenomenon. 

(v) Formulate the vorticity based LSFEM for steady state, incompressible, Navier-

Stokes equations in two-dimensions with variable viscosity as per Power-Law model. 

Study the effects of linearization before and after minimization on the accuracy and 

convergence by using 2D lid-driven cavity flow. Also study any possible occurrences of 

‘locking’ phenomenon. 

(vi)Formulate the weak form Galerkin finite element model using Reduced Integration 

Penalty (RIP) method for steady state, incompressible, Navier-Stokes equations in two-

dimensions with variable viscosity as per Power-Law model using 2D lid-driven cavity 

flow. Also study any possible occurrences of ‘locking’ phenomenon. 
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CHAPTER II 

 

LEAST-SQUARES FORMULATION FOR POISSON’S EQUATION 

 

Introduction 

In this chapter the Poisson’s equation is considered to explain the Least-Squares 

finite element method (LSFEM), the iterative solving procedures, and applications to 

numerical problems. The Poisson equation can be written as: 

2 fφ−∇ = in Ω,                                                  (2.1)                           

sφ φ=  on φΓ ,                                                     (2.2)                            

s
nn qφ

∧

∇ =i  on qΓ                                                (2.3)                           

where qφΓ = Γ ∪ Γ  and qφφ = Γ ∩ Γ , f is the source term, n
∧

is the outward unit normal 

on the boundary of Ω, sφ  is the prescribed value of φ  on the boundary φΓ , and s
nq  is the 

prescribed normal flux on the boundary qΓ . 

The Least-Squares variational principle could be directly applied to the above 

equation, but this requires continuous higher order differentiable spaces and hence the 

LSFEM does not provide any computational advantage over traditional weak form 

Galerkin method. To fully harness the power of LSFEM, the above equations are cast in 

first-order equivalent system as below: 

V f−∇ =i in Ω,                                                 (2.4)                             
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0Vφ∇ − = in Ω,                                                (2.5)                           

sφ φ=  on φΓ ,                                                    (2.6)                            

s
nn qφ

∧

∇ =i  on qΓ                                                (2.7)                           

 

Least-Squares Formulation 

The Least-Squares functional associated with the above set over a typical 

element eΩ is: 

( ) ( )2 21( , , )
2 e

I V f V f V dφ φ
Ω

⎡ ⎤= −∇ − + ∇ − Ω⎣ ⎦∫ i                           (2.8) 

and the necessary condition for the minimum of I is: 

( )( ) ( ) ( )( , , ) 0
e

I V f V f V V V dδ φ δ φ δφ δ
Ω

= −∇ − −∇ + ∇ − ∇ − Ω =⎡ ⎤⎣ ⎦∫ i i i        (2.9) 

The variational problem associated with the above functional is obtained from the 

minimization condition 0Iδ = . It can be stated as: find ( , )Vφ  in a suitable vector space 

for all ( , )Vδφ δ in the same vector space such that the following equation holds: 

( ) ( )( ) ( ), , , ,B V V l Vφ δφ δ δφ δ=                      (2.10)                            

where ( ) ( )( ) ( )( ) ( ) ( ), , ,
e

B V V V V V V dφ δφ δ δ φ δφ δ
Ω

= −∇ −∇ + ∇ − ∇ − Ω⎡ ⎤⎣ ⎦∫ i i i  is the 

bilinear form and ( ) ( )( ),
e

l V f V dδφ δ δ
Ω

= −∇ Ω⎡ ⎤⎣ ⎦∫ i  is the linear form. The first variation 

in two-dimensions can be expressed as: 
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( , , ) 0
e

u v u vI V f f u u v v d
x y x y x x y y

δ δ φ δφ φ δφδ φ δ δ
Ω

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞= − − − − − + − − + − − Ω=⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
∫    (2.11) 

where ( , )u v are the horizontal and vertical components of V. 

Collecting the similar variational terms and applying the fundamental lemma of calculus 

of variation the above is equivalent to the following integral statements: 

0
e

u v d
x x y y
φ δφ φ δφ

Ω

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞− + − Ω =⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
∫            (2.12)                     

              ( ) 0
e

u v uf u u d
x y x x

δ φ δ
Ω

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− − − − + − − Ω =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
∫      (2.13)                    

                ( ) 0
e

u v vf v v d
x y y y

δ φ δ
Ω

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− − − − + − − Ω =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

∫     (2.14)                     

This can be expressed as bilinear and linear forms as: 

                            ( ) ( )( ) ( ), , , , , , ,B u v u v l u vφ δφ δ δ δφ δ δ=                  (2.15)                           

 

Finite Element Model 

Assuming the approximations of , ,u vφ as: 

   
1

( ) ( )
n

j
j

jφ φ
=

Ω = Ψ Ω∑ ,
1

( ) ( )
n

j
j

u u j
=

Ω = Ψ Ω∑ , 
1

( ) ( )
n

j
j

v v j
=

Ω = Ψ Ω∑        (2.16) 

and substituting in the above integral statements, we obtain the finite element model: 

111 12 13

21 22 23 2

31 32 33 3

{ }[ ] [ ] [ ] { }
[ ] [ ] [ ] { } { }
[ ] [ ] [ ] { } { }

fK K K
K K K u f
K K K v f

φ ⎧ ⎫⎡ ⎤ ⎧ ⎫
⎪ ⎪⎢ ⎥ ⎪ ⎪ =⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭⎣ ⎦ ⎩ ⎭

                (2.17)                             
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In addition, if the V∇× is used as a constraint (to insure the coersivity of the Least-

Squares functional) the above integral statements are modified as: 

                   0
e

u v d
x x y y
φ δφ φ δφ

Ω

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞− + − Ω =⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
∫           (2.18)                     

( ) 0
e

u v u u u vf u u d
x y x x y y x

δ φ δδ
Ω

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− − − − + − − + − Ω =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
∫       (2.19) 

( ) 0
e

u v v v u vf v v d
x y y y x y x

δ φ δδ
Ω

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞− − − − + − − + − Ω =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∫        (2.20) 

Then the coefficients [ ]Kαβ can be evaluated and finite element model can be obtained. 

The above can be represented as { } { } { }e e e eK =u u f⎡ ⎤⎣ ⎦ . It is to be noted that the 

coefficient matrix eK⎡ ⎤⎣ ⎦ in this case is not a function of nodal values, however in other 

cases it can depend on the unknown nodal primary variables. The present problem is 

called a linear problem and in cases when coefficient matrix eK⎡ ⎤⎣ ⎦  depends on unknown 

nodal primary variables, it is called a nonlinear problem. In this chapter, the iterative 

procedure for a general nonlinear case is explained and the same can be used for a linear 

case too. After assembling the above elemental equations the assembled system of 

equations are obtained. It can be represented as: 

{ }( ) { } { }K U U = F⎡ ⎤⎣ ⎦                                        (2.21)                             

where [ ]K and { }F denote the global coefficient matrix and the right-hand side vector 

respectively. The above algebraic equations can be solved by applying the boundary 

conditions using iterative procedures explained below. 
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Numerical Procedures 

The numerical procedures used to solve the nonlinear algebraic equations are 

iterative in nature. In this we begin by assuming that the solution { }( 1)U r− at the 

( 1)str − iteration is known, and we wish to seek the solution { }( )U r at the thr iteration. 

At the beginning of the iteration, i.e. when 1r = , the solution { }(0)U is assumed or 

“guessed” consistent to the problem data. Using the solution { }( 1)U r− the coefficient 

matrix { }( )( 1)K U r−⎡ ⎤
⎣ ⎦

is computed. Since [ ]K is evaluated using the estimated 

vector{ }U , in general { }( ) { } { }( 1)K U U Fr−⎡ ⎤ ≠
⎣ ⎦

. Hence we are left with a residual: 

{ } { }( ) { } { }( 1)K U U FrR −⎡ ⎤= −
⎣ ⎦

                        (2.22)                            

The objective of the iterative process is to reduce a very small value, negligible value. 

This can be done by calculating the Euclidean norm between the solutions of two 

consecutive iterations. There are two popular iterative techniques one is direct-iteration, 

also known as Picard iteration method and other known as Newton-Raphson or Tangent 

Matrix method. 

The direct iteration method is the simpler of the two methods. In this the solution 

at thr iteration is determined from the equation: 

{ }( ) { } { }( 1)K U U Fr−⎡ ⎤ =
⎣ ⎦

                                 (2.23)                             
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where the coefficient matrix [ ]K is evaluated using the know solution from the 

( 1)str − iteration. It is assumed that the coefficient matrix [ ]K is invertible after the 

imposition of the boundary conditions. Thus the initial guess vector { }(0)U should be 

such that it satisfies the specified essential boundary conditions and [ ]K is invertible. 

The direct iteration converges if the nonlinearity is mild and it diverges if the 

nonlinearity is severe. Divergence is more likely for hardening type nonlinearity. 

Acceleration of the convergence may be achieved by using the weighted-average of 

solutions from last two iterations.  

In Newton-Raphson method the residual vector { } [ ]{ } { }R K U F 0= − =  is 

expanded in Taylor’s series and the terms of order 2 and higher are omitted to obtain: 

{ }
{ } { } { }( ){ }

( 1)
( 1)

r
rR

U R U
U

δ
−

−⎛ ⎞∂
= −⎜ ⎟⎜ ⎟∂⎝ ⎠

i               (2.24)                             

{ }( ) { } { }( ){ }( 1) ( 1)T r rU U R Uδ− −⎡ ⎤ = −
⎣ ⎦

i             (2.25)                            

where [ ]T is the tangent matrix given by: 

{ }( ) { }
{ }

( 1)
( 1)T

r
r R

U
U

−
− ⎛ ⎞∂⎡ ⎤ ≡ ⎜ ⎟⎜ ⎟⎣ ⎦ ∂⎝ ⎠

                           (2.26)                             

The component definition of the tangent matrix at the element level is: 

1

e en
e e ei im

ij m ije e
mi i

R KT u K
u u=

∂ ∂
≡ = +

∂ ∂∑                            (2.27)                             

and the residual vector after the ( 1)str − iteration is given by: 
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{ }( ){ } { } { }( ) { }( 1) ( 1) ( 1)R U F K U Ur r r− − −⎡ ⎤− = −
⎣ ⎦

            (2.28)                             

The finite element model for an element can be represented as: 

111 12 13

21 22 23 2

31 32 33 3

{ }[ ] [ ] [ ] { }
[ ] [ ] [ ] { } { }
[ ] [ ] [ ] { } { }

RT T T
T T T u R
T T T v R

φ ⎧ ⎫⎡ ⎤ Δ⎧ ⎫
⎪ ⎪⎢ ⎥ ⎪ ⎪Δ =⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥ Δ⎩ ⎭⎣ ⎦ ⎩ ⎭

                      (2.29)                            

The solution at the thr iteration is then given by: 

{ } { } { }( ) ( 1)U U Ur r δ−= +                                   (2.30)                            

The Newton-Raphson method converges for hardening as well as softening type 

nonlinearities. For hardening type the convergence may be accelerated by using the 

weighted-averages of the solutions of last two iterations. More details about these two 

methods can be found in the book on nonlinear finite element analysis by Dr. Reddy 

[72]. In this chapter direct iteration method is used to solve the Poisson’s equation. And 

since it is a linear problem the coefficient matrix [ ]K is independent of the solution of 

( 1)str − iteration. Hence the direct iteration procedure converges in first iteration itself. 

Also both the coefficient matrices for direct iteration and for Newton-Raphson method 

will be one and the same. The Newton-Raphson method is used in the coming chapters 

on non-Newtonian fluid flows. 

 

Numerical Example 

To verify the LSFEM formulation, a manufactured solution [15] of the Poisson 

equation in (2.1) is considered: 
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7( , ) (7 )cos , 1 , 1x y x x y x yφ π= + − < < +                     (2.31)                             

over a square domain of as shown in Figure 1. Substitution of the above equation into 

original Poisson equation (2.1) yields: 

2 2 5 2 7( , ) (7 42 )cosf x y x x x yφ π π π= −∇ = − +                     (2.32) 

We also have  

6 7( , ) 7(1 )cos , ( , ) (7 )sinu x y x y v x y x x y
x y
φ φπ π π∂ ∂

≡ = + ≡ = − +
∂ ∂

     (2.33) 

Thus, the following boundary conditions can be imposed on the square domain: 

( 1, ) 14cos , ( , 1) 0, (1, ) 8cosu y y v x y yπ φ π− = ± = =               (2.34)                           

 
 
 
 

 

 

 

 

 

 

 

Figure 1.A uniform mesh of four elements on which the poisson problem is defined 
 
 
 

The above problem is solved by direct-iteration method with order of 

polynomials ranging from P=2 to P=7. The coefficient matrix is evaluated using a 

Γa 

Γb 

Γc 

Γd 

x 
0 1 -1 

y 
1 

-1 

0 
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Gaussian quadrature of (P+1) in both the co-ordinate directions. The Reynolds number 

Re is fixed as 1000 for all the cases. Convergence is declared when the Euclidean norm 

is less than 310− , which typically took 5-7 iterations.  

