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Non-contact measurement techniques carried out using triangulation optical sensors are increasingly popular in measurements with the use 
of industrial robots directly on production lines. The result of such measurements is often a cloud of measurement points that is characterized 
by considerable measuring noise, presence of a number of points that differ from the reference model, and excessive errors that must be 
eliminated from the analysis. To obtain vector information points contained in the cloud that describe reference models, the data obtained 
during a measurement should be subjected to appropriate processing operations. The present paperwork presents an analysis of suitability 
of methods known as RANdom Sample Consensus (RANSAC), Monte Carlo Method (MCM), and Particle Swarm Optimization (PSO) for 
the extraction of the reference model. The effectiveness of the tested methods is illustrated by examples of measurement of the height of an 
object and the angle of a plane, which were made on the basis of experiments carried out at workshop conditions. 
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1.  INTRODUCTION 

There has been continuous development of flexible means 
of production in recent years, and it included industrial robots 
and fast and accurate laser displacement sensors that allow 
for non-contact measurement techniques. This encourages 
engineers to design fully automated quality control operations 
carried out directly at a production workshop. Benefits that 
can be achieved here include full automation of 
measurements that are often carried out in an environment 
that is hostile to man, improvement of objectivity of 
measurements by eliminating the human error, holding of 
information about the quality of produced machine parts in 
the early stage of the manufacturing process, and fuller use of 
the potential of industrial robots installed on production lines. 
The fact that a measurement made using a laser beam is a non-
contact measurement makes it possible to avoid a collision 
between the measuring sensor and an object, measurement of 
hard-to-reach surfaces, often dirty or hot. Results of 
measurements of geometrical dimensions achieved with this 
method are not as reliable as in the case of measurements 
made in measurement laboratories. To reduce these 
differences simulation methods to assess measurement 
strategies and determine components of uncertainty of 
measurements carried out in accordance with a chosen 
strategy need to be developed. 

The measurement result is always different from the 
unknowable actual value of a measured quantity. This is 
mainly due to the imperfection of measuring instruments and 

measurement techniques and the conditions of making 
measurements. Therefore, the result of a measurement 
without providing its accuracy is not that meaningful. The 
measure of accuracy of a measurement is the uncertainty of 
measurement that characterizes the dispersion of values that 
can be reasonably attributed to the measurand. 

The actual value of the measurand is unknowable, so the 
measurement error is unknowable as well. Measurement 
errors can be grouped into three categories: random errors, 
systematic errors, and excessive errors. A complete 
measuring procedure should provide the possibility of 
classification of error into one of these categories. When 
identifying an excessive error, the measurement must be 
rejected and repeated. In case of systematic errors their value 
must be assessed and/or a method of compensation must be 
developed. Random errors are errors caused by an accidental 
effect of a large number of intangible interfering factors the 
total impact of which changes with the next measurement. 
Thus, measurement uncertainty should primarily concern the 
characteristics of random errors. The uncertainty of 
measurement based on which a product is qualified as one 
that complies with requirements must be in a proper relation 
to the tolerance of a controlled quantity. The uncertainty 
budget of measurement normally contains several 
components of measurement uncertainty. Determining which 
components of uncertainty are important in the context of 
tolerance of measurement is one of the main tasks of a 
technician that compiles measurement results. 
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The use of techniques of statistical analysis is becoming a 
standard in the field of measurement uncertainty estimation 
[1], [2], [3]. The Monte Carlo simulation method (MCM) was 
developed in the 1940’s by S. Ulamowski. MCM is used for 
mathematical modelling of processes that are far too complex 
to be able to predict their results using an analytical approach. 
Sampling according to the selected distribution of values 
characterizing the process plays an important role in MCM. 
After collecting a sufficiently large amount of such 
information its characteristics can be compared with the 
observed experimental results, confirming or denying the 
validity of assumptions made in the entire procedure. The 
accuracy of a result obtained by this method depends on the 
number of checks and the quality of the random number 
generator. 

Currently, there are more effective methods to browse 
through decision-making space, often multi-dimensional, 
than MCM, which are also random in nature. These include a 
group of methods based on a paradigm of a cluster of particles 
moving in n-dimensional space. The direction and rate of 
movement of individual particles is partly determined by their 
inertia, the best location remembered, and the location of the 
best located particles in the entire cluster. Applying these 
simple rules in simulation models, it is possible to speed up 
the search for a satisfactory solution and/or improve their 
quality. 

The efficiency of determining the estimated model 
parameters using random methods depends mainly on the 
number of dimensions of decision-making space and on the 
possibility to limit the search scope in a given dimension. As 
shown in paper [4], the possibility of using discrete decision-
making space accelerates the time to generate results and 
improve its quality. 

The presented paper concerns a study on measurement 
possibilities carried out by means of an LK-H152 
triangulation sensor with an LK-G5001P controller mounted 
on a flange of a 6-axis industrial robot with anthropomorphic 
kinematics (Fig.1.). Results of coordinate measurements, 
which we deal with in the course of measurement by laser 
sensor, are subject to errors of designation of position and 
orientation of the reference system and errors of designation 
of position and orientation of measured surface relative to the 
reference system. To make a correct determination of a 
measuring instrument coordinate system (TCP), a laser beam 
detector dedicated to this task was developed. 

