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Multilevel modeling (MLM) is a popular way of assessing mediation effects with clustered data.

Two important limitations of this approach have been identified in prior research and a theoretical

rationale has been provided for why multilevel structural equation modeling (MSEM) should

be preferred. However, to date, no empirical evidence of MSEM’s advantages relative to MLM

approaches for multilevel mediation analysis has been provided. Nor has it been demonstrated that

MSEM performs adequately for mediation analysis in an absolute sense. This study addresses these

gaps and finds that the MSEM method outperforms 2 MLM-based techniques in 2-level models in

terms of bias and confidence interval coverage while displaying adequate efficiency, convergence

rates, and power under a variety of conditions. Simulation results support prior theoretical work

regarding the advantages of MSEM over MLM for mediation in clustered data.

Keywords: mediation, multilevel modeling, multilevel SEM, structural equation modeling

Most methods for addressing mediation hypotheses were designed for data collected using

simple random sampling. However, researchers are increasingly collecting data organized in

two or more hierarchical levels, such as children nested within schools, or repeated measures

nested within individuals. Traditional multiple linear regression (MLR) methods for assessing

Correspondence should be addressed to Kristopher J. Preacher, Department of Psychology, University of Kansas,

1415 Jayhawk Blvd., Rm. 426, Lawrence, KS 66045-7556, USA. E-mail: preacher@ku.edu

161

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
K
a
n
s
a
s
]
 
A
t
:
 
2
0
:
2
3
 
1
4
 
A
p
r
i
l
 
2
0
1
1



162 PREACHER, ZHANG, ZYPHUR

mediation (e.g., Baron & Kenny, 1986; MacKinnon, Lockwood, Hoffman, West, & Sheets,

2002; MacKinnon, Warsi, & Dwyer, 1995) are inappropriate in multilevel settings, primarily

because the assumption of independence of observations is violated in clustered data. Con-

sequently, there is a growing awareness that clustering needs to be taken into account when

statistically assessing mediation effects.

Multilevel modeling (MLM)—sometimes referred to as hierarchical linear modeling, random

coefficient modeling, or mixed-effects modeling—is a family of regression-based methods

that can be greatly superior to multiple linear regression when data are clustered in some

fashion (Kreft & de Leeuw, 1998; Raudenbush & Bryk, 2002; Snijders & Bosker, 1999).

MLM incorporates different error terms for different levels of the data hierarchy, yields more

accurate Type I error rates than nonhierarchical methods, and permits intercepts and slopes to

vary randomly across clusters. But exactly how to use MLM to address mediation hypotheses

with clustered data has proven controversial. Several papers published over the last decade

present MLM strategies for assessing multilevel mediation (Bauer, Preacher, & Gil, 2006;

Kenny, Korchmaros, & Bolger, 2003; Krull & MacKinnon, 1999, 2001; MacKinnon, 2008;

Pituch & Stapleton, 2008; Pituch, Stapleton, & Kang, 2006; Pituch, Murphy, & Tate, 2010;

Pituch, Whittaker, & Stapleton, 2005; Raudenbush & Sampson, 1999; Z. Zhang, Zyphur, &

Preacher, 2009). More recently, Preacher, Zyphur, and Zhang (2010) identified two major

limitations associated with the MLM family of techniques when applied to mediation analysis.

First, although MLM methods have proven useful for designs in which the independent variable

X is assessed at either level and the mediator M and outcome variable Y are assessed at

Level 1, MLM cannot accommodate upper level mediators or outcome variables. Therefore,

theoretical models involving Level 2 variables being predicted by Level 1 or Level 2 variables

in these roles (e.g., models for so-called 1–1–2 or 1–2–2 designs,1 using a notation convention

suggested by Krull & MacKinnon, 2001) cannot be fit using MLM. Second, for multilevel

mediation models involving linkages between pairs of Level 1 variables (e.g., the M ! Y

effect in a 2–1–1 design), the Within and Between components of these effects are conflated

in many traditional applications of MLM. That is, the effect of M on Y within clusters and

the effect of M on Y between clusters are implicitly constrained to be equal. In the context of

this study we term the application of MLM that conflates Within and Between components of

effects conflated multilevel modeling (CMM).

A common device used to separate Level 1 effects into Within and Between components

is to group mean center the Level 1 predictor and introduce the cluster mean as a Level 2

predictor (Hedeker & Gibbons, 2006; Kreft & de Leeuw, 1998; Raudenbush & Bryk, 2002;

Shin & Raudenbush, 2010; Snijders & Bosker, 1999). In the context of mediation analysis,

Krull and MacKinnon (2001), MacKinnon (2008), and Z. Zhang et al. (2009) suggested

“unconflating” Level 1 effects in mediation models that include 1–1 linkages, a strategy we

term unconflated multilevel modeling (UMM). However, even though the resulting Between

effect is separated from the Within effect, the Between effect is biased toward the Within

effect to the extent that intraclass correlations2 (ICCs) are low and cluster sizes are small.

This bias, in turn, will also contribute to bias in any Between-level indirect effect of which it

1For example, 1–2–2 denotes a design in which the independent variable X is assessed at Leve1 1, whereas both

the mediator M and outcome Y are assessed at Level 2.
2ICC is often interpreted as the proportion of variability in a variable that is between-cluster.
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serves as a component effect. To overcome these limitations, Preacher et al. (2010) suggested

that multilevel structural equation modeling (MSEM) should be used to investigate mediation

effects in clustered data.

Prior research has shown that the traditional MLM approach has multiple differences from

what we refer to as MSEM. First, in MLM, group means are used at Level 2 to represent group

standings on a Level 1 predictor variable (Raudenbush & Bryk, 2002), which, as noted earlier,

biases Between effects. In MSEM, group standings on all Level 1 variables are treated as latent,

thereby correcting for sampling error. Second, in traditional MLM, variables are observed and

measurement error is not accounted for in model estimation, whereas MSEM allows for the

inclusion of traditional latent variables to account for measurement error (Marsh et al., 2009).

Third, traditional MLM conflates Between- and Within-level effects of Level 1 variables on

other Level 1 variables (MacKinnon, 2008; Z. Zhang et al., 2009). In MSEM, the Between and

Within parts of all variables are separated, allowing for an examination of direct and indirect

effects at each level, as well as contextual effects across levels. With these features of the

MSEM approach, Preacher et al. (2010) proposed it as a useful tool for researchers interested

in investigating multilevel mediation.

Despite Preacher et al.’s (2010) theoretical developments, there remains no empirical evi-

dence that the MSEM method for multilevel mediation accomplishes what it is intended to.

Lüdtke et al. (2008) showed that MSEM dramatically reduces bias in contextual effects relative

to a group mean-centered MLM approach. However, their study did not examine indirect effects

or the conflation of Within and Between components of effects, nor did they address the ability

of MSEM to include upper level outcomes. Hence, it is unclear to what extent the findings of

Lüdtke et al. generalize to the estimation of indirect effects. That is, no research has shown

that MSEM reduces or eliminates bias in indirect effects to a substantially greater degree than

traditional conflated and unconflated MLM approaches. It also has not been demonstrated that

MSEM performs well at estimating and testing indirect effects in an absolute sense. That is,

apart from our expectation that MSEM is superior to MLM-based methods in terms of bias, it is

hoped that MSEM performs adequately in terms of confidence interval (CI) coverage, efficiency

of estimation, model convergence, and statistical power for detecting nonzero indirect effects.

Addressing these unanswered questions is the purpose of this study.