 

Results 

For P=2, the program did not give correct results when compared to the exact 

solution. For P=3, the results were better compared to the previous case. For P=5, the 

results matched the exact solution for all the variables. And, for P=7, there was hardly 

any improvement in the solution compared to the previous case. The accuracy of the 

solution can be noted from the figures. Figure 2 and Figure 3 show the velocity vector 

profile and velocity contour profile over the domain for polynomial order of P=5.  
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Figure 2.Velocity vector profile for polynomial order of P=5 
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Figure 3.Velocity contour plot for polynomial order of P=5 
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Figure 4.Comparison of primary variableφ for P=3 and 5 with analytical solution at Y=-
1.0 
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Figure 5.Comparison of primary variable u  for P=3 and 5 with analytical solution at 
Y=-1.0 

 
 
 
Figure 4 and Figure 5 show the comparison of primary variablesφ and u for P=3 and 

P=5 with analytical solution at Y=-1.0. Figure 6 shows the comparison of primary 

variable v  for P=3 and P=5 with analytical solution at Y=-0.8.  
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Figure 6.Comparison of primary variable v  for P=3 and 5 with analytical solution at Y=-
0.8 

 
 
 

Conclusions 

From the above results we can conclude that as the order of polynomial 

approximation functions is increased, the numerical solution becomes more and more 

close to the exact solution. As the dimension of the approximation spaces (i.e. P is varied 

from 2 to 7) is increased in the finite element method, it gets more and closer to the 

dimension of the solution space to the exact differential equation, hence the solution 

becomes accurate.  
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CHAPTER III 

 

LEAST-SQUARES FORMULATION OF VORTICITY BASED FIRST-ORDER 

SYSTEM FOR NEWTONIAN FLUIDS 

 

Introduction 

As seen in the previous chapter the Least-Squares method has the property of 

minimizing the residuals in the differential equations. For the Stokes and Navier-Stokes 

equations, which have no underlying minimum principles, the Least-Squares method 

provides a variational framework. The main ideas of the Least-Squares method are 

described using the steady Stokes flow problem, which can be represented in vector 

form as: 

0V∇ =i in Ω,                                                     (3.1) 

( ) ( ) 0
TV V p fμ ρ⎡ ⎤− ∇ ∇ + ∇ +∇ =⎣ ⎦i  in Ω,                            (3.2) 

  sV V=  on VΓ ,                                                 (3.3) 

ˆ sn fσ =i  on fΓ                                                 (3.4) 

where V fΓ = Γ ∪Γ and  V fφ = Γ ∩Γ ,  f is the force term ,  n̂  is the outward unit normal 

on the boundary of Ω,   μ is the viscosity of the fluid,  

( ) ( ) ( )I 2 Tp V Vσ μ ⎡ ⎤= − − ∇ + ∇⎣ ⎦ , sV  is the prescribed value of  velocity on the 

boundary , and   is the prescribed value of tractions on the boundary fΓ . Now choosing 
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the approximation functions for ( , )p V as, 

1

( , ) ( , )
n

j
j

p x y p j x y
=

= Ψ∑ ,
1

( , ) ( , )
n

j
j

V x y V j x y
=

= Ψ∑ , 

 and substituting in the governing equations results in residuals: 

1R V= ∇i                                              (3.5) 

                           ( ) ( )2 0
TR V V p fμ ρ⎡ ⎤= − ∇ ∇ + ∇ +∇ −⎣ ⎦i                                    (3.6) 

The Least-Squares functional associated with the above set over a typical element eΩ is: 

                ( ) ( ) ( )2 2
1 2

1,
2 e

I p V R R d
Ω

⎡ ⎤= + Ω⎣ ⎦∫                           (3.7) 

The variational problem associated with the above functional is obtained from 

the minimization condition 0Iδ = . It can be stated as: find ( , )p V  in a suitable vector 

space for all ( , )p Vδ δ in the same vector space such that the following equation holds: 

                     ( ) ( )( ) ( ), , , ,B p V p V l p Vδ δ δ δ=                                     (3.8)                            

where ( , )B i i is a bilinear form [i.e., an expression that is linear in ( , )p V  as well 

as ( , )p Vδ δ ] and ( )l i  is a linear form [in ( , )p Vδ δ ], defined by: 

( ) ( )( ) ( ) ( )( ), , ,
e

TB p V p V V V pδ δ μ
Ω

⎡ ⎤= − ∇ ∇ + ∇ +∇⎣ ⎦∫ i i                                                                                  

                                ( ) ( )( ) ( )( )
e

TV V p d V V dμ δ δ δ δ
Ω

⎡ ⎤− ∇ ∇ + ∇ +∇ Ω+ ∇ ∇ Ω⎣ ⎦ ∫i i i       (3.9) 

                                ( ) ( ) ( ){ }0,
e

Tl p V f V V p dδ ρ μ δ δ δ
Ω

⎡ ⎤= − ∇ ∇ + ∇ +∇ Ω⎣ ⎦∫ i i          (3.10) 
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This variational problem has some mathematical and computational advantages. 

For example, the coefficient matrix obtained from the above is symmetric and positive 

definite. But since, the variational problem is based on the original differential equation 

rather than on the weak form, it involves same order derivatives as that appearing in the 

differential equation. And also the variational form does not include the natural 

boundary terms; hence the approximation functions selected must be such that both the 

natural and essential boundary conditions can be imposed. This requires use of at Least 

1C -continuous functions for the velocity field. This higher order differentiability 

requirement is a practical disadvantage. To avoid the use of 1C -continuous functions the 

differential equations are cast into equivalent first-order equations. The most common 

transformation to equivalent first-order system is to introduce the vorticity vector. The 

total number of variables is increased by one, but there is a benefit of directly solving the 

vorticity. Yet another approach is to introduce stresses as independent variables. In this 

case the total number of variables is increased by three. The third approach is to 

introduce all the partial derivatives of the velocities as independent variables. In two-

dimensions the total number of variables is increased by four. But one can easily post-

compute any physical quantity from these. 

 

The Vorticity Based First-Order System 

In this chapter the vorticity based first-order equations are presented. To write the 

second-order equations the vorticity vector Vω = ∇× is introduced. By making use of 

the vector identity ( )2V V V∇×∇× = −∇ +∇ ∇i and the incompressibility 
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condition 0V∇ =i , the original equations can be cast as following equivalent first-order 

equations: 

0V∇ =i in Ω,                                                (3.11)                            

                        ( ) [ ]0 0V V p fρ μ ω ρ∇ +∇ + ∇× =i  in Ω,                    (3.12) 

               0Vω −∇× =  in Ω,                                          (3.13) 

                                          0ω∇ =i in Ω,                                             (3.14) 

                                          sV V=  on VΓ ,                                           (3.15) 

 sn fσ
∧

=i  on ωΓ                                             (3.16) 

Typically V ωφ = Γ ∩Γ , i.e., if velocity is specified at a boundary, vorticity need not be 

specified there.   

 

Least-Squares Formulation 

The Least-Squares functional associated with the above first-order system is 

given by: 

         ( ) ( ) ( )2 2 2
1 2 3

1( , , )
2 e

I p V R R R dω
Ω

⎡ ⎤= + + Ω⎣ ⎦∫          (3.17) 

where 1R , 2R , 3R  are residuals obtained after substituting the element approximation 

spaces in the above first-order equations. The variational problem associated with the 

above functional is obtained from the minimization condition 0Iδ = . It can be stated as: 

find ( , , )p V ω  in a suitable vector space for all ( , , )p Vδ δ δω in the same vector space 

such that the following equation holds: 
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                        ( ) ( )( ) ( ), , , , , , ,B p V p V l p Vω δ δ δω δ δ δω=               (3.18)                     

where 

( ) ( )( )
( )( ) ( ) [ ]( )

( ) [ ]( ) ( ) ( )
0 0

0 0

, , , , ,
e

V V V V p
B p V p V d

V V p V V

δ ρ μ ω
ω δ δ δω

ρ δ δ μ δω ω δω δΩ

−∇ −∇ + ∇ +∇ + ∇×
= Ω

∇ +∇ + ∇× + −∇× −∇×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∫

i i i i

i i

is the bilinear form and ( ) ( ) ( ) [ ]( )0 0 0, ,
e

l p V f V V p dδ δ δω ρ δ δ μ δω
Ω

⎡ ⎤= ∇ +∇ + ∇× Ω⎣ ⎦∫ i  

is the linear form. Note here 0V is assumed to be know from previous iteration, i.e., it 

linearized before minimization. 

 

Finite Element Model 

In two dimensions the above equations in dimensionless form can be written as: 

0u v
x y
∂ ∂

+ =
∂ ∂

 in Ω                                             (3.19) 

1
Re x

u u pu v f
x y x y

ω∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
 in Ω                           (3.20) 

 

 1
Re y

v v pu v f
x y y y

ω∂ ∂ ∂ ∂
+ + − =

∂ ∂ ∂ ∂
 in Ω                             (3.21) 

0u v
y x

ω ∂ ∂
+ − =
∂ ∂

 in Ω                                        (3.22) 

sV V=  on VΓ ,                                                 (3.23) 

sn fσ
∧

=i  on ωΓ                                              (3.24) 
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where 0Re /VLρ μ=  is the Reynolds number. Note that in two-dimensions the vorticity 

vector is (0,0, )ω ω= i.e. it has component only in Z-direction. The following finite 

element approximation functions for ( , , )p V ω can be chosen: 

1

( , ) ( , )
n

j
j

p x y p j x y
=

= Ψ∑ ,
1

( , ) ( , )
n

j
j

u x y u j x y
=

= Ψ∑ ,                

1
( , ) ( , )

n

j
j

v x y v j x y
=

= Ψ∑ ,
1

( , ) ( , )
n

j
j

x y j x yω ω
=

= Ψ∑          (3.25) 

where jψ  are  the Lagrange family interpolation functions. The minimum requirement 

on approximation functions is that they all be Lagrange family of 0C -continuity. Since 

the formulation is based on variational frame work there are no compatibility restrictions 

between velocity and pressure approximation spaces, so same Lagrange basis can be 

used for all primary variables ( , , )p V ω .Substituting them in the governing equations 

results in residuals: 

       1
u vR
x y
∂ ∂

= +
∂ ∂

                                (3.26) 

2
1

Re x
u u pR u v f
x y x y

ω∂ ∂ ∂ ∂
= + + + −

∂ ∂ ∂ ∂
                 (3.27)                     

 

3
1

Re y
v v pR u v f
x y y y

ω∂ ∂ ∂ ∂
= + + − −

∂ ∂ ∂ ∂
                 (3.28)                    

   4
u vR
y x

ω ∂ ∂
= + −

∂ ∂
                           (3.29)                      

The Least-Squares functional associated with the above set over a typical 

element eΩ  with the residuals is: 
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2 2 2 2
1 2 3 4

1( , , ) [( ) ( ) ( ) ( ) ]
2 e

I p V R R R R dω
Ω

= + + + Ω∫     (3.30)                 

By minimization of the Least-Squares functional with nodal values of velocities, 

pressure, and vorticity, we obtain: 

           0I I I II p u v
p u v

δ δ δ δ δω
ω

∂ ∂ ∂ ∂
= + + + =
∂ ∂ ∂ ∂

            (3.31) 

which yields four sets of ‘n’ equations each over a typical element: 

          0, 0, 0, 0I I I Ip u v
p u v
δ δ δ δω

ω
∂ ∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂

           (3.32) 

The finite element model after substituting the approximation spaces is of the form 

shown below: 

11 12 13 14 1

21 22 23 24 2

31 32 33 34 3

41 42 43 44 4

[ ][ ][ ][ ] { }{ }
[ ][ ][ ][ ] { } { }

{ }[ ][ ][ ][ ] { }
{ }[ ][ ][ ][ ] { }

K K K K fp
K K K K u f

vK K K K f
K K K K fω

⎡ ⎤ ⎧ ⎫⎧ ⎫
⎢ ⎥ ⎪ ⎪⎪ ⎪

⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭⎣ ⎦ ⎩ ⎭

                   (3.33)                           

Note that the elemental equation { } { } { }e e e eK =u u f⎡ ⎤⎣ ⎦ cannot be solved until they are 

assembled and the boundary conditions are imposed. 

In developing the finite element model, two cases have been considered. In the 

first case the convective terms in the residuals associated with the momentum equations 

are linearized before taking the minimum of the functional (this is not in consistent with 

the principles of mathematics). Here they are taken to be known from previous iteration. 

This amounts to linearization of Least-Squares functional before minimization. This kind 
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of linearization can be found in references ([15] and [73]). In this case the residuals 

become: 

2 0 0
1

Re x
u u pR u v f
x y x y

ω∂ ∂ ∂ ∂
= + + + −

∂ ∂ ∂ ∂
                     (3.34) 

 

                  3 0 0
1

Re y
v v pR u v f
x y y y

ω∂ ∂ ∂ ∂
= + + − −

∂ ∂ ∂ ∂
                      (3.35) 

where 0 0( , )u v are know from previous iteration. Hence their variational is taken to be 

zero in minimization step. In the other case minimization precedes the linearization (this 

is believed to be in consistent with the principles of mathematics). In this chapter only 

direct iteration procedure is used to solve the assembled algebraic system of equations. 

The results for both the cases are compared using the numerical example below. 

 

Numerical Example 

A two-dimensional steady flow in [ 0.5,1.5] [ 0.5,1.5]
−

Ω = − × −  as shown in the 

Figure 7 is considered. The figure shows the discretization of the domain using 

2 4× mesh. The Kovasznay’s exact solution [38] for stationery incompressible Navier-

Stokes equation is given by: 

211 cos(2 ), sin(2 ), (1 )
2 2

x x xu e y v e y p eλ λ λλπ π
π

= − = = −                    (3.36) 

where 2 2 1/ 2Re/ 2 (Re / 4 4 )λ π= − + . A Reynolds number of 40 is used for this case. The 

exact solution is used to compute the velocity boundary conditions on Γ and pressure is 

specified at a point. No boundary conditions on vorticity are necessary.  
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Figure 7.Computational domain using eight rectangular elements 
 
 
 

The above problem is solved by direct-iteration method with order of 

polynomials ranging from P=2 to P=7. The coefficient matrix is evaluated using a 

Gaussian quadrature of (P+1) in both the co-ordinate directions. The Reynolds number 

Re is fixed as 1000 for all the cases. Convergence is declared when the Euclidean norm 

is less than 310− , which typically took 5-7 iterations.  

 

Results 

For P=2, the program did not give correct results when compared to the exact 

solution. For P=3, the results were better compared to the previous case. For P=5, the 

results matched the exact solution for all the variables. And, for P=7, there was hardly 

x

y 
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any improvement in the solution compared to the previous case. Figure 8 and Figure 9 

show the isobar profile and velocity contour profile over the domain for polynomial 

order of P=3.  
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Figure 8.Isobars over the domain for P=3 
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Figure 9.Velocity contour plot for polynomial order of P=3 
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Figure 10.Comparison of pressure p for P=3 for linearization before (BL) and after (AL) 
minimization cases with analytical solution at Y=-0.5 
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Figure 11.Comparison of pressure p for P=5 for linearization before (BL) and after (AL) 
minimization cases with analytical solution at Y=-0.5 

 
 
 

Figure 10 and Figure 11 show the comparison of pressure p for P=3 and P=5 for 

linearization before (BL) and after (AL) minimization cases with analytical solution at 

Y=-0.5. Figure 12 and Figure 13 show the comparison of horizontal velocity u for P=3 

and P=5 for linearization before (BL) and after (AL) minimization cases with analytical 

solution at Y=-0.5.  
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Figure 12.Comparison of horizontal velocity u for P=3 for linearization before (BL) and 
after (AL) minimization cases with analytical solution at Y=-0.5 
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Figure 13.Comparison of horizontal velocity u for P=5 for linearization before (BL) and 
after (AL) minimization cases with analytical solution at Y=-0.5 
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Figure 14.Comparison of vertical velocity v for P=3 for linearization before (BL) and 
after (AL) minimization cases with analytical solution at Y=-0.5 
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Figure 15.Comparison of vertical velocity v for P=5 for linearization before (BL) and 
after (AL) minimization cases with analytical solution at Y=-0.5 
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Figure 14 and Figure 15 show the comparison of vertical velocity v for P=3 and P=5 for 

linearization before (BL) and after (AL) minimization cases with analytical solution at 

Y=-0.5. The accuracy of the solution can be noted from the figures. In all the cases there 

is hardly any difference in the solution for linearization before and after minimization 

cases. 

 

Conclusions 

From the above results we can conclude that there is almost a negligible effect of 

linearization before and after minimization on the accuracy of the solution. And in both 

the cases it took almost the same number of iterations to converge, hence we can 

conclude that it has no impact on the rate of convergence of the iterative process. As 

explained in the previous chapter as the order of polynomial approximation functions is 

increased, the numerical solutions became more and more close to the exact solutions. 

Also there is no phenomenon of locking for both the cases considered.  
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CHAPTER IV 

 

LEAST-SQUARES FORMULATION OF STRESS BASED FIRST-ORDER 

SYSTEM FOR NEWTONIAN FLUIDS 

 

Introduction 

Vorticity based Least-Squares formulation is the most popular first order 

formulation for the solution of Stokes and Navier-Stokes equations since only one 

additional independent variable is introduced in two-dimensions compared to three in 

stress based formulation and four in velocity-flux formulation. In this chapter the stress 

based first-order equations are presented. In the present chapter two kinds of stress based 

Least-Squares finite element methods are considered, one carries six independent 

variables and other carries five independent variables. In the latter case, continuity 

equation becomes an algebraic equation and is eliminated from the system of governing 

equations with suitable modifications. The effects of linearization before and after 

minimization are studied for both the formulations using suitable numerical examples.  

To define the equivalent first-order velocity-pressure-stress system, stress tensor 

( ) ( )TV V⎡ ⎤Γ = ∇ + ∇⎣ ⎦  (symmetric part of velocity gradient tensor) is introduced as 

auxiliary variables. The Navier-Stokes flow can be represented in vector form as: 

0V∇ =i in Ω,                                                     (4.1)                            

( ) 1
Re

V V p f∇ +∇ − ∇ Γ =i i  in Ω,                                (4.2)                             
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( ) ( ) 0TV V⎡ ⎤Γ − ∇ + ∇ =⎣ ⎦  in Ω,                                   (4.3)                            

sV V=  on VΓ ,                                                   (4.4)                            

sn
∧

Γ = Γi  on ΓΓ                                                  (4.5)                            

where V ΓΓ = Γ ∪Γ  and Vφ Γ= Γ ∩Γ , f is the force term , n
∧

is the outward unit normal on 

the boundary of Ω, Re is the Reynolds number of fluid, sV  is the prescribed value of  

velocity on the boundary VΓ , and sΓ  is the prescribed value of tractions on the boundary 

ΓΓ .  

 

Least-Squares Formulation 

The Least-Squares functional associated with the above first-order system is given 

by: 

( ) ( ) ( ) ( )2 2 2
1 2 3

1, ,
2 e

I p V R R R d
Ω

⎡ ⎤Γ = + + Ω⎣ ⎦∫             (4.6)                     

where 1R , 2R , 3R  are residuals obtained after substituting the element approximation 

spaces in the above first-order equations. The variational problem associated with the 

above functional is obtained from the minimization condition 0Iδ = . It can be stated as: 

find ( , , )p V Γ  in a suitable vector space for all ( , , )p Vδ δ δΓ in the same vector space such 

that the following equation holds: 

( ) ( )( ) ( ), , , , , , ,B p V p V l p Vδ δ δ δ δ δΓ Γ = Γ                   (4.7)                            
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where 

( ) ( )( )
( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
0 0

1 1

Re Re, , , , ,
e T T

V V V V p V V p
B p V p V

V V V V d

δ δ δ δ
δ δ δ

δ δ δΩ

−∇ −∇ + ∇ +∇ − ∇ Γ ∇ +∇ − ∇ Γ
Γ Γ =

+ Γ − ∇ + ∇ Γ − ∇ + ∇ Ω

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠

⎢ ⎥
⎡ ⎤ ⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

∫
i i i i i i i

i

 is the bilinear form and ( ) ( ) ( )0 0
1, ,

Ree

l p V f V V p dδ δ δω δ δ δ
Ω

⎡ ⎤⎛ ⎞= ∇ +∇ − ∇ Γ Ω⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫ i i  is 

the linear form. Note here 0V is assumed to be know from previous iteration, i.e., it is 

linearized before minimization. The governing equations for two-dimensional case are 

given by:  

0u v
x y
∂ ∂

+ =
∂ ∂

 in Ω                                               (4.8)                             

xyxx
x

u u pu v f
x y x x y

∂Γ⎛ ⎞∂Γ∂ ∂ ∂
+ + − + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 in Ω              (4.9) 

  xy yy
y

v v pu v f
x y y x y

∂Γ ∂Γ⎛ ⎞∂ ∂ ∂
+ + − + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 in Ω              (4.10)                        

2 0xx
u
x

μ ∂
Γ − =

∂
 in Ω                                    (4.11)                            

0xy
u v
y x

μ
⎛ ⎞∂ ∂

Γ − + =⎜ ⎟∂ ∂⎝ ⎠
 in Ω                          (4.12) 

2 0yy
v
y

μ ∂
Γ − =

∂
 in Ω                                    (4.13) 

sV V=  on VΓ ,                                              (4.14)                            

sn
∧

Γ = Γi  on ΓΓ                                             (4.15) 
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Like before, we can describe the variational problem by minimizing the above 

functional with respect to chosen approximation spaces. The minimum requirement on 

approximation functions is that they all be Lagrange family of 0C -continuity. Since the 

formulation is based on variational frame work there are no compatibility restrictions 

between velocity, pressure and stress approximation spaces, so same Lagrange basis can 

be used for all primary variables ( , , , , )xx xy yyp V Γ Γ Γ .  

 

Method I 

In 2D the above equations in dimensionless form [33] can be written as: 

0u v
x y
∂ ∂

+ =
∂ ∂

 in Ω                                             (4.16)                             

1
Re

xyxx
x

u u pu v f
x y x x y

∂Γ⎛ ⎞∂Γ∂ ∂ ∂
+ + − + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 in Ω                (4.17)     

1
Re

xy yy
y

v v pu v f
x y y x y

∂Γ ∂Γ⎛ ⎞∂ ∂ ∂
+ + − + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 in Ω                (4.18) 

                                    2 0xx
u
x
∂

Γ − =
∂

 in Ω                                         (4.19)  

                                                           0xy
u v
y x

⎛ ⎞∂ ∂
Γ − + =⎜ ⎟∂ ∂⎝ ⎠

 in Ω                                 (4.20) 

2 0yy
v
y
∂

Γ − =
∂

 in Ω                                         (4.21)                             

sV V=  on VΓ                                                (4.22) 

sn
∧

Γ = Γi  on ΓΓ                                          (4.23)                            
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The Least-Squares functional associated with the above set over a typical element eΩ  

with the residuals is: 

            
( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2

1 2 3 4 5 6
1, , , ,
2 e

xx xy yyI p V R R R R R R d
Ω

⎡ ⎤Γ Γ Γ = + + + + + Ω⎣ ⎦∫        (4.24) 

where  

1
u vR
x y
∂ ∂

= +
∂ ∂

                                     (4.25)                     

2
1

Re
xyxx

x
u u pR u v f
x y x x y

∂Γ⎛ ⎞∂Γ∂ ∂ ∂
= + + − + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

             (4.26)                  

                                 3
1

Re
xy yy

y
v v pR u v f
x y y x y

∂Γ ∂Γ⎛ ⎞∂ ∂ ∂
= + + − + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

              (4.27) 

                                                  4 2xx
uR
x
∂

= Γ −
∂

                                (4.28)                     

                                              5 xy
u vR
y x

⎛ ⎞∂ ∂
= Γ − +⎜ ⎟∂ ∂⎝ ⎠

                                       (4.29)                             

                                        6 2yy
vR
y
∂

= Γ −
∂

                                            (4.30)                            

and the primary variables ( , , , , )xx xy yyp V Γ Γ Γ are approximated by the expansions of the 

form: 

1

( , ) ( , )
n

j
j

p x y p j x y
=

= Ψ∑ ,
1

( , ) ( , )
n

j
j

u x y u j x y
=

= Ψ∑ , 

1

( , ) ( , )
n

j
j

v x y v j x y
=

= Ψ∑ ,
1

( , ) ( , )
n

xx
xx j

j

x y j x y
=

Γ = Γ Ψ∑        (4.31)                    

1
( , ) ( , )

n
xy

xy j
j

x y j x y
=

Γ = Γ Ψ∑ ,
1

( , ) ( , )
n

yy
yy j

j
x y j x y

=

Γ = Γ Ψ∑  
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where jψ  are the Lagrange family interpolation functions. 

 

Finite Element Model 

By minimization of the Least-Squares functional with nodal values of velocities, 

pressure, and stresses, we obtain: 

0xx xy yy
xx xy yy

I I I I I II p u v
p u v

δ δ δ δ δ δ δ∂ ∂ ∂ ∂ ∂ ∂
= + + + Γ + Γ + Γ =
∂ ∂ ∂ ∂Γ ∂Γ ∂Γ

     (4.32) 

which yields six sets of ‘n’ equations each over a typical element: 

0, 0, 0, 0, 0, 0xx xy yy
xx xy yy

I I I I I Ip u v
p u v
δ δ δ δ δ δ∂ ∂ ∂ ∂ ∂ ∂

= = = Γ = Γ = Γ =
∂ ∂ ∂ ∂Γ ∂Γ ∂Γ

    (4.33)                     

The finite element model after substituting the approximation spaces is of the form 

shown below: 

                                        

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

[ ][ ][ ][ ][ ][ ]
[ ][ ][ ][ ][ ][ ]
[ ][ ][ ][ ][ ][ ]
[ ][ ][ ][ ][ ][ ]
[ ][ ][ ][ ][ ][ ]
[ ][ ][ ][ ][ ][ ]

K K K K K K
K K K K K K
K K K K K K
K K K K K K
K K K K K K
K K K K K K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1

2

3

4

5

6

{ }{ }
{ } { }
{ } { }
{ } { }
{ } { }
{ } { }

xx

xy

yy

fp
u f
v f

f
f
f

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬Γ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪Γ
⎪ ⎪ ⎪ ⎪
Γ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

       (4.34)                         

Note that the elemental equation { } { } { }e e e eK =u u f⎡ ⎤⎣ ⎦ cannot be solved until they are 

assembled and the boundary conditions are imposed. 