In this study, we address two goals via simulation. Regarding the first goal, based on

developments and findings reported by Preacher et al. (2010) and Lüdtke et al. (2008), we

hypothesize that MSEM will demonstrate dramatically reduced bias in Between indirect effects

relative to competing MLM-based approaches. Regarding the second goal, based on prior

MSEM simulations outside the mediation context, we hypothesize that MSEM will demonstrate

adequate performance in terms of achieving nominal CI coverage and show low absolute levels

of estimation variability (i.e., high efficiency), adequate model convergence rates, and adequate

power for detecting nonzero indirect effects. In our simulation, bias is considered acceptably

small if it lay (arbitrarily) between ˙5% of 0, nominal coverage is 95%, adequate convergence

rates are set arbitrarily at 95%, and adequate power is taken to be at least .80 (Cohen, 1988).

It is not possible to set meaningful benchmarks for low estimation variability, except to note

that smaller is better, all else being equal. We are also interested in the performance of MSEM

at low ICCs, as Lüdtke et al. (2008) encountered more estimation problems at smaller ICCs.

These hypotheses are treated in more detail in a later section with respect to the specific model

chosen for simulation.
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164 PREACHER, ZHANG, ZYPHUR

METHODS TO BE COMPARED

The three methods we describe are compared using data simulated from a 2–1–1 design that

is common in the applied literature (e.g., Hom et al., 2009; Komro et al., 2001; Piontek et al.,

2008; Roth, Assor, Kanat-Maymon, & Kaplan, 2007). Because the independent variable (Xj )

in the 2–1–1 design varies strictly between clusters, the indirect effect in such a design must be

a Between indirect effect; that is, any effect of Xj , indirect or otherwise, must be a Between

effect because Xj cannot covary with within-cluster individual differences. The 2–1–1 design

also includes a 1–1 link between Mij and Yij , allowing us to investigate the performance of

the various methods when the Between and Within components of this effect differ in the

population.

Conflated Multilevel Modeling

The first method we consider is traditional MLM with conflated Within and Between effects.

A variety of pure MLM and hybrid MLR/MLM models have been proposed for assessing

mediation (Krull & MacKinnon, 1999, 2001; Pituch & Stapleton, 2008; Pituch, Stapleton,

& Kang, 2006; Raudenbush & Sampson, 1999). Kenny et al. (2003) and Bauer et al.

(2006) described a multilevel model for 1–1–1 designs that permits random intercepts and

fixed or random slopes for all 1-1 links. Because we use a 2–1–1 design for purposes

of the simulation, we adopt the random-intercept, fixed-slope model for 2–1–1 designs

described by Krull and MacKinnon (1999, 2001), MacKinnon (2008), and Pituch and Stapleton

(2008):

Mij D “M0j C eMij

“M0j D ”M00 C ”M01Xj C uM0j

(1)

Yij D “Y 0j C “Y 1j Mij C eY ij

“Y 0j D ”Y 00 C ”Y 01Xj C uY 0j

“Y 1j D ”Y 10

(2)

where i indexes Level 1 units; j indexes Level 2 units; “M0j and “Y 0j are random intercepts;

”M00 and ”Y 00 are fixed intercept means; ”M01, ”Y 01, and ”Y 10 are fixed slopes; eMij and eY ij

are Level 1 residuals; and uM0j and uY 0j are Level 2 residuals. The indirect effect in this model

is a Between indirect effect, quantified as ”M01 � ”Y 10, because Xj is a purely cluster-level

variable. In estimating only one effect of Mij on Yij without first separating Mij into Within

and Between components, this MLM approach conflates the Within and Between components

of this effect. That is, ”Y 10 is a weighted average of the effects of the Between and Within

components of Mij on Yij (Preacher et al., 2010; Z. Zhang et al., 2009), and assumes that the

contextual effect is zero. Thus, the Between indirect effect is likely to be biased if the Within

and Between effects actually differ.
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Unconflated Multilevel Model

To address the conflation problem, Krull and MacKinnon (2001), MacKinnon (2008), and

Z. Zhang et al. (2009) proposed explicitly separating Within and Between components of

variables in mediation models into between-cluster components (cluster means) and within-

cluster components (deviations from cluster means). Z. Zhang et al. (2009) concentrated on

2–1–1 designs, with the expectation that results would also apply to 1–1–1 designs. The model

equations are:

Mij D “M0j C eMij

“M0j D ”M00 C ”M01Xj C uM0j

(3)

Yij D “Y 0j C “Y 1j .Mij � M:j / C eY ij

“Y 0j D ”Y 00 C ”Y 01Xj C ”Y 02M:j C uY 0j ;

“Y 1j D ”Y 10

(4)

where M:j is the cluster mean of Mij and other terms are as previously defined. Because Xj

is a purely Between cluster construct, the only indirect effect that can occur in this model is

a Between indirect effect. Thus, the indirect effect is quantified as ”M01 � ”Y 02. Note that this

model reduces to the CMM for 2–1–1 data when ”Y 02 (the Between effect of Mij on Yij ) and

”Y 10 (the Within effect of Mij on Yij ) are constrained to equality.

Despite the fact that this procedure explicitly addresses the conflation issue, problems remain.

First, because the method is presented within the MLM framework, it still suffers from the

limitation that outcome variables must be assessed at Level 1. Consequently, whereas the

UMM method accommodates 2–1–1 and 1–1–1 designs, it cannot accommodate other plausible

three-variable designs, including 2–2–1, 1–1–2, 1–2–2, 1–2–1, and 2–1–2 designs, all of which

involve at least one linkage in which a Level 2 variable serves as the dependent variable.

Second, even though the UMM method separates Within and Between effects, the Between

effects nevertheless are biased toward the corresponding Within effects (Preacher et al., 2010).

Multilevel Structural Equation Modeling

To address the limitations of the various MLM approaches for assessing mediation in nested

data, Preacher et al. (2010) proposed using an MSEM approach pioneered by B. O. Muthén

and Asparouhov (2008). The MSEM framework is general enough to accommodate binary,

ordered categorical, continuous normal, and count variables, latent categorical variables, and

finite mixtures. Here we focus on continuous normally distributed variables without latent

classes or mixtures. The two-level MSEM is represented in Equations 5 through 7:

Level 1 measurement model: Yij D �j C ƒj ˜ij C Kj Xij C ©ij (5)

Level 1 structural model: ˜ij D ’j C Bj ˜ij C �j Xij C —ij (6)

Level 2 structural model: ˜j D � C “˜j C ”Xj C —j (7)
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where the residual terms ©ij , —ij , and —j are multivariate normally distributed and independent

across equations. Equations 5 and 6 represent, respectively, the measurement and structural

equations of the structural equation model employed in Mplus (L. K. Muthén & Muthén,

1998–2007), and in LISCOMP before it (B. O. Muthén, 1984). Yij is a vector containing

all endogenous measured variables, Xij contains Level 1 exogenous measured variables, Xj

contains Level 2 exogenous measured variables, and the remaining vectors and matrices

parameterize the model with fixed or random coefficients. The addition of a j subscript to

the parameter matrices indicates that elements of some of them (�j , ƒj , Kj , ’j , Bj , and

�j ) can vary across clusters. The special case of the model in Equations 5 through 7 that

corresponds to a mediation model for 2–1–1 data with fixed slopes and no latent variables

applies the following constraints: �j D � D 0, ƒj D ƒ D ŒƒW –
–

ƒB �, Kj D K D 0,

�j D � D 0, Bj D B, and ‚ D 0. Equations 5, 6, and 7 reduce to:

Yij D ƒ˜ij

D

2

4

Xij

Mij

Yij

3

5 D

2

4

0 0 1 0 0

1 0 0 1 0

0 1 0 0 1–
–

–
–

– 3

5

2

6

6

6

6

4

˜Mij

˜Y ij
– – –
˜Xj

˜Mj

˜Yj

3

7

7

7

7

5

(8)

˜ij D ’j C B˜ij C —ij

D

2

6

6

6

6

4

˜Mij

˜Y ij
– – –
˜Xj

˜Mj

˜Yj

3

7

7

7

7

5

D

2

6

6

6

6

4

0

0
– – –
’˜Xj

’˜Mj

’˜Yj

3

7

7

7

7

5

C

2

6

6

6

6

4

0 0 0 0 0

BYM 0 0 0 0
– – – – – – – – – – –

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0–
–

–
–

–
–

–
–

– 3

7

7

7

7

5

2

6

6

6

6

4

˜Mij

˜Y ij
– – –
˜Xj

˜Mj

˜Yj

3

7

7

7

7

5

C

2

6

6

6

6

4

—Mij

—Y ij
– – –

0

0

0

3

7

7

7

7

5

(9)

˜j D � C “˜j C —j

D

2

4

’˜Xj

’˜Mj

’˜Yj

3

5 D

2

4

�’˜Xj

�’˜Mj

�’˜Yj

3

5 C

2

4

0 0 0

“MX 0 0

“YX “YM 0

3

5

2

4

’˜Xj

’˜Mj

’˜Yj

3

5 C

2

4

—BYMj

—’˜Xj

—’˜Mj

3

5 (10)

where partitions separate Within and Between portions of the model. The vector ’j contains

the latent Within components of Mij .˜Mij / and Yij .˜Y ij / and the latent Between components

of Xj .˜Xj /, Mij .˜Mj /, and Yij .˜Yj /, and B contains the fixed Within slope of Yij regressed

on Mij .BYM /; this slope could be made random if we choose. Equation 9 also equates the

Between latent components of Xj , Mij , and Yij with random intercepts ’˜Xj , ’˜Mj , and ’˜Yj ,

respectively. The vector ˜j contains the random coefficients, here the random intercepts from

’j . Because there are only two variables (Mij and Yij ) with Within variation, there is no

Within indirect effect. The “ matrix contains the path coefficients making up the Between

indirect effect, which is quantified by multiplying the Between effect of Xj on Mij .“MX / by

the Between effect of Mij on Yij .“YM /. See Heck and Thomas (2009), Kaplan (2009), B. O.
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Muthén and Asparouhov (2008), and Preacher et al. (2010) for more thorough explanations of

the general MSEM and its capabilities.

SIMULATION

Simulation Design

The population data-generating model was a model for 2–1–1 data with fixed slopes, but

findings obtained are expected to generalize to other mediation models containing 1–1 rela-

tionships, with or without fixed slopes. The 2–1–1 model was chosen specifically because here

only the Between indirect effect exists, so interest lies in unbiased estimation of the product

of Between path coefficients—one of the areas of weakness for the CMM approach that was

highlighted earlier. In addition, the 2–1–1 model has been used extensively by researchers

testing substantive research questions (e.g., Hom et al., 2009; Komro et al., 2001; Piontek

et al., 2008; Roth et al., 2007). The data-generating model is depicted in Figure 1.

The population total variances of Xj , Mij , and Yij were all specified as 1.0. Intercepts

were set to 0. We use aB to denote the coefficient of the path from the independent variable

to the mediator, b as the coefficient of the path from the mediator to the dependent variable

controlling for the independent variable (there are two b paths in a model for 2–1–1 data:

Between [bB ] and Within [bW ]), and c0

B as the coefficient of the path from the independent

variable to the dependent variable controlling for the mediator. We set the population values of

these coefficients to aB D :2, bB D :5, c0

B D :1, and bW D :2. Thus, the population Between

FIGURE 1 Multilevel structural equation model for 2–1–1 data. The population Between indirect effect is

aB bB D .:2/.:5/ D :1.
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168 PREACHER, ZHANG, ZYPHUR

indirect effect was aBbB D .:2/.:5/ D :1. Population ICCs for Mij and Yij were identical,

and were set to ICCM D ICCY D .05, .10, .20, or .40 to span values commonly encountered

in practice.3 Because the population Between regression weights were held constant across

all conditions, the Between R2 for the Mij equation was .8, .4, .2, and .1 for the four ICCs.

Similarly, the Between R2 for the Yij equation was .85, 55, .40, and .325. The number of

Level 2 units was specified as J D 20, 50, 100, 300, 500, or 1,000, and the number of

Level 1 units was nj D 5, 20, or 50.4 Each of these sample sizes was chosen to span values

encountered in typical multilevel research. Crossing conditions defined by ICC, J , and nj

resulted in 4 � 6 � 3 D 72 conditions. In each condition, 2,000 samples were generated using

a Fortran program for a total of 144,000 samples.

In our simulation, each of these 144,000 samples was fit with the CMM, UMM, and

MSEM models using Mplus version 5.21 (L. K. Muthén & Muthén, 1998–2007). One way

to gauge which of these strategies is to be preferred depends on the accuracy and efficiency

with which the relevant indirect effect is estimated, as well as the accuracy of CI coverage.

Additional practical concerns include the frequency with which the modeling method fails

due to convergence errors or estimation problems, and the degree to which a method yields

power high enough to detect an effect, if present. Next we outline our specific predictions

with regard to bias, coverage, efficiency, convergence, and power for these three alternative

modeling approaches.

Simulation Hypotheses

Bias. We expect the CMM method to perform poorly in general, because it constrains

the Between effect bB equal to the Within effect bW to yield ”Y 10. If bB and bW are truly

different in the population, as they are here, ”Y 10 necessarily will be biased toward bW . The

indirect effect will also be biased due to the bias in one of its constituent slopes. Larger

cluster size should result in greater bias for CMM, because larger groups carry more weight

in determining the fixed components of slopes in CMM. For the UMM method, we expect

that—all else being equal—bias will be inversely related to cluster size (nj ) and ICC. Preacher

et al. (2010; Appendix A) derived the bias in the Between indirect effect for 2–1–1 designs as:

E. O”M01 O”Y 02 � aBbB/ D aB

0

B

B

B

@

bB

�

£2
M �

£2
XM

£2
X

�

C bW

¢2
M

n
�

£2
M �

£2
XM

£2
X

�

C
¢2

M

n

1

C

C

C

A

� aB bB (11)

3Hox (2002) noted that school research often reports ICCs of .10 to .15, whereas small group and family research

often reports ICCs in the neighborhood of .15 to .30. Snijders and Bosker (1999) and B. O. Muthén (1991, 1994)

indicated that ICCs of .05 to .20 are common. Julian (2001) used ICCs of .05, .15, and .45 in his simulation study.

We consider values of .05 small, .10 medium, and .20 large.
4We did not examine unbalanced cluster sizes, as Lüdtke et al. (2008) found no effect of varying cluster size in

1–1 models. We considered manipulating J and nj such that the total sample size would remain constant (Julian,

2001; Z. Zhang et al., 2009) but instead chose to separately manipulate J and nj to examine the separate and joint

effects of changing the number of clusters and the number of cases sampled within cluster (Lüdtke et al., 2008).
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where aB , bB , and bW are the true Between and Within effects, n is the common cluster size for

balanced designs, ¢2
M is the Within residual variance associated with Mij , and £2

X , £2
M , and £XM

are the Between variances and covariance of the subscripted variables. The only quantities in

Equation 11 that are varied in the simulation are ¢2
M and n. As ICCM increases, ¢2

M decreases.