In developing the finite element model, two cases have been considered. In the 

first case the convective terms in the residuals associated with the momentum equations 

are linearized before taking the minimum of the functional (this is not in consistent with 
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the principles of mathematics). Here they are taken to be known from previous iteration. 

This amounts to linearization of Least-Squares functional before minimization. This kind 

of linearization can be found in references ([15]-[73]). In this case the residuals become: 

                               2 0 0
1

Re
xyxx

x
u u pR u v f
x y x x y

∂Γ⎛ ⎞∂Γ∂ ∂ ∂
= + + − + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

              (4.35)                  

3 0 0
1

Re
xy yy

y
v v pR u v f
x y y x y

∂Γ ∂Γ⎛ ⎞∂ ∂ ∂
= + + − + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

              (4.36)               

where 0 0( , )u v are know from previous iteration. Hence their variational is taken to be 

zero in minimization step. In the other case minimization precedes the linearization (this 

is believed to be in consistent with the principles of mathematics). In this chapter only 

direct iteration procedure is used to solve the assembled algebraic system of equations.  

 

Numerical Example 

The ‘lid-driven’ cavity is a standard test problem in the computational fluid 

dynamics. The problem is characterized by a square cavity in which the driving force for 

the flow is the shear created by the lid. Figure 16 shows a schematic of the cavity with 

the boundary conditions and the finite element discretization.  
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Figure 16.Computational domain using graded 25 rectangular elements 
 
 
 

The above problem is solved by direct-iteration method with order of polynomials 

ranging from P=2 to P=7. The coefficient matrix is evaluated using a Gaussian 

quadrature of (P+1) in both the co-ordinate directions. The Reynolds number Re is fixed 

as 1000 for all the cases. Convergence is declared when the Euclidean norm is less 

than 310− , which typically took 5-7 iterations.  
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Results 

For P=2, the program did not give correct results when compared to the 

benchmark solution. For P=3, the results were better compared to the previous case. For 

P=5, the results matched the exact solution for all the variables. And, for P=7, there was 

hardly any improvement in the solution compared to the previous case.  

Case-I (Linearization before Minimization) 

Figure 17 shows the plots of horizontal velocity u at X=0.5 with P=5 using. 

Figure 18 shows the plots of vertical velocity v at Y=0.5 with P=5.  
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Figure 17.Plots of horizontal velocity u at X=0.5 with P=5 for linearization before 
minimization case 
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Figure 18.Plots of vertical velocity v at Y=0.5 with P=5 for linearization before 
minimization case 

 
 
 

Case-II (Linearization after Minimization) 

Figure 19 shows the plots of horizontal velocity u at X=0.5 with P=5 using. 

Figure 20 shows the plots of vertical velocity v at Y=0.5 with P=5.  
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Figure 19.Plots of horizontal velocity u at X=0.5 with P=5 for linearization after 
minimization case 
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Figure 20.Plots of vertical velocity v at Y=0.5 with P=5 for linearization after 
minimization case 
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The accuracy of the solution can be noted from the figures. In all the above cases there is 

hardly any difference in the solution for linearization before and after minimization cases. 

 

Method II 

From the previous method the continuity equation can be written as: 

0u v
x y
∂ ∂

+ =
∂ ∂

 in Ω                                             (4.37)                             

xx yy⇒Γ = −Γ                                                   (4.38) 

Hence the continuity equation can be eliminated and yyΓ  is replaced by xx−Γ  in the 

governing equations. The equivalent first-order system of equations can be represented in 

two-dimensions as: 

1
Re

xyxx
x

u u pu v f
x y x x y

∂Γ⎛ ⎞∂Γ∂ ∂ ∂
+ + − + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 in Ω                   (4.39)                     

1
Re

xy yy
y

v v pu v f
x y y x y

∂Γ ∂Γ⎛ ⎞∂ ∂ ∂
+ + − + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 in Ω                   (4.40)       

2 0xx
u
x
∂

Γ − =
∂

 in Ω                                         (4.41)                             

                               0xy
u v
y x

⎛ ⎞∂ ∂
Γ − + =⎜ ⎟∂ ∂⎝ ⎠

 in Ω                                     (4.42)                            

                                  2 0xx
v
y
∂

−Γ − =
∂

 in Ω                                         (4.43)                             

                                        sV V=  on VΓ ,                                             (4.44)                            

                                     sn
∧

Γ = Γi  on ΓΓ                                               (4.45)                            
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The Least-Squares functional associated with the above set over a typical element eΩ  

with the residuals is: 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2
1 2 3 4 5

1, , ,
2 e

xx xyI p V R R R R R d
Ω

⎡ ⎤Γ Γ = + + + + Ω⎣ ⎦∫    (4.46) 

where  

1
1

Re
xyxx

x
u u pR u v f
x y x x y

∂Γ⎛ ⎞∂Γ∂ ∂ ∂
= + + − + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

              (4.47) 

 

2
1

Re
xy yy

y
v v pR u v f
x y y x y

∂Γ ∂Γ⎛ ⎞∂ ∂ ∂
= + + − + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

             (4.48) 

      3 2xx
uR
x
∂

= Γ −
∂

                               (4.49) 

  4 xy
u vR
y x

⎛ ⎞∂ ∂
= Γ − +⎜ ⎟∂ ∂⎝ ⎠

                                    (4.50)                             

                                                                5 2xx
vR
y
∂

= −Γ −
∂

                                          (4.51)                            

and the primary variables ( , , , )xx xyp V Γ Γ are approximated by the expansions of the form 

                     
1

( , ) ( , )
n

j
j

p x y p j x y
=

= Ψ∑ ,
1

( , ) ( , )
n

j
j

u x y u j x y
=

= Ψ∑ , 

                
1

( , ) ( , )
n

j
j

v x y v j x y
=

= Ψ∑ , 
1

( , ) ( , )
n

xx
xx j

j
x y j x y

=

Γ = Γ Ψ∑         (4.52) 

                                   
1

( , ) ( , )
n

xy
xy j

j

x y j x y
=

Γ = Γ Ψ∑  

where jψ  are the Lagrange family interpolation functions.  
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Finite Element Model 

By minimization of the Least-Squares functional with nodal values of velocities, 

pressure, and vorticity, we obtain 

                             0xx xy
xx xy

I I I I II u v p
u v p

δ δ δ δ δ δ∂ ∂ ∂ ∂ ∂
= + + + Γ + Γ =
∂ ∂ ∂ ∂Γ ∂Γ

    (4.53) 

which yields five sets of ‘n’ equations each over a typical element: 

     0, 0, 0, 0, 0xx xy
xx xy

I I I I Ip u v
p u v
δ δ δ δ δ∂ ∂ ∂ ∂ ∂

= = = Γ = Γ =
∂ ∂ ∂ ∂Γ ∂Γ

     (4.54) 

The finite element model after substituting the approximation spaces is of the form 

shown below: 

     

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

[ ][ ][ ][ ][ ][ ] { }
[ ][ ][ ][ ][ ][ ] { }
[ ][ ][ ][ ][ ][ ] { }

{ }[ ][ ][ ][ ][ ][ ]
{ }[ ][ ][ ][ ][ ][ ]

xx

xy

K K K K K K p
K K K K K K u
K K K K K K v
K K K K K K
K K K K K K

⎡ ⎤ ⎧ ⎫
⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪⎪⎢ ⎥ ⎨ ⎬⎢ ⎥ ⎪ Γ⎢ ⎥ ⎪⎢ ⎥ Γ⎪⎩⎢ ⎥⎣ ⎦

1

2

3

4

5

{ }
{ }
{ }
{ }
{ }

f
f
f
f
f

⎧ ⎫
⎪ ⎪
⎪ ⎪

⎪ ⎪ ⎪= ⎨ ⎬
⎪ ⎪ ⎪
⎪ ⎪ ⎪
⎪ ⎪ ⎪⎭ ⎩ ⎭

                  (4.55) 

Note that the elemental equation { } { } { }e e e eK =u u f⎡ ⎤⎣ ⎦ cannot be solved until they are 

assembled and the boundary conditions are imposed.  

In developing the finite element model, two cases have been considered. In the 

first case the convective terms in the residuals associated with the momentum equations 

are linearized before taking the minimum of the functional (this is not in consistent with 

the theories of mathematics). Here they are taken to be known from previous iteration. 

This amounts to linearization of Least-Squares functional before minimization. In this 

case the residuals become: 
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         1 0 0
1 ( )

Re
xyxx

x
u u pR u v f
x y x x y

∂Γ∂Γ∂ ∂ ∂
= + + − + −

∂ ∂ ∂ ∂ ∂
                   (4.56) 

 

          2 0 0
1 ( )

Re
xy yy

y
v v pR u v f
x y y x y

∂Γ ∂Γ∂ ∂ ∂
= + + − + −

∂ ∂ ∂ ∂ ∂
                  (4.57) 

where 0 0( , )u v are know from previous iteration. Hence their variational is taken to be 

zero in minimization step. In the other case minimization precedes the linearization (this 

is believed to be in consistent with the principles of mathematics). In this chapter only 

direct iteration procedure is used to solve the assembled algebraic system of equations. 

 

Numerical Example 

A two-dimensional steady flow in [ 0.5,1.5] [ 0.5,1.5]
−

Ω = − × −  as shown in the 

Figure 21 is considered. The figure shows the discretization of the domain using 

2 4× mesh. The Kovasznay’s exact solution [38] for stationery incompressible Navier-

Stokes equation is given by: 

211 cos(2 ), sin(2 ), (1 )
2 2

x x xu e y v e y p eλ λ λλπ π
π

= − = = −                    (4.58) 

where 2 2 1/ 2Re/ 2 (Re / 4 4 )λ π= − + . A Reynolds number of 40 is used for this case. The 

exact solution is used to compute the velocity boundary conditions on Γ and pressure is 

specified at a point. No boundary conditions on vorticity are necessary.  
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Figure 21.Computational domain using 2x4 rectangular elements 
 
 
 

The above problem is solved by direct-iteration method with order of polynomials 

ranging from P=2 to P=7. The coefficient matrix is evaluated using a Gaussian 

quadrature of (P+1) in both the co-ordinate directions. The Reynolds number Re is fixed 

as 1000 for all the cases. Convergence is declared when the Euclidean norm is less 

than 310− , which typically took 5-7 iterations.  

 

Results 

For P=2, the program did not give correct results when compared to the exact 

solution. For P=3, the results were better compared to the previous case. For P=5, the 

results matched the exact solution for all the variables. And, for P=7, there was hardly 

any improvement in the solution compared to the previous case. Figure 22 and Figure 23 
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Figure 22.Comparison of pressure p for P=3 for linearization before (BL) and after (AL) 
minimization cases with analytical solution at Y=-0.5 
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Figure 23.Comparison of pressure p for P=5 for linearization before (BL) and after (AL) 
minimization cases with analytical solution at Y=-0.5 
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show the comparison of pressure p for P=3 and P=5 for linearization before (BL) and 

after (AL) minimization cases with analytical solution at Y=-0.5. Figure 24 and Figure 25 

show the comparison of horizontal velocity u for P=3 and P=5 for linearization before 

(BL) and after (AL) minimization cases with analytical solution at Y=-0.5. 
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Figure 24.Comparison of horizontal velocity u for P=3 for linearization before (BL) and 
after (AL) minimization cases with analytical solution at Y=-0.5 
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Figure 25.Comparison of horizontal velocity u for P=5 for linearization before (BL) and 
after (AL) minimization cases with analytical solution at Y=-0.5 
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Figure 26.Comparison of vertical velocity v for P=3 for linearization before (BL) and 
after (AL) minimization cases with analytical solution at Y=-0.5 
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Figure 27.Comparison of vertical velocity v for P=5 for linearization before (BL) and 
after (AL) minimization cases with analytical solution at Y=-0.5 

 
 
 

Figure 26 and Figure 27 show the comparison of vertical velocity v for P=3 and P=5 for 

linearization before (BL) and after (AL) minimization cases with analytical solution at 

Y=-0.5. The accuracy of the solution can be noted from the figures. In all the above 

cases there is hardly any difference in the solution for linearization before and after 

minimization cases. 

 

Conclusions 

From the above results we can conclude that there is almost a negligible effect of 

linearization before or after minimization on the accuracy of the solution. And in both the 
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cases it took almost the same number of iterations to converge, hence we can conclude 

that it has no impact on the rate of convergence of the iterative process. As explained in 

the previous chapter as the order of polynomial approximation functions is increased, the 

numerical solutions became more and more close to the exact solutions. Also there is no 

phenomenon of locking for both the cases considered.  
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CHAPTER V 

 

LEAST-SQUARES FORMULATION OF STRESS BASED FIRST-ORDER 

SYSTEM FOR POWER-LAW FLUIDS 

 

Introduction 

Non-Newtonian fluid flows are the most challenging and widely investigated 

areas in computational fluid mechanics. A non-Newtonian fluid is defined to be the one 

whose constitutive behavior is nonlinear, i.e. stresses are nonlinear functions of strain 

rates. If such fluids have the memory of past deformation then they are called 

viscoelastic fluids. Practical examples of non-Newtonian fluids are multigrade oils, 

liquid detergents, paints, and printing inks. Polymer solutions and polymer melts also 

fall within this category. All such flows are extremely important in forming processes of 

various kinds of applied to metals, plastics, or glass.  