As n increases and ¢2
M decreases, the ratio ¢2

M =n tends toward zero, reducing the degree to

which bW biases the Between indirect effect. We expect little bias for the MSEM method

because it corresponds closely to the model used to generate the data. Overall, we expect

the UMM method to outperform CMM (Z. Zhang et al., 2009), and we expect MSEM to

outperform both CMM and UMM. In the simulation, bias is assessed using relative percentage

bias (RPB), computed as follows for the CMM, UMM, and MSEM strategies:

RPBCMM D 100Œ. O”M01 O”Y 10 � aB bB/=aBbB �%

RPBUMM D 100Œ. O”M01 O”Y 02 � aBbB /=aBbB �%

RPBMSEM D 100Œ.O“MX
O“YM � aBbB/=aB bB �%

(12)

Confidence interval coverage. We expect MSEM to outperform both CMM and UMM

in reaching the nominal target coverage rate of .95 in all conditions—it is expected to yield the

least bias, leading to CIs that are more closely centered over the population indirect effect.5

Moreover, UMM is expected to outperform CMM because CMM is expected to yield more

biased indirect effects (Z. Zhang et al., 2009). We expect that the number of clusters will

influence CI coverage for CMM and UMM. Holding nj constant, increasing the number of

clusters increases the total sample size. This will increase precision and reduce CI width, which

in turn reduces coverage for biased effects. Coverage for CMM should improve with increasing

ICC because larger ICC corresponds to greater reliability for the cluster-level components of

Mij and Yij . Coverage is determined by noting the proportion of trials in which the 95% CI

for the Between indirect effect included the population (data-generating) value of aBbB .

Efficiency. Besides involving the estimation of more parameters, MSEM treats the Be-

tween components of Mij and Yij as latent, which leads to greater uncertainty in the estimation

of cluster-level structural parameters (Lüdtke et al., 2008). In addition, the near-singularity of

Between covariance matrices when ICC is very low might lead to unstable estimation and

consequently greater variability. However, Lüdtke et al. (2008) hypothesized, and found, that

MSEM was asymptotically the most efficient method if the model is correctly specified and

data are collected from a sufficiently large number of groups. We thus expect more efficient

estimation of the Between effect in the MSEM strategy relative to the UMM strategy if ICC

and the number of groups become sufficiently large. We have no specific prediction about

whether UMM or CMM will show more efficient estimation of the Between indirect effect.

We surmise that efficiency will improve as both Between and Within sample sizes and ICC

5The CIs we used are based on the multivariate delta method and incorrectly assume the indirect effect to be

normally distributed, and therefore symmetric about the point estimate. Because indirect effects typically are not

normally distributed in small samples, we expect coverage to be a little lower than .95 even under the best of

circumstances. Whereas this kind of CI suffices for comparing methods in a simulation, in practice we recommend

using a different kind of CI that does not assume the indirect effect to be symmetrically distributed (see Discussion).
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170 PREACHER, ZHANG, ZYPHUR

increase, simply because CI width is mostly a function of sample size and variability. We

assess efficiency in two ways. First, we computed the root mean squared error (RMSE) of

the estimate of the indirect effect, which considers variability of the estimated indirect effect

around the population indirect effect:

RMSECMM D

v

u

u

u

u

t

k
X

iD1

. O”M01 O”Y 10 � aB bB/2

k

RMSEUMM D

v

u

u

u

u

t

k
X

iD1

. O”M01 O”Y 02 � aBbB/2

k

RMSEMSEM D

v

u

u

u

u

t

k
X

iD1

.O“MX
O“YM � aBbB/2

k

(13)

where k is the number of properly converged solutions. However, in situations with large

systematic bias, RMSE is not very informative as a measure of efficiency because it becomes

dominated by bias. Therefore, we also obtained the empirical standard deviation (ESD) of the

estimate of the indirect effect. ESD is simply the computed standard deviation of the k estimates

without regard to the population value. Larger values of ESD correspond to lower efficiency

and wider confidence intervals. RMSE can be expressed as a function of ESD and bias:

RMSE D
p

ESD2 C BIAS2

D

s

ESD2 C

�

RPB

100
aBbB

�2 (14)

Convergence rate. We also assessed convergence rates for each method. Convergence

rates are important to assess because they have implications for the practical application of the

various methods. We expect that convergence will improve as both Between and Within sample

sizes and ICC increase. Larger samples typically lead to more stable estimation, and larger ICCs

reduce the chances of encountering a singular Between covariance matrix. Convergence rates

were determined by dividing the number of successfully converged solutions with no estimation

errors by 2,000, the number of repetitions per cell of the design. Results for bias, coverage,

power, and efficiency are based only on converged solutions.

Power. Finally, we were interested in determining whether MSEM had sufficient power

to detect a relatively small indirect effect. Power associated with the CMM and UMM methods

were not of interest because they were expected to be quite biased; high power to detect highly

biased effects is not particularly useful. Prior research has found higher power of MSEM
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TABLE 1

Percentage Relative Bias of the Between Indirect Effect in 2–1–1 Models

for CMM, UMM, and MSEM Strategies

CMM UMM MSEM

J nj ¡ D :05 ¡ D :10 ¡ D :20 ¡ D :40 ¡ D :05 ¡ D :10 ¡ D :20 ¡ D :40 ¡ D :05 ¡ D :10 ¡ D :20 ¡ D :40

20 5 �60.34 �57.24 �53.27 �49.72 �57.80 �44.61 �31.76 �15.01 �38.16 �15.87 8.02 12.04

50 5 �60.38 �56.87 �53.07 �50.88 �56.84 �45.63 �30.01 �16.76 �19.02 �6.25 10.30 .91

100 5 �59.45 �56.44 �53.55 �49.11 �55.79 �44.08 �30.31 �13.91 �17.45 6.92 4.58 2.60

300 5 �59.66 �57.04 �54.24 �49.98 �57.21 �45.63 �31.07 �15.15 �17.10 6.38 .26 .21

500 5 �59.63 �56.84 �53.44 �49.95 �57.08 �44.82 �29.75 �14.93 �17.02 6.03 1.37 .29

1,000 5 �59.41 �56.94 �53.53 �50.23 �57.11 �44.88 �29.96 �15.26 �15.55 3.42 .50 �.17

20 20 �60.07 �58.55 �57.05 �56.51 �50.80 �28.10 �10.34 �5.12 �30.57 9.50 9.53 1.19

50 20 �59.40 �58.27 �57.18 �55.89 �49.48 �26.15 �12.69 �2.47 �19.40 6.65 1.08 2.88

100 20 �59.43 �58.07 �56.96 �57.01 �49.64 �25.82 �12.42 �5.33 �8.92 2.95 .28 �.43

300 20 �59.33 �58.21 �57.35 �56.81 �49.81 �25.75 �12.14 �4.16 3.85 1.11 .12 .58

500 20 �59.34 �58.42 �57.37 �56.86 �49.54 �26.00 �12.29 �4.82 6.07 .23 �.15 �.17

1,000 20 �59.32 �58.16 �57.28 �56.80 �49.44 �25.79 �12.13 �4.45 5.32 .18 �.08 .20

20 50 �59.15 �59.00 �58.99 �58.88 �40.40 �14.20 �4.71 �1.26 �2.39 7.88 3.58 1.52

50 50 �59.30 �59.05 �58.09 �59.28 �39.65 �14.80 �3.01 �4.49 6.06 1.65 3.35 �2.36

100 50 �59.32 �59.02 �58.96 �58.81 �39.14 �14.49 �6.44 �2.01 7.70 .23 �.75 .04

300 50 �59.62 �58.98 �58.87 �58.90 �39.43 �14.10 �5.81 �1.94 3.19 .05 �.29 .04

500 50 �59.61 �58.92 �58.59 �58.72 �39.43 �13.82 �5.16 �2.29 1.63 .18 .35 �.34

1,000 50 �59.56 �58.96 �58.77 �58.72 �39.50 �13.66 �5.39 �1.77 .47 .39 .09 .18

Note. J D number of clusters; nj D within-cluster sample size; ¡ D population intraclass correlation; CMM D conflated

multilevel modeling; UMM D unconflated multilevel modeling; MSEM D multilevel structural equation modeling.

than MLM in detecting cross-level interactions in multilevel data (e.g., D. Zhang & Willson,

2006). However, it remains a question whether power will be adequate using MSEM to detect

multilevel mediation. On one hand, we expected more sampling variability in the point estimate

of the indirect effect in MSEM (which compromises power); on the other hand, we expected

MSEM to demonstrate less bias (which should enhance power). Therefore, a secondary goal

was to determine whether or not MSEM had adequate power to detect a small indirect effect.

To obtain power, we determined the proportion of the converged trials within each cell in

which the null hypothesis of no mediation was rejected at ’ D :05. We used delta method

approximate standard errors to conduct Wald tests (Sobel, 1982). Whereas we would not

recommend this method in practice because of its known limitations (Preacher & Hayes, 2004,

2008a, 2008b), we use it here because it is simple and straightforward, and the simulation

would take a dramatically longer time if more appropriate bootstrapping methods were used.

This test still permits fair comparisons among CMM, UMM, and MSEM.

Results

Bias. Relative percentage bias results are reported in Table 1. Several trends are apparent.

First, in virtually every condition examined, MSEM greatly outperformed UMM,6 which in

6Simulation results support the predictions of Equation 10 for the UMM method. Consistent with Equation 10, in

Table 1 we see that RPB does not seem to depend on J . For comparison purposes, Equation 10 predicts RPB values

of �57.00, �45.00, �30.00, and �15.00 for the four ICC conditions when nj D 5, �49.57, �25.71, �12.00, and

�4.62 when nj D 20, and �39.31, �13.85, �5.45, and �1.94 when nj D 50.
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TABLE 2

Confidence Interval Coverage for the Between Indirect Effect in 2–1–1 Models

for CMM, UMM, and MSEM Strategies

CMM UMM MSEM

J nj ¡ D :05 ¡ D :10 ¡ D :20 ¡ D :40 ¡ D :05 ¡ D :10 ¡ D :20 ¡ D :40 ¡ D :05 ¡ D :10 ¡ D :20 ¡ D :40

20 5 .460 .491 .567 .643 .603 .699 .778 .830 .920 .905 .902 .880

50 5 .168 .255 .357 .486 .492 .621 .754 .857 .929 .908 .914 .910

100 5 .032 .062 .133 .313 .310 .502 .703 .880 .951 .931 .926 .924

300 5 .000 .000 .001 .022 .017 .129 .473 .850 .964 .953 .947 .944

500 5 .000 .000 .000 .002 .001 .031 .335 .799 .967 .956 .943 .939

1,000 5 .000 .000 .000 .000 .000 .000 .085 .680 .971 .965 .950 .951

20 20 .124 .191 .340 .496 .652 .774 .831 .863 .920 .888 .863 .880

50 20 .003 .019 .083 .248 .528 .756 .863 .908 .923 .927 .915 .916

100 20 .001 .001 .009 .051 .315 .723 .889 .913 .948 .938 .946 .921

300 20 .001 .000 .000 .000 .025 .457 .848 .922 .956 .957 .947 .933

500 20 .001 .000 .000 .000 .002 .264 .777 .921 .967 .941 .950 .937

1,000 20 .001 .000 .000 .000 .000 .064 .686 .918 .965 .951 .946 .942

20 50 .029 .083 .218 .398 .736 .831 .859 .869 .903 .892 .876 .877

50 50 .004 .002 .027 .137 .642 .858 .892 .899 .949 .916 .905 .905

100 50 .003 .000 .001 .019 .468 .840 .900 .927 .952 .936 .920 .938

300 50 .000 .000 .000 .000 .093 .763 .913 .939 .957 .948 .950 .942

500 50 .000 .000 .000 .000 .012 .674 .911 .937 .957 .941 .944 .943

1,000 50 .000 .000 .000 .000 .000 .475 .883 .938 .956 .955 .947 .951

Note. J D number of clusters; nj D within-cluster sample size; ¡ D population intraclass correlation; CMM D conflated

multilevel modeling; UMM D unconflated multilevel modeling; MSEM D multilevel structural equation modeling.

turn outperformed CMM. The degree of bias was inversely related to ICC and within-cluster

sample size for UMM and MSEM. As predicted, bias increased with cluster size for CMM,

with the difference in bias across cluster sizes becoming more pronounced at higher ICCs. For

the MSEM approach, bias was inversely related to number of clusters to a small degree. CMM

showed acceptably small bias under no conditions, UMM showed acceptably small bias only

with high ICC (.40 when nj D 20 and .20 in some nj D 50 conditions) and larger within-cluster

sample sizes, and MSEM showed acceptably small bias in most conditions. When unacceptable

bias was found, it was almost always negative. Bias was dramatically lower for MSEM than

for CMM and UMM in most conditions examined, although not eliminated. Unacceptable bias

was found for MSEM, particularly when group size was small (5) and when ICC was low

(.05 or .10). Assuming that researchers adhere to common sample size recommendations for

MLM (Hox & Maas, 2001; Maas & Hox, 2005; Snijders & Bosker, 1999) when using MSEM

(discussed later), these problems are minimized.

Confidence interval coverage. CI coverage is reported in Table 2. In terms of CI cover-

age, MSEM outperformed both CMM and UMM in every cell. This should not be surprising,

as MSEM closely matches the model used to generate the data (see Limitations section later).

However, the magnitude of the underperformance of CMM and UMM is nonetheless striking;

for low ICCs (.05 and .10), MSEM CI coverages were .90 or better in all but two cells (both

J D 20), whereas CMM CI coverages were < .50 in every cell and UMM CI coverages

were always < .86. Whereas coverage for CMM and UMM both improved as ICC increased,

coverage for CMM worsened with increasing group size and number of groups. Coverage for

UMM improved with increasing group size.
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TABLE 3

Empirical Standard Deviation of the Estimate of the Between Indirect Effect in 2–1–1 Models

for CMM, UMM, and MSEM Strategies

CMM UMM MSEM

J nj ¡ D :05 ¡ D :10 ¡ D :20 ¡ D :40 ¡ D :05 ¡ D :10 ¡ D :20 ¡ D :40 ¡ D :05 ¡ D :10 ¡ D :20 ¡ D :40

20 5 .032 .037 .041 .052 .064 .066 .074 .096 .250 .251 .242 .165

50 5 .019 .020 .023 .029 .033 .037 .041 .054 .169 .170 .114 .070

100 5 .013 .014 .017 .020 .023 .025 .029 .037 .150 .143 .062 .047

300 5 .007 .008 .009 .011 .012 .014 .015 .020 .135 .070 .029 .024

500 5 .006 .006 .007 .009 .010 .011 .012 .016 .144 .049 .023 .020

1,000 5 .004 .004 .005 .006 .007 .007 .009 .011 .140 .031 .016 .013

20 20 .016 .021 .027 .037 .053 .058 .075 .093 .181 .151 .110 .103

50 20 .010 .012 .015 .020 .031 .035 .041 .051 .153 .077 .051 .055

100 20 .007 .008 .011 .015 .021 .022 .027 .037 .125 .042 .032 .040

300 20 .004 .005 .006 .009 .012 .013 .015 .021 .101 .022 .018 .023

500 20 .003 .004 .005 .006 .009 .010 .012 .016 .071 .017 .014 .017

1,000 20 .003 .003 .003 .005 .006 .007 .009 .011 .047 .012 .010 .012

20 50 .012 .016 .022 .032 .051 .058 .072 .092 .186 .099 .084 .096

50 50 .007 .009 .014 .019 .029 .033 .041 .053 .121 .045 .045 .054

100 50 .006 .007 .010 .013 .021 .023 .028 .036 .082 .029 .030 .036

300 50 .003 .004 .005 .008 .012 .013 .015 .020 .038 .016 .017 .021

500 50 .002 .003 .004 .006 .009 .010 .012 .015 .028 .013 .013 .016

1,000 50 .001 .002 .003 .004 .006 .007 .009 .011 .019 .009 .009 .012

Note. J D number of clusters; nj D within-cluster sample size; ¡ D population intraclass correlation; CMM D conflated

multilevel modeling; UMM D unconflated multilevel modeling; MSEM D multilevel structural equation modeling.