Numerical approaches used for analyzing the non-Newtonian fluids differ very 

little from the ones used for Newtonian fluids. When shear viscosity is a function of rate 

of deformation tensor (i.e. as in case of Power-Law fluids), the equation of motion can 

still be explicitly written in terms of velocity components. For such fluids the same 

formulation as used for Newtonian fluids can be used. The constitutive equations for 

viscoelastic fluids are described in terms of extra stress components and it is not covered 

in my research.  
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Power-Law Fluids 

Many fluids in industrial applications are characterized by so-called Power-Law 

constitutive behavior. Power-Law fluids exhibit nonlinear material behavior according to 

relation: 

                                                        2 ), =2 (p Iσ τ τ μ= − DI                                         (5.1) 

                                                               
( 1)

2
0 2( )

n

Iμ μ
−

=                                                 (5.2)                           

                                                  2
1
2 ij ijI D D=  (sum on i and j)                                      (5.3)                    

22 2

2 2 2u v u vI
x x y x

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⇒ = + + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
in two-dimensions.    (5.4) 

where τ  is the viscous part of the stress tensorσ , I is the unit tensor, 2I is the second 

invariant of D , and the parameters 0μ and n characterize the fluid (have to be 

determined experimentally). For many non-Newtonian fluids, the viscosity μ decreases 

with increase in shear rate. These are called shear thinning fluids and for these the 

Power-Law index 1n < . Fluids with Power-Law index 1n > are called shear thickening 

fluids. For such fluids the viscosity μ increases with increase in shear rate. For 1n = it 

can be seen that the viscosity 0μ μ= (constant) and gives a Newtonian relation. For all 

other values of n , the Power-Law constitutive relation makes the problem nonlinear 

even when the convective terms are negligible. In fact the nonlinearity due to Power-

Law in more dominant compared to that of the convective terms. 
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To illustrate how the Power-Law constitutive equation affects the finite element 

formulation, a steady state, isothermal, incompressible, non-Newtonian fluid is 

considered. To define the equivalent first-order velocity-pressure-stress system, stress 

tensor ( ) ( ) 0TV Vμ ⎡ ⎤Γ − ∇ + ∇ =⎣ ⎦  (symmetric part of velocity gradient tensor) is 

introduced as auxiliary variables. The Navier-Stokes flow can be represented in vector 

form as: 

                                                               0V∇ =i in Ω,                                                  (5.5) 

                          ( )V V p f∇ +∇ −∇ Γ =i i  in Ω,                                    (5.6)                    

                                              ( ) ( ) 0TV Vμ ⎡ ⎤Γ − ∇ + ∇ =⎣ ⎦  in Ω,                                    (5.7)                            

                                  sV V=  on VΓ ,                                                     (5.8)                  

                                  sn
∧

Γ = Γi  on ΓΓ                                                    (5.9)                            

where V ΓΓ = Γ ∪Γ  and Vφ Γ= Γ ∩Γ , f is the force term , n
∧

is the outward unit normal 

on the boundary of Ω, μ  is the viscosity of fluid which varies as per Power-Law , sV  is 

the prescribed value of  velocity on the boundary VΓ , and sΓ  is the prescribed value of 

tractions on the boundary ΓΓ .  

 

Least-Squares Formulation 

The Least-Squares functional associated with the above first-order system is 

given by: 
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                               ( ) ( ) ( ) ( )2 2 2
1 2 3

1, ,
2 e

I p V R R R d
Ω

⎡ ⎤Γ = + + Ω⎣ ⎦∫                 (5.10)       

where 1R , 2R , 3R  are residuals obtained after substituting the element approximation 

spaces in the above first-order equations. The variational problem associated with the 

above functional is obtained from the minimization condition 0Iδ = . It can be stated as: 

find ( ), ,p V Γ  in a suitable vector space for all ( ), ,p Vδ δ δΓ in the same vector space 

such that the following equation holds: 

                                       ( ) ( )( ) ( ), , , , , , ,B p V p V l p Vδ δ δ δ δ δΓ Γ = Γ                          (5.11)     

where 

( ) ( )( ) ( )( ) ( )( )

( ) ( )( )
( ) ( )( ) ( ) ( ) ( ) ( )( )

0

0 0

0 0 0

, , , , ,
e

T T T

B p V p V V V V V p

V V V V p

V V V V V V d

δ δ δ δ

δ δ δ δ

μ δ μ δ δ δμ

Ω

Γ Γ = −∇ −∇ + ∇ +∇ −∇ Γ

∇ + ∇ +∇ −∇ Γ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤Γ − ∇ + ∇ Γ − ∇ + ∇ − ∇ + ∇ Ω⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∫ i i i i i

i i i

i

 

is the bilinear form and 

( ) ( ) ( ) ( )( )0 0 0, ,
e

l p V f V V V V p dδ δ δω δ δ δ δ
Ω

⎡ ⎤= ∇ + ∇ +∇ −∇ Γ Ω⎣ ⎦∫ i i i  is the linear form. 

Note, here linearization of both convective and viscous terms is done after minimization 

and 0 0( , )V μ are know from previous iteration. And this 0μ is the value of viscosity 

calculated based on the previous iteration solution and is different from the 0μ defined in 

equation (5.2), which is used to characterize the fluid. And the variation of viscosity is 

obtained from: 

                                                           ( ) ( )
( )3

2
0 2 2

1
2

nn
I Iδμ μ δ

−−
=                               (5.12)                             

The governing equations in dimensionless form for two-dimensional case are given by:  
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                                 ˆ ˆ
0

ˆ ˆ
u v
x y
∂ ∂

+ =
∂ ∂

 in Ω                                     (5.13) 

                                               
ˆˆˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ
xyxx

x
u u pu v f
x y x x y

⎛ ⎞∂Γ∂Γ∂ ∂ ∂
+ + − + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 in Ω                (5.14) 

                         
ˆ ˆˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ
xy yy

y
v v pu v f
x y y x y

⎛ ⎞∂Γ ∂Γ∂ ∂ ∂
+ + − + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

in Ω                (5.15) 

                                          
ˆˆ ˆ2 0
ˆxx
u
x

μ ∂
Γ − =

∂
 in Ω                                 (5.16) 

                                
ˆ ˆˆ ˆ 0
ˆ ˆxy
u v
y x

μ
⎛ ⎞∂ ∂

Γ − + =⎜ ⎟∂ ∂⎝ ⎠
 in Ω                                 (5.17) 

                                      
ˆˆ ˆ2 0
ˆyy
v
y

μ ∂
Γ − =

∂
 in Ω                                     (5.18) 

                                          ˆ ˆ sV V=  on ˆ
VΓ ,                                            (5.19) 

                                   ˆ ˆ sn
∧

Γ = Γi  on ˆ
ΓΓ                                                 (5.20) 

where ( )
( )1

2
0 2̂ˆ ˆ

n

Iμ μ
−

= is the viscosity and 
22 2

2
ˆ ˆ ˆ ˆˆ 2 2u v u vI
x x y x

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
is the 

second invariant. 

The above equations can be non dimensionalized in two different forms. The 

choice of these forms has a dramatic effect on the convergence of the iterative process. 

These two forms arise as a result of choice of the characteristic scale for stresses. If the 

characteristic viscous stress 0 0( / )V Lμ is chosen to scale the stresses, the Reynolds 

number appears in the momentum equation. If the characteristic kinetic energy 2
0 0( )Vρ is 

used to scale the stresses, the Reynolds number appears in the stress equations. It is 
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demonstrated by Surana and others that the first choice has undesirable effects which 

lead to non-convergence of the iterative process or convergence to a spurious solution. 

The complete details on this can be found in [32]. The Navier-Stokes equation is 

transformed to: 

                                               0u v
x y
∂ ∂

+ =
∂ ∂

 in Ω                                           (5.21) 

                                 xyxx
x

u u pu v f
x y x x y

∂Γ⎛ ⎞∂Γ∂ ∂ ∂
+ + − + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 in Ω                       (5.22) 

                                  xy yy
y

v v pu v f
x y y x y

∂Γ ∂Γ⎛ ⎞∂ ∂ ∂
+ + − + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 in Ω                      (5.23) 

                                              2 0xx
u
x

μ ∂
Γ − =

∂
 in Ω                                       (5.24)                       

                                                        0xy
u v
y x

μ
⎛ ⎞∂ ∂

Γ − + =⎜ ⎟∂ ∂⎝ ⎠
 in Ω                                 (5.25) 

2 0yy
v
y

μ ∂
Γ − =

∂
 in Ω                                       (5.26)                            

                                                                 sV V=  on VΓ ,                                             (5.27) 

                                                               sn
∧

Γ = Γi  on ˆ
ΓΓ                                             (5.28) 

where 
( 1)

2
2

1 ( )
Re

n

n

Iμ
−

= and 
22 2

2 2 2u v u vI
x x y x

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
.  

Like with the case of Newtonian fluids, we can describe a variational problem by 

minimizing the above functional with respect to chosen approximation spaces. The 

minimum requirement on approximation functions is that they all be Lagrange family of 
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0C -continuity. . Since the formulation is based on variational frame work there are no 

compatibility restrictions between velocity, pressure and stress approximation spaces, so 

same Lagrange basis can be used for all primary variables ( ), , , ,xx xy yyp V Γ Γ Γ .  

The Least-Squares functional associated with the above set over a typical element eΩ  

with the residuals is: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2
1 2 3 4 5 6

1, , , ,
2 e

xx xy yyI p V R R R R R R d
Ω

⎡ ⎤Γ Γ Γ = + + + + + Ω⎣ ⎦∫      (5.29) 

where  
                                                  1

u vR
x y
∂ ∂

= +
∂ ∂

                                  (5.30)                      

                                 2
xyxx

x
u u pR u v f
x y x x y

∂Γ⎛ ⎞∂Γ∂ ∂ ∂
= + + − + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

                  (5.31)       

                                 3
xy yy

y
v v pR u v f
x y y x y

∂Γ ∂Γ⎛ ⎞∂ ∂ ∂
= + + − + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

                  (5.32) 

                                                  4 2xx
uR
x

μ ∂
= Γ −

∂
                              (5.33) 

                                   5 xy
u vR
y x

μ
⎛ ⎞∂ ∂

= Γ − +⎜ ⎟∂ ∂⎝ ⎠
                                    (5.34) 

                                                                 6 2yy
vR
y

μ ∂
= Γ −

∂
                                        (5.35) 

and the primary variables ( ), , , ,xx xy yyp V Γ Γ Γ are approximated by the expansions of the 

form: 
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1

( , ) ( , )
n

j
j

p x y p j x y
=

= Ψ∑ ,
1

( , ) ( , )
n

j
j

u x y u j x y
=

= Ψ∑ , 

1
( , ) ( , )

n

j
j

v x y v j x y
=

= Ψ∑ , 
1

( , ) ( , )
n

xx
xx j

j
x y j x y

=

Γ = Γ Ψ∑       (5.36) 

1

( , ) ( , )
n

xy
xy j

j

x y j x y
=

Γ = Γ Ψ∑ ,
1

( , ) ( , )
n

yy
yy j

j

x y j x y
=

Γ = Γ Ψ∑  

where jψ  are the Lagrange family interpolation functions.  

 

Finite Element Model 

By minimization of the Least-Squares functional with nodal values of velocities, 

pressure, and vorticity, we obtain: 

0xx xy yy
xx xy yy

I I I I I II p u v
p u v

δ δ δ δ δ δ δ∂ ∂ ∂ ∂ ∂ ∂
= + + + Γ + Γ + Γ =
∂ ∂ ∂ ∂Γ ∂Γ ∂Γ

          (5.37) 

which yields six sets of ‘n’ equations each over a typical element: 

0, 0, 0, 0, 0, 0xx xy yy
xx xy yy

I I I I I Ip u v
p u v
δ δ δ δ δ δ∂ ∂ ∂ ∂ ∂ ∂

= = = Γ = Γ = Γ =
∂ ∂ ∂ ∂Γ ∂Γ ∂Γ

 (5.38) 

The finite element model after substituting the approximation spaces is of the form 

shown below: 

                                     

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

[ ][ ][ ][ ][ ][ ]
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u F
v F
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⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬Γ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪Γ
⎪ ⎪ ⎪ ⎪
Γ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

          (5.39)       
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Note that the elemental equation { } { } { }e e e eK =u u f⎡ ⎤⎣ ⎦ cannot be solved until they are 

assembled and the boundary conditions are imposed. 

In developing the finite element model, two cases have been considered. In the 

first case the convective terms in the residuals associated with the momentum equations 

and the viscous terms in the stress equations are linearized before taking the minimum of 

the functional (this is not in consistent with the theories of mathematics). Here they are 

taken to be known from previous iteration. This amounts to linearization of Least-

Squares functional before minimization. In this case the residuals become: 

                                   2 0 0
xyxx

x
u u pR u v f
x y x x y

∂Γ⎛ ⎞∂Γ∂ ∂ ∂
= + + − + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

              (5.40) 

                                    3 0 0
xy yy

y
v v pR u v f
x y y x y

∂Γ ∂Γ⎛ ⎞∂ ∂ ∂
= + + − + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

             (5.41) 

                                                  4 02xx
uR
x

μ ∂
= Γ −

∂
                             (5.42)                     

                                                             5 0xy
u vR
y x

μ
⎛ ⎞∂ ∂

= Γ − +⎜ ⎟∂ ∂⎝ ⎠
                                 (5.43)                            

                                                                   6 02yy
vR
y

μ ∂
= Γ −

∂
                                     (5.44)                            

where 0 0 0( , , )u v μ are know from previous iteration. Hence their variational is taken to be 

zero in minimization step. In the other case minimization precedes the linearization (this 

is believed to be in consistent with the theories of mathematics). Here the viscosity also 

contributes to the stiffness coefficients in the finite element model, as it is not constant 

anymore.  