Efficiency. Efficiency was gauged in two ways—with ESD (Table 3) and RMSE (Table 4).

Using ESD, CMM and UMM both showed high efficiency in all cells, whereas MSEM, as

expected, was less efficient, particularly so for the combination of low ICC, low nj , and

low J . Whereas J and nj were positively associated with improved efficiency for all three

methods, ICC was positively associated with efficiency only for MSEM, and slightly negatively

associated with efficiency for CMM and UMM. A curious exception to this trend for MSEM

occurred in the nj D 20 and 50 conditions, which demonstrated a slight increase in variability

when ICC D .40 versus when ICC D .20.

Using RMSE to gauge efficiency, CMM and UMM appear noticeably less efficient than

when ESD is used because of the large degree of bias. MSEM is less efficient than CMM and

UMM for small Level 2 sample sizes (J � 100), and for low ICCs (ICC D .05, .10) unless

J and nj were both large. When the number of clusters is large and ICC is at least .10 or so,

MSEM was the most efficient method; efficiency improved with increasing nj . These results

are consistent with those of Lüdtke et al. (2008), who found that MSEM showed asymptotically

more efficient estimation than a method using group means if a large number of groups is used.

For MSEM, even in the cells showing the most bias, RMSE is practically equal to ESD because

the indirect effect is small and the degree of bias is much smaller than that for corresponding

cells for CMM and UMM.

Convergence rate. For all three methods, convergence rates were excellent. In situations

where convergence was not perfect (i.e., the UMM method), convergence improved with

increasing ICC, J , and nj (see Table 5). For most cells, all three methods demonstrated
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TABLE 4

Root Mean Squared Error of the Estimate of the Between Indirect Effect in 2–1–1 Models

for CMM, UMM, and MSEM Strategies

CMM UMM MSEM

J nj ¡ D :05 ¡ D :10 ¡ D :20 ¡ D :40 ¡ D :05 ¡ D :10 ¡ D :20 ¡ D :40 ¡ D :05 ¡ D :10 ¡ D :20 ¡ D :40

20 5 .069 .068 .067 .072 .086 .079 .081 .096 .253 .251 .242 .165

50 5 .063 .060 .058 .058 .066 .058 .051 .056 .170 .170 .114 .070

100 5 .061 .058 .056 .053 .061 .051 .042 .039 .151 .143 .062 .047

300 5 .060 .057 .055 .051 .058 .048 .035 .024 .136 .070 .028 .024

500 5 .060 .057 .054 .051 .058 .046 .032 .022 .145 .049 .022 .020

1,000 5 .059 .057 .054 .051 .057 .046 .032 .020 .141 .032 .014 .014

20 20 .062 .062 .063 .067 .073 .065 .075 .093 .184 .151 .110 .103

50 20 .060 .059 .059 .059 .058 .044 .042 .051 .154 .077 .051 .055

100 20 .060 .058 .058 .059 .054 .035 .030 .037 .125 .042 .032 .040

300 20 .059 .058 .057 .057 .051 .028 .020 .022 .101 .022 .017 .022

500 20 .059 .058 .057 .057 .050 .028 .017 .017 .071 .017 .014 .017

1,000 20 .059 .058 .057 .057 .050 .026 .014 .010 .047 .010 .010 .010

20 50 .060 .061 .063 .067 .065 .059 .073 .092 .186 .099 .084 .095

50 50 .060 .060 .060 .062 .049 .036 .041 .053 .122 .045 .045 .054

100 50 .059 .059 .060 .060 .045 .026 .028 .036 .082 .028 .030 .036

300 50 .060 .059 .059 .059 .041 .020 .017 .020 .037 .017 .017 .020

500 50 .060 .059 .059 .059 .040 .017 .014 .014 .028 .014 .014 .014

1,000 50 .059 .059 .059 .059 .040 .014 .010 .010 .020 .010 .010 .010

Note. J D number of clusters; nj D within-cluster sample size; ¡ D population intraclass correlation; CMM D conflated

multilevel modeling; UMM D unconflated multilevel modeling; MSEM D multilevel structural equation modeling.

convergence at or near 100%, but at small group sizes and small ICC, convergence rates for

UMM were noticeably lower than those for CMM and MSEM.7

Power. Table 6 contains rejection rates (empirical power) for the three methods. For

all methods, power increased with nj and J . Power was inversely related to ICC for CMM.

Although bias decreased (and thus effect size increased) with increasing ICC, this improvement

was more than offset by increases in the variance of the estimate (as reflected in ESD), leading

to a net loss of power. However, the relationship was more complex for UMM. Although

absolute bias decreased with increasing ICC, variability of the estimate also increased with

ICC. On balance, this trade-off led to an increase in power for the UMM method as ICC

increased from .05 to .10 or .20, but a decrease as ICC further increased. Generally speaking,

adequate power was observed for CMM and UMM at reasonably small sample sizes. However,

high power to detect an efficiently estimated but grossly biased point estimate is not a desirable

feature because it implies a high likelihood of rejecting the null hypothesis only to retain a

highly untrustworthy point estimate of the indirect effect.

7In an unreported single-level analysis condition, all 2,000 runs converged in every cell. However, single-level

analysis is highly inappropriate for hierarchical data. On the other hand, when ICC is low, the Between covariance

matrix can become singular or near-singular. Lüdtke et al. (2008) encountered more frequent estimation errors in

low-ICC conditions of their simulation. Julian (2001) found that the disadvantages of using single-level approaches

rather than multilevel approaches when ICC < .05 were minimal. In this case, rescaled ¦2 statistics and robust SE

estimation can be used to correct the minimal degree of bias (B. O. Muthén & Satorra, 1995). In Mplus version 5.21,

convergence rates are dramatically improved with respect to earlier versions of Mplus for all methods, but particularly

for MSEM at low nj and low ICC.
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TABLE 5

Successful Convergence Rates 2–1–1 Models for CMM, UMM, and MSEM Strategies

CMM UMM MSEM

J nj ¡ D :05 ¡ D :10 ¡ D :20 ¡ D :40 ¡ D :05 ¡ D :10 ¡ D :20 ¡ D :40 ¡ D :05 ¡ D :10 ¡ D :20 ¡ D :40

20 5 1.000 1.000 1.000 1.000 .931 .970 .997 1.000 .999 1.000 .999 1.000

50 5 1.000 1.000 1.000 1.000 .997 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

300 5 1.000 1.000 1.000 1.000 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

500 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1,000 5 1.000 1.000 1.000 1.000 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

20 20 1.000 1.000 1.000 1.000 .954 .997 1.000 1.000 1.000 1.000 1.000 1.000

50 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 20 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 1.000 1.000 1.000

300 20 1.000 1.000 1.000 1.000 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

500 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1,000 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

20 50 1.000 1.000 1.000 1.000 .978 1.000 1.000 1.000 .999 1.000 1.000 1.000

50 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

300 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

500 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1,000 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note. J D number of clusters; nj D within-cluster sample size; ¡ D population intraclass correlation; CMM D conflated

multilevel modeling; UMM D unconflated multilevel modeling; MSEM D multilevel structural equation modeling.