 



 74

Numerical Example 

The ‘lid-driven’ cavity is a standard test problem in the computational fluid 

dynamics. The problem is characterized by a square cavity in which the driving force for 

the flow is the shear created by the lid. Figure 28 shows a schematic of the cavity with 

the boundary conditions and the finite element discretization.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28.Computational domain using graded 5x5 rectangular elements 

 
 
 

The above problem is solved by direct-iteration and tangent method with order of 

polynomials ranging from P=3 to P=7. The coefficient matrix is evaluated using a 

Gaussian quadrature of (2P+1) in both the co-ordinate directions. The Reynolds number 

Ren for Power-Law fluid is fixed as 100 for all the cases. Convergence is declared when 
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the Euclidean norm is less than 310− , which typically took 7-12 iterations. However the 

number of iterations for the linearization before minimization case was less compared to 

case of linearization after minimization. 

 

Results 

For P=3, the program did not converge for lower values of Power-Law index 

(0.25, 0.5 and 0.75) and did not give correct results for other values of  Power-Law 

index (1.0, 1.25 and 1.5). The results from direct iteration method were not good when 

compared to that of the tangent method. For P=5, the program did not converge for 

lower values of Power-Law index (0.25 and 0.5 ) and did not give correct results for 

other values of  Power-Law index (0.75, 1.0, 1.25 and 1.5). But the results were 

improved when compared to the previous case. For this case also the results from direct 

iteration method were not good when compared to that of the tangent method. For P=7, 

the program did not converge for lower values of Power-Law index (0.25 and 0.5) but 

the results for other values of Power-Law index (0.75, 1.0, 1.25 and 1.5) were good. As 

with the previous cases the results from direct iteration method were not good when 

compared to that of the tangent method. Also, for P=7, the results from linearization 

before minimization case were not good compared to case of linearization after 

minimization.  

Case-I (Linearization before Minimization) 

Figure 29 shows the plots of horizontal velocity u at X=0.5 with P=7 for various 

values of Power-Law index using Tangent method. Figure 30 shows the plots of vertical 
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Figure 29.Plots of horizontal velocity u at X=0.5 with P=7 for various values of Power-
Law index for linearization before minimization 
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Figure 30.Plots of vertical velocity v at Y=0.5 with P=7 for various values of Power-
Law index for linearization before minimization 
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velocity v at Y=0.5 with P=7 for various values of Power-Law index using Tangent 

method.  

Case-II (Linearization after Minimization) 

Figure 31 shows the plots of horizontal velocity u at X=0.5 with P=7 for various 

values of Power-Law index using Tangent method. Figure 32 shows the plots of vertical 

velocity v at Y=0.5 with P=7 for various values of Power-Law index using Tangent 

method.  
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Figure 31.Plots of horizontal velocity u at X=0.5 with P=7 for various values of Power-
Law index 
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Figure 32.Plots of vertical velocity v at Y=0.5 with P=7 for various values of Power-
Law index 

 
 
 

Conclusions 

From the above results we can conclude that the non-Newtonian fluids require 

higher order polynomial approximation functions and higher order Gaussian quadrature 

compared to Newtonian fluids. There is some tangible effect of linearization before and 

after minimization on the accuracy of the solution. The effect is more pronounced for 

lower Power-Law indices compared to higher Power-Law indices. The linearization 

before minimization case converges at a faster rate compared to the case of linearization 

after minimization. And there seems to be some kind of locking that is causing the 

matrices to be ill-conditioned esp. for lower values of Power-Law indices. As explained 

in the previous chapters as the order of polynomial approximation functions is increased, 

the numerical solutions became more and more close to the benchmark solutions.  
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CHAPTER VI 

 

LEAST-SQUARES FORMULATION OF VORTICITY BASED SYSTEM FOR 

POWER-LAW FLUIDS 

 

Introduction 

In this chapter the vorticity based Power-Law fluids are considered. To illustrate 

how the Power-Law constitutive equation affects the finite element equations, a steady 

state, isothermal, incompressible, non-Newtonian fluid is considered. The equivalent 

system is defined by introducing vorticity ˆˆ Vω = ∇× as an auxiliary variable. By making 

use of the vector identity 2ˆ ˆ ˆ( )V V V∇×∇× = −∇ +∇ ∇i and the incompressibility 

condition ˆ 0V∇ =i , the original equations in 2D can be cast as following equivalent 

equations: 

                                                 ˆ ˆ
0u v

x y
∂ ∂

+ =
∂ ∂

 in Ω,                                         (5.1) 

                         ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ (2 ) ( ) x
u u p u u vu v f
x y x y x x y y x

ω μ μμ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + − − + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 in Ω,       (5.2) 

                           ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ (2 ) ( ) y
u u p v u vu v f
x y y x y y x y x

ω μ μμ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + − − − + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 in Ω,     (5.3) 

                                              ˆ ˆˆ 0u v
y x

ω ∂ ∂
+ − =
∂ ∂

 in Ω,                                        (5.4) 

                                                                 ˆ ˆ sV V=  on VΓ ,                                              (5.5) 

                                                                ˆˆ ˆ sn fσ =i  on ωΓ                                            (5.6) 
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where 
( 1)

2
0 2̂ˆ ˆ ( )

n

Iμ μ
−

= and
22 2

2
ˆ ˆ ˆ ˆˆ 2 2u v u vI
x x y x

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
.Typically V ωφ = Γ ∩Γ i.e., 

if velocity is specified at a boundary, vorticity need not be specified there. Also for 2D 

case the vorticity vector ˆ ˆ(0,0, )ω ω= i.e. it has component only in Z-direction. The 

above equations can be non dimensionalized as explained in the previous chapter. The 

Navier-Stokes equation is transformed to: 

                                                  0u v
x y
∂ ∂

+ =
∂ ∂

 in Ω,                                        (5.7)                      

                         (2 ) ( ) x
u u p u u vu v f
x y x y x x y y x

ω μ μμ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + − − + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 in Ω,       (5.8) 

                         (2 ) ( ) y
u u p v u vu v f
x y y x y y x y x

ω μ μμ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + − − − + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 in Ω,       (5.9) 

                                                0u v
y x

ω ∂ ∂
+ − =
∂ ∂

 in Ω,                                   (5.10) 

                                                                 sV V=  on VΓ ,                                            (5.11) 

                                                                  ˆ sn fσ =i  on ωΓ                                        (5.12) 

where
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1 ( )
Re

n

n

Iμ
−

= and
22 2

2 2 2u v u vI
x x y x

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

The terms ,
x y
μ μ⎛ ⎞∂ ∂

⎜ ⎟∂ ∂⎝ ⎠
 make the above equations to be of the same order 

derivatives as that of the original differential equation. This requires use of at Least 1C -

continuous functions for the velocity field. This higher order differentiability 

requirement is again a practical disadvantage. And it is also very difficult to derive the 
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approximation functions that belong to 1C -continuous space. One new method that is 

tried out is to see if the higher order approximation functions that belong to Lagrange 

family of 0C -continuity can be used to solve the problem. It should be noted that in all 

the previous chapters, only the first order derivatives of the approximation functions are 

required to be evaluated, but for this problem both the first order and the second order 

derivatives of the approximation functions have to be evaluated. Like before, we can 

describe the variational problem by minimizing the above functional with respect to 

chosen approximation spaces. The minimum requirement on approximation functions is 

again taken to be that of 0C -continuity. Since the formulation is based on variational 

frame work there are no compatibility restrictions between velocity and pressure 

approximation spaces, so same Lagrange basis can be used for all primary 

variables ( , , )V p ω . 

 

Least-Squares Formulation 

The Least-Squares functional associated with the above set over a typical 

element eΩ  with the residuals is: 

                             2 2 2 2
1 2 3 4

1( , , ) [( ) ( ) ( ) ( ) ]
2 e

I V p R R R R dω
Ω

= + + + Ω∫            (5.13) 

where  

                                                     1
u vR
x y
∂ ∂

= +
∂ ∂

                               (5.14) 

                             2 (2 ) ( ) x
u u p u u vR u v f
x y x y x x y y x

ω μ μμ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + − − + −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 (5.15) 
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                            3 (2 ) ( ) y
u u p v u vR u v f
x y y x y y x y x

ω μ μμ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + − − − + −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
   (5.16)                     

                                               4
u vR
y x

ω ∂ ∂
= + −

∂ ∂
                                 (5.17) 

and the primary variables ( , , , )u v p ω are approximated by the expansions of the form 

                                         
1

( , ) ( , )
n

j
j

u x y u j x y
=

= Ψ∑ , 
1

( , ) ( , )
n

j
j

v x y v j x y
=

= Ψ∑ ,                          

                                        
1

( , ) ( , )
n

j
j

p x y p j x y
=

= Ψ∑ ,
1

( , ) ( , )
n

j
j

x y j x yω ω
=

= Ψ∑                (5.18) 

where jψ  are  the Lagrange family interpolation functions.  

 

Finite Element Model 

By minimization of the Least-Squares functional with nodal values of velocities, 

pressure, and vorticity, we obtain 

                                  0I I I II p u v
p u v

δ δ δ δ δω
ω

∂ ∂ ∂ ∂
= + + + =
∂ ∂ ∂ ∂

                (5.19) 

which yields four sets of ‘n’ equations each over a typical element: 

                                 0, 0, 0, 0I I I Ip u v
p u v
δ δ δ δω

ω
∂ ∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂

               (5.20) 

The finite element model after substituting the approximation spaces is of the form 

shown below: 
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11 12 13 14 1

21 22 23 24 2

31 32 33 34 3

41 42 43 44 4

[ ][ ][ ][ ] { }{ }
[ ][ ][ ][ ] { } { }

{ }[ ][ ][ ][ ] { }
{ }[ ][ ][ ][ ] { }

K K K K fp
K K K K u f

vK K K K f
K K K K fω

⎡ ⎤ ⎧ ⎫⎧ ⎫
⎢ ⎥ ⎪ ⎪⎪ ⎪

⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭⎣ ⎦ ⎩ ⎭

                     (5.21) 

In developing the finite element model, two cases have been considered. In the 

first case the convective terms in the residuals associated with the momentum equations 

are linearized before taking the minimum of the functional (this is not in consistent with 

the theories of mathematics). Here they are taken to be known from previous iteration. 

This amounts to linearization of Least-Squares functional before minimization. In this 

case the residuals become: 

                      0 0
2 0 0 0 (2 ) ( ) x

u u p u u vR u v f
x y x y x x y y x

μ μωμ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + − − + −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
   (5.22) 

                      0 0
3 0 0 0 (2 ) ( ) y

u u p v u vR u v f
x y y x y y x y x

μ μωμ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + − − − + −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
    (5.23) 

where 0 0 0 0 0( , , , / , / )u v x yμ μ μ∂ ∂ ∂ ∂ are know from previous iteration. Hence their 

variational is taken to be zero in minimization step. In the other case minimization 

precedes the linearization (this is believed to be in consistent with the theories of 

mathematics). Here the viscosity also contributes to the stiffness coefficients in the finite 

element model, as it is not constant anymore.  

 

Numerical Example 

The ‘lid-driven’ cavity is a standard test problem in the computational fluid 

dynamics. The problem is characterized by a square cavity in which the driving force for 
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the flow is the shear created by the lid. Figure 33 shows a schematic of the cavity with 

the boundary conditions and the finite element discretization.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 33.Computational domain using non-uniform 5x5 rectangular elements 

 
 
 

The above problem is solved by direct-iteration and tangent method with order of 

polynomials ranging from P=3 to P=5. The coefficient matrix is evaluated using a 

Gaussian quadrature of (2P+1) in both the co-ordinate directions. The Reynolds number 

Ren for Power-Law fluid is fixed as 100 for all the cases. Convergence is declared when 

the Euclidean norm is less than 310− , which typically took 7-10 iterations. However the 
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number of iterations for the linearization before minimization case was less compared to 

case of linearization after minimization. 

 

Results 

For P=3, the program did not converge for lower values of Power-Law index 

(0.25) and did not give correct results for other values of  Power-Law index (0.5, 0.75, 

1.0, 1.25 and 1.5). The results from direct iteration method were not good when 

compared to that of the tangent method. For P=5, the program did not converge for 

lower values of Power-Law index (0.25) but the results for other values of Power-Law 

index (0.75, 1.0, 1.25 and 1.5) were good. As with the previous cases the results from 

direct iteration method were not good when compared to that of the tangent method. 

Also, for P=5, the results from linearization before minimization case were not good 

compared to case of linearization after minimization.  

Case-I (Linearization before Minimization) 

Figure 34 shows the plots of horizontal velocity u at X=0.5 with P=5 for various 

values of Power-Law index using Tangent method. Figure 35 shows the plots of vertical 

velocity v at Y=0.5 with P=5 for various values of Power-Law index using Tangent 

method.  
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Figure 34.Plots of horizontal velocity u at X=0.5 with P=5 for various values of Power-
Law index for linearization before minimization 
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Figure 35.Plots of vertical velocity v at Y=0.5 with P=5 for various values of Power-
Law index for linearization before minimization 
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Case-II (Linearization after Minimization) 

Figure 36 shows the plots of horizontal velocity u at X=0.5 with P=5 for various 

values of Power-Law index using Tangent method. Figure 37 shows the plots of vertical 

velocity v at Y=0.5 with P=5 for various values of Power-Law index using Tangent 

method.  
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Figure 36.Plots of horizontal velocity u at X=0.5 with P=5 for various values of Power-
Law index 
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Figure 37.Plots of vertical velocity v at Y=0.5 with P=5 for various values of Power-
Law index 

 
 
 

Conclusions 

From the above results we can conclude that the non-Newtonian fluids require 

higher order polynomial approximation functions and higher order Gaussian quadrature 

compared to Newtonian fluids. There is some tangible effect of linearization before and 

after minimization on the accuracy of the solution. The effect is more pronounced for 

lower Power-Law indices compared to higher Power-Law indices. The linearization 

before minimization case converges at a faster rate compared to the case of linearization 

after minimization. And there seems to be some kind of locking that is causing the 

matrices to be ill-conditioned esp. for lower values of Power-Law indices. As explained 

in the previous chapters as the order of polynomial approximation functions is increased, 

the numerical solutions became more and more close to the benchmark solutions. And 
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finally the new method of using the higher order approximation functions that belong to 

Lagrange family of 0C -continuity to solve the present problem seems to give good 

results. 
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CHAPTER VII 

 

REDUCED INTEGRATION PENALTY FINITE ELEMENT MODEL  

FOR POWER-LAW FLUIDS 

 

Introduction 

The governing equations for steady state, incompressible, viscous, Newtonian 

fluids under isothermal conditions are: 

0V∇ =i in Ω,                                                     (7.1)                           

( ) ( ) ( )0 0
TV V p V V fρ μ ρ⎡ ⎤∇ +∇ − ∇ ∇ + ∇ =⎣ ⎦i i  in Ω,               (7.2)                        

sV V=  on VΓ ,                                                   (7.3)                            

sn fσ
∧

=i  on fΓ                                                 (7.4) 

where V fΓ = Γ ∪Γ  and V fφ = Γ ∩Γ , f is the force term , n
∧

is the outward unit normal 

on the boundary of Ω, μ  is the viscosity of the fluid, 

( ) ( ) ( )I 2 Tp V Vσ μ ⎡ ⎤= − − ∇ + ∇⎣ ⎦ , sV  is the prescribed value of  velocity on the 

boundary VΓ , and sf  is the prescribed value of tractions on the boundary fΓ . The above 

equations in two-dimensional form can be represented as: 

0u v
x y
∂ ∂

+ =
∂ ∂

 in Ω,                                               (7.5) 



 91

                      0 02 x
u u u u v pu v f
x y x x y y x x

ρ μ μ ρ
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ − − + + =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

 in Ω,  (7.6) 

                       0 02 y
v v v u v pu v f
x y y y x y x y

ρ μ μ ρ
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ − − + + =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 in Ω, (7.7) 

                                        sV V=  on VΓ ,                                               (7.8) 

                                                                sn fσ
∧

=i  on fΓ                                             (7.9) 

where (u , v ) are the horizontal and vertical components of velocity vector “V” and 

( xf , yf ) are the horizontal and vertical components of body force vector f. 

There several different finite element models for the above equations. The 

conventional one is a natural formulation in which the weak forms of the above 

equations are used are to construct the finite element model. The resulting finite element 

model is termed the mixed model. The phrase “mixed” is used because velocity variables 

are mixed with the force-like variable, pressure, and both types of variables are retained 

in a single formulation. More details on the mixed model can be found in the book on 

nonlinear finite element analysis by Dr. Reddy [72]. The second model is based on the 

interpretation that the continuity equation (7.1) is an additional relation among the 

velocity components (i.e., a constraint among the iv ), and the constraint is satisfied in a 

Least-Squares (i.e. approximate) sense. 

This particular method of including the constraint in the formulation is known as 

the penalty function method, and the model is termed the penalty-finite element model. In 

this case, the pressure variable is effectively eliminated from the formulation. It is 

informative to note that the velocity-pressure (or mixed) formulation is the same as the 
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Lagrange multiplier formulation, wherein the constraint is included by means of the 

Lagrange multiplier method. The Lagrange multiplier turns out to be the negative of the 

pressure. 

 

Penalty Finite Element Formulation 

The penalty function method allows us to reformulate a problem with constraints 

as one without constraints. In order to use the penalty function method for the flow of a 

viscous incompressible fluid, first it is reformulated as a variational problem subjected to 

a constraint. For the purpose of describing the penalty function method, we consider the 

steady Stokes flow problem (i.e. without time-dependent and nonlinear terms) in two 

dimensions. Then the penalty method is applied to the variational problem with a 

constraint. The development will then be extended to unsteady Navier-Stokes equations. 

The weak forms of the above equations can be expressed in the form (neglecting time 

derivatives and nonlinear terms): 

( ) ( )( ) ( ), , , , , , ,x y x yB w w q u v p l w w q=                         (7.10)                             

where ( ), ,x yw w q are the weight functions used for the momentum and continuity 

equations, respectively, ( , )B i i is a bilinear form [i.e., an expression that is linear in 

( ), ,x yw w q  as well as ( , , )u v p ] and ( )l i  is a linear form, defined by: 
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       ( ) ( )( ), , , , , 2
e

y yx x
x y

w ww wu v u vB w w q u v p dxdy
x x y y y x y x

μ
Ω

⎡ ∂ ∂ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂∂ ∂ ∂ ∂
= + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
∫  

                                                
e

yx ww u vp q dxdy
y x y x

Ω

⎡ ∂ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂
− + + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦
∫                    (7.11) 

( ) ( ) ( ), ,
e e

x y x x y y x x y yl w w q w f w f dxdy w t w t dsρ
Ω Γ

= + + +∫ ∫                  (7.12) 

and ( ),x yt t are the boundary stress components defined as below:  

                    2x x y
u u vt p n n
x y x

μ μ
⎛ ⎞∂ ∂ ∂⎛ ⎞= − + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

                              (7.13) 

                   2y x y
u v vt n p n
y x y

μ μ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂

= + + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
                               (7.14) 

The statement in Eq. (7.10) is known as the variational problem associated with steady-

state Stokes problem. 

Suppose that the velocity field ( ),u v  is such that the continuity equation is 

satisfied identically. Then the weight functions ( ),x yw w , being virtual variations of the 

velocity components, also satisfy the continuity equation: 

0yx www
x y

∂∂∇ = + =
∂ ∂

i                             (7.15) 

As a result, the second integral expression in the bilinear form (7.10) drops out, and the 

pressure, and hence the weight function q, does not appear explicitly in the variational 

problem (7.10). The resulting variational problem now can be stated as follows: among 
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all vectors ˆ ˆx yV ue ve= + that satisfies the continuity equation (7.1), find the one that 

satisfies the variational problem: 

                             ( ) ( )( ) ( )0 0, , , ,x y x yB w w u v l w w=                             (7.16)                          

for all admissible weight functions ˆ ˆx x y yw w e w e= + [i.e. that which satisfies the condition 

0w∇ =i . The bilinear and linear forms in Eq. (7.16) are defined by: 

0 (( , ), ( , )) 2
e

y yx x
x y

w ww wu v u vB w w u v dxdy
x x y y y x y x

μ
Ω

⎡ ∂ ∂ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂∂ ∂ ∂ ∂
= + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
∫      (7.17) 

( ) ( )0 ( , )
e e

x y x x y y x x y yl w w w f w f dxdy w t w t dsρ
Ω Γ

= + + +∫ ∫                           (7.18)        

The variational problem in Eq. (7.16) is a constrained variational problem, 

because the solution vector “V” is constrained to satisfy the continuity equation. The 

bilinear form ( )0 ,B w V is symmetric i.e. ( ) ( )0 0, ,B w V B V w= and also linear in both its 

arguments. Whenever the bilinear form of a variational problem is symmetric in its 

arguments, it is possible to construct a quadratic functional such that the minimum of the 

quadratic functional is equivalent to the variational problem. The quadratic functional is 

given by the expression: 

( ) ( ) ( )0 0 0
1 ,
2

I V B V V l V= −                                      (7.19)                            

Now we can state that equations governing the steady flow of viscous incompressible 

fluids are equivalent to minimizing the quadratic functional 0 ( )I V subjected to the 

constraint: 
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                                     ( ) 0yx wwG V V
x y

∂∂
≡ ∇ = + =

∂ ∂
i                              (7.20) 

 

Reduced Integration Penalty Finite Element Formulation 

The advantage of the constrained problem is that the pressure variable “p” does 

not appear in the formulation. In the penalty function method, the constrained problem is 

reformulated as an unconstrained problem as follows: minimize the modified functional: 

                                              ( ) ( ) ( ) 2
0 2 e

e
pI V I V G V dxγ

Ω

= + ⎡ ⎤⎣ ⎦∫                                 (7.21)                           

where eγ is called the penalty parameter. Note that the constraint is included in a Least-

Squares sense into the functional. Seeking the minimum of the modified functional 

( )pI V  is equivalent to seeking the minimum of both ( )0I V and ( )G V , the latter with 

respect to the weight eγ . The larger the value of eγ , the more exactly the constraint is 

satisfied. The necessary condition for the minimum of ( )pI V is: 

( ) 0pI Vδ =                                          (7.22)                             

from the above we have:  

0 2
e e

x
u u u u v dxdy uf dxdy

x x y y x
δ δμ ρδ

Ω Ω

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞= + + −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫                         

                           
e e

x e
u u vut ds dxdy

x x y
δδ γ

Γ Ω

⎛ ⎞∂ ∂ ∂
− + +⎜ ⎟∂ ∂ ∂⎝ ⎠
∫ ∫                                              (7.23) 
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0 2
e e

y
v v v u v dxdy vf dxdy

y y x y x
δ δμ ρδ

Ω Ω

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
= + + −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫  

                            
e e

y e
v u vvt ds dxdy

y x y
δδ γ

Γ Ω

⎛ ⎞∂ ∂ ∂
− + +⎜ ⎟∂ ∂ ∂⎝ ⎠
∫ ∫                                             (7.24) 

These two statements provide the weak forms for the penalty finite element 

model with xu wδ = and yv wδ = . The pressure does not explicitly appear in the above 

weak form equations although it is a part of the boundary stresses. The pressure can be 

post computed, from the relation: 

                                                             e
u vp
x yγ γ

⎛ ⎞∂ ∂
= − +⎜ ⎟∂ ∂⎝ ⎠

                                       (7.25)                             

Now the nonlinear terms can be added without affecting the above discussion. Also the 

time derivative terms can be added, but in this study only steady state flow is considered, 

hence they are not included. The complete equations are given as:  

           0 2
e e

x
u v u u u u vu u v dxdy uf dxdy
x y x x y y x

δ δδ ρ μ μ ρδ
Ω Ω

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= + + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫  

              
e e

x e
u u vut ds dxdy

x x y
δδ γ

Γ Ω

⎛ ⎞∂ ∂ ∂
− + +⎜ ⎟∂ ∂ ∂⎝ ⎠
∫ ∫                                                           (7.26) 

           0 2
e

u v v v v u vv u v dxdy
x y y y x y x

δ δδ ρ μ μ
Ω

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∫      

              
e e e

y y e
v u vvf dxdy vt ds dxdy

y x y
δρδ δ γ

Ω Γ Ω

⎛ ⎞∂ ∂ ∂
− − + +⎜ ⎟∂ ∂ ∂⎝ ⎠
∫ ∫ ∫                                   (7.27) 

The penalty finite element model derived above falls into the category known as 

reduced integration penalty (RIP) method. The penalty terms in the above are evaluated 
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using reduced integration rule. The choice of the penalty parameter is largely dictated by 

the ratio of the magnitude of the penalty terms to the viscous and convective terms (or 

compared to the Reynolds number, Re), the mesh, and the precision of the computer. 

Generally the value of penalty parameter ranges from 410 Reγ = to 1210 Reγ = . The 

penalty finite element model is obtained from the above equations by substituting the 

finite element approximation for velocity field, and e
iuδ ψ= and e

ivδ ψ= : 

                                                     ( ) ( ) ( )C , K K FV Vρ μ γ⎡ ⎤+ + =⎣ ⎦                            (7.28)                             

where ( )C ,Vρ is the contribution due to convective terms, K( )μ is contribution from 

viscous terms, and ( )K γ is contribution from penalty terms, which come from the 

incompressibility constraint. In theory as we increase the value ofγ , the conservation of 

mass is satisfied more exactly. However, in practice, for some large value ofγ , the 

contribution viscous terms would be negligibly small compared to the penalty terms in 

the computer. Thus, if ( )K γ is non-singular (i.e. invertible) matrix, the solution satisfies 

the continuity equation, it does not satisfy the momentum equations. In this case the 

discrete problem is said to be over constrained or “locked”. If ( )K γ is singular, then the 

sum ( ) ( ) ( )C , K KVρ μ γ⎡ ⎤+ +⎣ ⎦ is non-singular (because ( ) ( )C , KVρ μ+⎡ ⎤⎣ ⎦ is non-

singular), and a non-trivial solution to the problem is obtained.  