TABLE 6

Rejection Rates (Power) for the Between Indirect Effect in 2–1–1 Models

for CMM, UMM, and MSEM Strategies

CMM UMM MSEM

J nj ¡ D :05 ¡ D :10 ¡ D :20 ¡ D :40 ¡ D :05 ¡ D :10 ¡ D :20 ¡ D :40 ¡ D :05 ¡ D :10 ¡ D :20 ¡ D :40

20 5 .184 .189 .190 .140 .087 .098 .102 .107 .035 .035 .049 .071

50 5 .622 .603 .558 .421 .225 .282 .365 .326 .037 .082 .146 .257

100 5 .965 .948 .897 .793 .504 .683 .777 .739 .065 .141 .466 .678

300 5 1.000 1.000 1.000 .998 .957 .995 1.000 .998 .066 .394 .983 .998

500 5 1.000 1.000 1.000 1.000 .998 1.000 1.000 1.000 .083 .687 1.000 1.000

1,000 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .091 .953 1.000 1.000

20 20 .786 .673 .477 .315 .201 .268 .242 .159 .069 .162 .196 .147

50 20 .997 .967 .848 .634 .449 .675 .660 .497 .133 .414 .580 .484

100 20 1.000 1.000 .988 .864 .720 .959 .975 .830 .166 .808 .945 .825

300 20 1.000 1.000 1.000 .999 .993 1.000 1.000 .999 .240 .999 1.000 .999

500 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .386 1.000 1.000 1.000

1,000 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .738 1.000 1.000 1.000

20 50 .955 .817 .587 .391 .331 .382 .287 .194 .155 .305 .262 .188

50 50 1.000 .993 .901 .637 .613 .844 .752 .489 .225 .751 .725 .482

100 50 1.000 1.000 .989 .887 .860 .992 .983 .854 .392 .970 .980 .853

300 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .828 1.000 1.000 1.000

500 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .979 1.000 1.000 1.000

1,000 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note. J D number of clusters; nj D within-cluster sample size; ¡ D population intraclass correlation; CMM D conflated

multilevel modeling; UMM D unconflated multilevel modeling; MSEM D multilevel structural equation modeling.
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Power results for MSEM are complex. Power increased with both nj and J , and increased

with ICC in the small clusters (nj D 5) conditions. Power increased and then decreased with

ICC for the J D 20 through J D 500 conditions with larger clusters. That is, the ICC D

.40 conditions tended to be characterized by lower power than the ICC D .20 conditions for

the larger cluster size conditions. This decreased power is likely due to the slight upturn in

variability observed for these same cells, in terms of both ESD and RMSE. Overall, MSEM’s

power to detect a relatively small indirect effect of .1 was acceptable for ICC � .20 and

J � 300 when clusters were small .nj D 5/, for ICC � .10 and J � 100 when clusters

were larger .nj D 20/, and for ICC � .05 and J � 300 for the largest cluster size examined

.nj D 50/. It should be emphasized that power seems small in many of the conditions because

the true Between indirect effect is quite small (.1). As the size of the indirect effect increases,

power will increase.

Summary

We began this article with two goals. The first was to demonstrate that MSEM reduces bias in

Between indirect effects relative to more traditional MLM-based procedures using the popularly

examined 2–1–1 mediation model. It does so, and dramatically. In many cells of the design,

bias was negligible, particularly as ICC, J , and nj increased. In situations with low ICCs,

particularly ICC < .10, researchers should be aware that some bias still exists.

The second main goal was to evaluate the performance of MSEM in terms of CI coverage,

efficiency, and convergence using the 2–1–1 mediation model. MSEM performed very well,

in both an absolute sense and relative to CMM and UMM, in terms of achieving nominal CI

coverage, although coverage remained somewhat lower than .95 when the number of clusters

was small .J � 50/. In terms of efficiency, MSEM performed less well than competing MLM-

based methods in some conditions, but better than MLM-based methods when J , nj , and ICC

reached reasonably large values. In terms of convergence, all models performed well, even in

small sample size and low ICC conditions.

A secondary goal was to establish whether MSEM had sufficient power to be useful in

practice. We found that it did; if researchers adhere to sample size recommendations and have

high enough ICC (see Discussion and Preacher et al., 2010), then correctly rejecting the null

hypothesis is likely with MSEM.

On balance, the results of the simulation study illustrate advantages of using MSEM over

CMM and UMM for recovering the indirect effect when the indirect effect of interest exists

solely at the Between level. If even one of the variables involved in a mediation effect is a

Level 2 variable, then the indirect effect must exist at the Between level (Preacher et al., 2010).

MSEM showed dramatically less bias and better coverage than CMM and UMM, reaching

acceptable levels of each in all cases except those corresponding to sample sizes that have

been deemed too small for fitting multilevel models (e.g., Hox & Maas, 2001; Maas & Hox,

2005). The trade-off is that MSEM had worse efficiency for low ICC (particularly with small

clusters) compared to CMM and UMM. However, we emphasize that efficient estimation of a

strongly biased quantity is not only of little practical use, but is detrimental to a researcher’s

agenda. We replicated differences between CMM and UMM found in prior research (Z. Zhang

et al., 2009) such that, when Between and Within effects are of different magnitudes, the CMM
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strategy conflates them. The UMM method separates these two conceptually different effects,

yet still exhibits nontrivial bias for the Between indirect effect in most examined conditions.

These findings, although limited to the 2–1–1 design and only one choice of population

parameter values, are expected to generalize to other multilevel mediation designs, such as the

1–1–1 design with fixed slopes and the 2–1–1 design with random slopes. To investigate the

latter claim, we reran the entire simulation with a random slope for the Within Mij ! Yij

effect. In brief, the same results were found; the presence of a random slope in the model

does not seem to seriously impede processing time or convergence rates for MSEM, and bias,

coverage, and power were similar to those reported for corresponding cells in our fixed-slope

simulation. We noticed a severe drop in convergence rates for UMM in the smallest sample

size conditions when the Within slope is random—another reason to prefer MSEM. Detailed

results on the 2–1–1 model with random 1–1 slopes are available at the first author’s Web site.

DISCUSSION

We have shown via simulation that the MSEM approach dramatically reduces bias due to the

conflation of between- and within-group effects and unreliable cluster means that characterize

existing models for multilevel mediation under the MLM framework, in exchange for modest

decreases in efficiency under conditions of few clusters, small clusters, and low ICC. Nev-

ertheless, the absolute degree of estimation variability in MSEM was not serious enough to

compromise power.

The MSEM approach for multilevel mediation analysis is also viable at a practical level.

The methods we described are available in recent versions of Mplus, and we provide online

syntax8 for the model used in our simulation as well as for several other models. Users merely

need to modify and customize our syntax to suit their own needs.

Limitations

Our study has some limitations that deserve mention. First, we examined one particular

multilevel model (i.e., 2–1–1) under a restricted set of circumstances (e.g., normally distributed

variables, no random slopes). As with most simulation studies, results are limited to the

conditions examined. Nonetheless, our conclusions are expected to generalize to any MSEM

model with similar relationships among variables. As discussed earlier, the entire simulation

was rerun with a random Within slope and essentially the same results were found.

We also reran the entire simulation setting bW D bB D :5 to observe results when no

contextual effect is present. In terms of ESD, MSEM performed slightly better than when

bW ¤ bB , and CMM and UMM performed slightly worse. All three methods performed

slightly better in terms of RMSE and did well in terms of CI coverage, with CMM and

UMM performance rapidly deteriorating as bW departs from bB . Empirical power for the

three methods was essentially the same as in the primary simulation, except that power is

higher overall when bW D bB . A large increase in power was observed for CMM and UMM

because the b coefficient is no longer a weighted average of .2 and .5 (for CMM) or biased

8See http://www.quantpsy.org/
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toward .2 from .5 (for UMM) when bW D bB , and the large differences in bias observed

for CMM/UMM versus MSEM in the first simulation are no longer apparent when bW D bB .

However, bias quickly accumulates for CMM and UMM when bB ¤ bW . These results support

and complement findings from the original simulation. Results from all three simulation studies

can be found at the first author’s Web site.