The numerical problem described above is eliminated by proper evaluation of the 

integrals in ( )C ,Vρ , ( )K μ , and ( )K γ . It is found that if the coefficients of ( )K γ (i.e. 

penalty matrix coefficients) are evaluated using a numerical integration rule of an order 
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less than that required integrating them exactly; the finite element equations give 

acceptable solutions for the velocity field. This technique of under-integrating the 

penalty terms is known in the literature as reduced integration. Of course, as the degree 

of interpolation goes up, or very refined meshes are used, the resulting equations become 

less sensitive to locking. In this chapter as higher order interpolation terms are used there 

is no need for reduced integration. The pressure should be computed by evaluating the 

equation (7.25) at integration points corresponding to the reduced Gauss rule. This 

corresponds to using an interpolation for pressure that is one order less than the one used 

for velocity field. The pressure computed using the above equation at reduced 

integration points is not always reliable and accurate. Various techniques have been 

proposed in the literature to obtain the accurate pressure fields. 

 

Power-Law Fluids 

Although the above equations are derived for Newtonian fluids they are the same 

in case of non-Newtonian fluids too as in the above formulation viscosity μ has never 

been treated as constant. The viscosity varies as per the Power-Law model as:  

( )
( )1

2
0 2

n

Iμ μ
−

= where 
22 2

2 2 2u v u vI
x x y x

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
is the second invariant. The 

results for both the cases are compared using the 2D Lid Driven Cavity flow problem.  
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Numerical Example 

The ‘lid-driven’ cavity is a standard test problem in the computational fluid 

dynamics. The problem is characterized by a square cavity in which the driving force for 

the flow is the shear created by the lid. Figure 38 shows a schematic of the cavity with 

the boundary conditions and the finite element discretization.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 38.Computational domain using uniform 16 rectangular elements 

 
 
 

The above problem is solved by direct-iteration with order of polynomials 

ranging from P=2 to P=5. The coefficient matrix is evaluated using a Gaussian 

quadrature of (2P+1) in both the co-ordinate directions. For lower order P, reduced 

integration is used to evaluate the penalty terms, but for higher order P full integration is 
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used to evaluate the penalty terms. The Reynolds number Ren for Power-Law fluid is 

fixed as 100 and the penalty parameter is taken as 10^8 for all the cases. Convergence is 

declared when the Euclidean norm is less than 310− , which typically took 7-10 iterations.  

 

Results 

For P=2, reduced integration is used to evaluate the penalty terms, the program 

converged for all values of Power-Law index, but the results were not good. For P=3, 

reduced integration is used to evaluate the penalty terms, the program converged for all 

values of Power-Law index and the results were better compared to the previous case. 

For P=5, full integration is used to evaluate the penalty terms, the program converged for 

all values of Power-Law index and the results are also good. Figure 39 shows the plots 

of horizontal velocity u at X=0.5 with P=5 for various values of Power-Law index 

X=0.5. Figure 40 shows the plots of vertical velocity v at Y=0.5 with P=5 for various 

values of Power-Law index Y=0.5.  
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Figure 39.Plots of horizontal velocity u at X=0.5 with P=5 for various values of Power-
Law index using RIP 

 
 
 

0.0 0.2 0.4 0.6 0.8 1.0

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Ve
rti

ca
l V

el
oc

ity
, v

 a
t Y

=0
.5

Horizontal Distance, X

 n=0.25
 n=0.50
 n=0.75
 n=1.00
 n=1.25
 n=1.50
 Ghia et al. (1982)

 

Figure 40.Plots of vertical velocity v at Y=0.5 with P=5 for various values of Power-
Law index using RIP 

 



 102

Conclusions 

From the above results we can conclude that there is some kind of locking 

occurring with lower order polynomial approximation functions. The effect is more 

pronounced for lower Power-Law indices compared to higher Power-Law indices. As 

explained in the previous chapters as the order of polynomial approximation functions is 

increased, the numerical solutions became more and more close to the benchmark 

solutions.  
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CHAPTER VIII 

 

SUMMARY AND CONCLUSIONS 

 

In this work alternative Least-Squares based finite element formulations of 

Navier-Stokes equation for Newtonian and non-Newtonian fluids are presented. Although 

the Least-Squares formulation can be considered as a special case of the weighted-

residual method, it has its own standing as the true variational method since it is based on 

the minimization of a functional, whereas the other weighted-residual methods may not 

have corresponding functional whose first variation is equivalent to the governing 

equations. Variational methods (i.e., methods based on the existence of a functional 

whose extremum is equivalent to the governing equations) are considered to produce the 

‘best’ approximation to the exact solution of the equations being modeled. The Least-

Squares method satisfies the criteria desirable in a variational method. This has drawn a 

considerable attention for the solution of Stokes and Navier-Stokes equations ([11]-[17]). 

The Least-Squares method gives a more general, flexible and robust formulation 

procedure than weak form Galerkin-based finite element models and has several 

theoretical and computational advantages. Notably, it circumvents the ‘in-sup’ condition 

of LBB. As a result, equal order interpolation can be used for all the variables. It also 

results in symmetric, positive-definite coefficient matrix; hence robust iterative solvers 

can be employed to solve the system of algebraic equations. 
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In Chapter II, the steps involved in developing a Least-Squares based finite 

element model were presented for Poisson’s equation. The Direct-iteration and Newton-

Raphson iterative techniques were explained. The procedure was presented in a general 

setting by considering an abstract initial boundary value problem. The accuracy of the 

results was verified by increasing the order of the approximation spaces. 

In Chapter III, the Least-Squares formulation of vorticity based Navier-Stokes 

equations for a steady state, isothermal, incompressible Newtonian fluids was presented. 

To transform the second-order equations to first-order the vorticity vector Vω = ∇× was 

introduced. The minimum requirement on approximation functions was that they all be 

Lagrange family of 0C -continuity. Since the formulation was based on variational frame 

work there were no compatibility issues between velocity and pressure approximation 

spaces, and so same Lagrange basis was used for all primary variables ( , , )p V ω . The 

method of linearization of Least-Squares functional before and after minimization was 

explained. The effect of linearization was studied using Kovasznay flow problem with 

Direct-iteration iterative technique. The accuracy of the results was verified by 

increasing the order of the approximation spaces. From the results it was concluded that 

there is no significant impact of the linearization on the accuracy of the solution.  

In Chapter IV, the Least-Squares formulation of stress based Navier-Stokes 

equations for a steady state, isothermal, incompressible Newtonian fluids was presented. 

To define the equivalent first-order velocity-pressure-stress system, stress tensor 

( ) ( )TV V⎡ ⎤Γ = ∇ + ∇⎣ ⎦  (symmetric part of velocity gradient tensor) was introduced as 

auxiliary variable. The minimum requirement on approximation functions used for all 
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variables was that they all require Lagrange family of approximation functions (i.e., 0C -

continuity). Since the formulation was based on variational framework there were no 

compatibility issues between velocity and pressure approximation spaces, and so the 

same Lagrange basis was used for all primary variables ( , , , , )xx xy yyp V Γ Γ Γ . The method 

of linearization of Least-Squares functional before and after minimization was explained. 

The effect of linearization was studied by using ‘lid-driven’ cavity flow problem with 

Direct-iteration iterative technique. The accuracy of the results was verified by 

increasing the order of the approximation spaces. In the second formulation, continuity 

equation became an algebraic equation and was eliminated from the system with suitable 

modifications. This formulation carried one less degree of freedom compared to existing 

stress based first order formulations. The effect of linearization was studied using 

Kovasznay flow problem with Direct-iteration iterative technique. The accuracy of the 

results was verified by increasing the order of the approximation spaces.  From the results 

it was concluded that there is no significant impact of the linearization before or after 

minimization on the accuracy of the solution.  

In Chapter V, the Least-Squares formulation of stress based Navier-Stokes 

equations for a steady state, isothermal, incompressible non-Newtonian (Power-Law) 

fluids was presented. To define the equivalent first-order velocity-pressure-stress system, 

stress tensor ( ) ( ) 0TV Vμ ⎡ ⎤Γ − ∇ + ∇ =⎣ ⎦  (symmetric part of velocity gradient tensor) was 

introduced as auxiliary variables. The viscosity μ   of the fluid was varied as per Power-

Law. The Power-Law index was varied from 0.25 to 1.5 to study the shear thinning and 
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shear thickening fluids. The minimum requirement on approximation functions was that 

they all be Lagrange family of 0C -continuity. Since the formulation was based on 

variational framework there were no compatibility issues between velocity and pressure 

approximation spaces, and so same Lagrange basis was used for all primary 

variables ( , , , , )xx xy yyp V Γ Γ Γ . The method of linearization of Least-Squares functional 

before and after minimization was explained for Power-Law fluids. The effect of 

linearization was studied by using ‘lid-driven’ cavity flow problem with Direct-iteration 

and Newton-Raphson iterative techniques. The accuracy of the results was verified by 

increasing the order of the approximation spaces. From the results it was concluded that 

the non-Newtonian fluids require higher order polynomial approximation functions and 

higher order Gaussian quadrature compared to Newtonian fluids. The results were more 

accurate by tangent matrix than Direct-iteration technique for all Power-Law indices. The 

linearization before minimization case converged at a faster rate compared with 

linearization after minimization. There was some tangible effect of linearization before 

and after minimization on the accuracy of the solution. The effect was more pronounced 

for lower Power-Law indices compared to higher Power-Law indices. And there seemed 

to have some kind of locking that caused the matrices to be ill-conditioned especially for 

lower values of Power-Law indices. As with the case of Newtonian fluids, the numerical 

solutions became more and more close to the benchmark solutions with increase in the 

order of polynomial approximation functions. 

In Chapter VI, the Least-Squares formulation of vorticity based Navier-Stokes 

equations for a steady state, isothermal, incompressible non-Newtonian (Power-Law) 
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fluids was presented. To define the equivalent velocity-pressure-vorticity system, 

vorticity vector Vω = ∇×  was introduced as auxiliary variable. It was shown that, for 

Power-Law fluids, the vorticity vector did not reduce the original differential equations to 

first-order system. Hence it required use of at Least 1C -continuous functions for the 

velocity field. The higher-order differentiability was a practical disadvantage and was 

also complex to derive the approximation functions that belong to 1C -continuous space. 

A new method was tried to see if the higher-order approximation functions that belong to 

the Lagrange family of 0C -continuity could be used instead of 1C -continuity. The 

viscosity μ   of the fluid was varied as per Power-Law. The Power-Law index was varied 

from 0.25 to 1.5 to study the shear thinning and shear thickening fluids. Since the 

formulation was based on variational framework there were no compatibility issues 

between velocity and pressure approximation spaces, and so the same Lagrange basis was 

used for all primary variables ( , , )p V ω . The method of linearization of Least-Squares 

functional before and after minimization was explained for Power-Law fluids. The effect 

of linearization was studied by using ‘lid-driven’ cavity flow problem with Direct-

iteration and Newton-Raphson iterative technique. The accuracy of the results was 

verified by increasing the order of the approximation spaces. From the results it was 

concluded that the non-Newtonian fluids require higher-order polynomial approximation 

functions and higher-order Gaussian quadrature compared to Newtonian fluids. The 

results were more accurate by tangent matrix than Direct-iteration technique for all 

Power-Law indices. The linearization before minimization case converged at a faster rate 

compared with linearization after minimization. There was some tangible effect of 
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linearization before and after minimization on the accuracy of the solution. The effect 

was more pronounced for lower Power-Law indices compared to higher Power-Law 

indices. There seemed to have some kind of locking that caused the matrices to be ill-

conditioned especially for lower values of Power-Law indices. The new method which 

used higher-order approximation functions that belong to Lagrange family of 0C -

continuity instead of 1C -continuity, seemed to give good results. As with the case of 

Newtonian fluids, the numerical solutions became more and more close to the benchmark 

solutions as the order of polynomial approximation functions was increased. 

Finally, in Chapter VII, the reduced integration penalty finite element formulation 

of Navier-Stokes equations for a steady state, isothermal, incompressible non-Newtonian 

(Power-Law) fluids was presented. The continuity equation was an additional relation 

among the velocity components (i.e., a constraint among the iv ), and the constraint was 

satisfied in a Least-Squares (i.e. approximate) sense. The advantage of the constrained 

problem was that the pressure variable “p” does not appear in the formulation and it was 

post computed. The technique of under-integrating the penalty terms to reduce locking 

was explained. The viscosity μ   of the fluid was varied as per Power-Law. The Power-

Law index was varied from 0.25 to 1.5 to study the shear thinning and shear thickening 

fluids. The reduced integration penalty formulation was studied by using ‘lid-driven’ 

cavity flow problem with Direct-iteration iterative technique. The accuracy of the results 

was verified by increasing the order of the approximation spaces. From the results it was 

concluded that the non-Newtonian fluids require higher-order polynomial approximation 

functions and higher-order Gaussian quadrature compared to Newtonian fluids. Again, it 
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was found that there is some kind of locking with lower-order polynomial approximation 

functions. The effect was more pronounced for smaller values of Power-Law indix 

compared to larger values of Power-Law indix. As with the case of Newtonian fluids, the 

numerical solutions became more and more close to the benchmark solutions as the order 

of polynomial approximation functions was increased. 
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