Second, we did little to highlight modeling extensions that are more feasible within the

MSEM framework than the MLM framework. For example, MSEM makes it easy to specify

mediation models involving more than one mediator, accommodates longer causal chains with

Level 2 mediators or Level 2 dependent variables (e.g., Vandenberg, Richardson, & Eastman,

1999), and permits the inclusion of latent variables with multiple observed indicators. Every

additional dependent variable adds a layer of complexity in the MLM framework because

it often requires significant data management (depending on the specific software used), but

adding additional dependent variables in MSEM is straightforward. Whereas the ability to

specify latent variables is one of the most attractive features of MSEM, the ability to use latent

variables in MLM is somewhat limited (Goldstein, Kounali, & Robinson, 2008; Raudenbush,

Rowan, & Kang, 1991).

Third, we limited attention to models featuring only continuous, normally distributed ob-

served variables. For censored, categorical, and count variables, numerical integration often will

be required. It is unknown how the methods that were compared in our simulation will fare

with other types of data. Future simulations are needed to address how MSEM will function

in relation to alternative methods under these circumstances.

Fourth, we assumed a sampling ratio of 0 for all the Level 2 units for the purpose of

simplicity. In doing so, we assumed that the average researcher would be interested in fitting

models to data gathered via two-stage random sampling—a common assumption in most MLM

applications. In two-stage random sampling, clusters are assumed to have been randomly

sampled from a larger population of clusters, and individuals within clusters are assumed

to have been sampled from a larger population of such individuals. The reality, of course,

could be very different (as when data are collected from dyads). We are careful to limit our

conclusions to cases with low sampling ratios. If the sampling ratio is high (i.e., when the

cluster size is finite and we select a large proportion of individuals from each cluster), then the

manifest group mean might be a good proxy for group standing (for continuous variables) or

group composition (for dichotomous variables such as gender), as described by Lüdtke et al.

(2008).

Fifth, we limited our attention to the MSEM method of B. O. Muthén and Asparouhov (2008)

because of its generality, efficiency, and ease of implementation. However, it is not the only

method of combining latent variable structural equation modeling with MLM. There are many

such methods, each with advantages and disadvantages relative to other methods. The method

we used has at least three important limitations that restrict its application in practice. First,

although extensions to three levels are possible in some cases, the method is mainly restricted to

two-level models. Other approaches, such as the MSEM method employed in the GLLAMM

module for Stata (Rabe-Hesketh, Skrondal, & Pickles, 2004) and the method described by

Goldstein et al. (2008) for incorporating measurement error in multilevel models, can be

applied to data hierarchies with three or more levels (implemented in MLwiN). Second, the

method we used does not accommodate cross-classified or multiple-membership models. Third,

restricted maximum likelihood (REML) yields better estimates of random effect variances
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and covariances than maximum likelihood (ML), but REML is not implemented in Mplus.

For model comparison purposes, we used ML estimation via an accelerated E-M algorithm

implemented by default in Mplus for all CMM, UMM, and MSEM models. We ran separate

tests with REML on the simulated data for CMM and UMM models and found that REML

and ML provided highly similar indirect effects. Other packages, such as MLwiN, GLLAMM,

HLM, and SAS PROC MIXED, offer REML as an option, and can fit models to data with

more than two hierarchical levels. Comparison of the various methods of combining structural

equation modeling and MLM lies beyond the scope of this study. We expect that future

advances in MLM software packages will permit a greater range of models. Future work

should be undertaken to investigate the feasibility of alternative methods for mediation analysis

in multilevel designs.

Finally, it might be objected that our data-generating model was equivalent to the model that

is fit in the MSEM approach, and that this biased the results in favor of MSEM. Clearly, if the

model used to generate the data is one of the models being compared using those very data, it

stands a good chance of outperforming its rivals. We appreciate this objection, but have several

responses. First, we wanted to generate data that conformed to the assumptions underlying

most multilevel models, that is, two-stage random sampling, and also had to build in realistic

differences in the Between and Within effects of Mij on Yij to show how various methods

did or did not address this difference. One reasonable way to do this was to use a multivariate

linear model with a structure that displayed the desired characteristics. Second, we note that

simply because a model is used to generate data does not guarantee that it will outperform

its competitors in every respect when fit to those data. Indeed, we found that even though our

data-generation algorithm was consistent with the MSEM approach, MSEM was not always as

efficient as competing methods (using the ESD and RMSE measures of efficiency). Third, even

though we expected MSEM to outperform the CMM and UMM methods in a number of ways,

it was of interest to determine by how much it would outperform them. If MSEM performed

only marginally better than other, simpler methods, it could be argued that a modeling strategy

like MSEM, which is complex and implemented in only a few software packages, does not

have substantial advantages. However, we found that the performance gap was quite large,

justifying the use of MSEM.

Recommendations

Sample size. The results of our simulation extend prior MSEM sample size recommen-

dations to B. O. Muthén and Asparouhov’s (2008) MSEM model in the context of mediation.

From our results, it is clear that increasing nj and J leads to more efficient estimation and

substantially lower bias. Cluster sizes of at least 20 (for small ICCs) were necessary to avoid

unacceptable bias. CI coverage was acceptable at all sample sizes examined. We recommend

that researchers consider these findings when planning studies with similar designs, and that

future research on MSEM for multilevel mediation consider a range of effect sizes to facilitate

making further recommendations.

Confidence intervals and significance testing. Mplus provides 95% CIs obtained using

the delta method. We used these intervals to produce Table 2 (coverage) and Table 6 (rejection

rates). We considered this method good enough for drawing comparisons among the methods
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described here, but in practice the use of symmetric confidence intervals for indirect effects is

not advised. The sampling distribution of the indirect effect is somewhat skewed, especially

in small samples. Preacher et al. (2010) suggested that to accurately consider the asymmetric

nature of the sampling distribution of the indirect effect in MSEM, it is preferable to adapt one

of the methods established for single-level mediation, especially the parametric bootstrap (Efron

& Tibshirani, 1986) or Monte Carlo-based methods (MacKinnon, Lockwood, & Williams,

2004). Monte Carlo methods use the parameter estimates for slopes involved in the indirect

effect, along with their asymptotic variances, to generate a sampling distribution of the product

of slopes. This sampling distribution, in turn, is used to obtain asymmetric percentile-based

confidence limits corresponding to values defining the lower and upper 100(’/2)% of simulated

statistics. This method is implemented in R by Selig and Preacher (2008), and can be used in

conjunction with Mplus to obtain the appropriate confidence intervals.

CONCLUSION

The goals of this study were (a) to test the hypothesis, via simulation, that MSEM exhibits

dramatically reduced bias in estimating Between indirect effects compared to other multilevel

approaches, and (b) to assess whether MSEM performed adequately with respect to reasonable

benchmarks of CI coverage, efficiency, convergence, and power. As expected, as the number

of groups, group size, and ICC increased, the performance of MSEM reached adequate levels

and often outperformed competing methods on most of these dimensions, especially bias.

Consequently, we recommend that MSEM be considered as a useful tool for investigating

mediation effects in two-level data. Besides demonstrating generally superior performance, the

MSEM framework encompasses most existing models for investigating mediation in two-level

data designs, and is flexible enough to accommodate Level 2 outcomes, latent variables with

multiple indicators, the evaluation of model fit (Ryu, 2008; Ryu & West, 2009; Yuan & Bentler,

2003, 2007), extensions to larger models, and various kinds of observed data (e.g., ordinal,

nonnormal, count, censored; B. O. Muthén & Asparouhov, 2008). Future research should

more thoroughly investigate sample size and power issues for a variety of MSEM mediation

models, varying not only the design employed (e.g., for 1-2-1 and 1–2–2 designs), but also the

magnitude of the indirect effect.
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