This article presents results of research on measurements 
carried out in a direction that is parallel to the laser beam, 
bypassing the problem of detecting the edge of an object in 
directions that are perpendicular to the laser beam. A 
measurement made in a direction that is parallel to the beam 
can identify planes, for example. Therefore, measurements of 
height, parallelism of planes, angle between planes and plane 
surface flatness deviations are possible. Such measurements, 
like any other measurement, are subject to a degree of 
uncertainty. In this paper the focus is on an important 
component of uncertainty which is the uncertainty of the 
calculation method used to determine the plane model. 
Another important component of uncertainty in this type of 
measurements is the laser sensor reading error that is related 

to the relaxation time of the measurement system. This error 
for this position was analyzed [5]. Therefore, the adopted 
period of relaxation in the conducted experiments was 
constant at 1 second. Errors resulting from the robot's failure 
to achieve the programmed position were compensated for by 
a direct reading of the actual final position of the robot arm to 
which the measuring sensor was attached. Such a behavior is 
acceptable in cases where we are sure that the axes of the 
robot are accurately calibrated. Due to small values, the 
reading error of the actual position by the robot’s measuring 
systems was considered measurement noise compensated by 
the increased number of measurement points. 

 

 
 

Fig.1.  General view of the test bench. 
 
Determination of a correct model for the measurement of 

geometrical values may give rise to various difficulties. 
Estimation of uncertainty of coordinate measurements is a 
very complex task due to the diversity of measured 
characteristics, strategies, and measurement methods. 
Therefore, the analytical estimation of uncertainty of 
coordinate measurements should be supported by specialist 
software [6]. 
 
2.  ROUGH DETERMINATION OF PLANE USING  RANSAC 

RANSAC algorithm [7], [8] is an iterative method used to 
estimate sought parameters of the mathematical model of 
object based on a redundant set of data points, forming a 
cloud around the determined area. This collection, in addition 
to the points located very close to the area, also contains many 
points burdened with measurement noise; there may also 
appear excessive errors. The algorithm essentially comprises 
two repeated iterative phases: initialization and test. 
Initialization phase consists of random selection of a 
minimum set of points needed for an unequivocal 
determination of the estimated parameters of model geometry 
and to determine the parameters of this model. The identified 
model is a hypothesis, which is tested in the next phase - test. 
During the test, the distance of remaining points of data from 
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the created model is calculated. In the original formulation of 
the algorithm by Fischler and Bolles [7], criterion for 
assessing the quality of the model is the size of a set of 
consensus card(CS). CS consists of points, the distance of 
which from the model is less than the threshold δ. The 
selection of an appropriate δ value is essential for the stability 
of the RANSAC algorithm and has an essential impact on the 
quality of separated surfaces, in addition to the number of 
iterations. Fig.2. illustrates how the size of CS changes 
depending on δ threshold and selected arbitrary number of 
iter iterations of the RANSAC algorithm. It can be observed 
that for small iter the graph is monotonic, and the obtained 
card(CS) values are understated, especially for small δ, which 
proves the possibility of missing the best solutions. The 
problem of the number of iterations is critical in cases of 
application of the RANSAC method for the extraction of 
planes on the basis of point cloud with a significant number, 
order of several hundred thousand and more. Execution time 
for calculations can be in these cases fatal. In this work’s 
experiments the sum of points does not exceed 1000, so the 
calculation time was negligible compared to the time of 
measurement. 

 

 
 

Fig.2.  Evolution of card(CS) depending on δ and the number of 
iter iterations of the RANSAC algorithm. 

 
According to [9], the value of δ can be determined on the 

assumption that all measuring points are subject to errors with 
normal distribution. Central limit theorem states that with 
more random variables influencing the performance of 
measurement, the distribution is close to normal. We are 
dealing with such a situation during measurements with laser 
sensor installed on the robot flange, carried out under the 
conditions of the production workshop. 

For a given normal distribution with a known standard 
deviation σ the δ parameter allows to determine the 
probability of given point p belonging to the CS according to 
the dependence: 

𝑝𝑝 = 1
2
�1 − 𝑒𝑒𝑒𝑒𝑒𝑒 � 𝛿𝛿

𝜎𝜎√2
��           (1) 

where: 
erf – error function, 
σ – standard deviation. 
Modifications proposed in [9] reduce the processing time, 

allowing dynamic selection of an appropriate number of 
iterations, successively amended after each appointment of 
better model. The number of additional iter iterations is 
determined according to (2) and is: 

 

𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 = log (1−𝑃𝑃)

𝑙𝑙𝑙𝑙𝑙𝑙�1− (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶𝐶𝐶))3
𝑁𝑁(𝑁𝑁−1)(𝑁𝑁−2)�

                (2) 

where: 
P – probability of identifying the correct plane, 
card(CS) – the size of CS set, 
N – number of all measuring points of data set. 
Fig.3. illustrates how iter parameter changes for small 

N=const=25 and δ=const=0.03. Fig.4. illustrates how to form 
the output variables of card(CS), NCS - the number of 
iterations required to achieve a given CS, Add - the number 
of additional iterations, during which the result and Total 
were not improved - the total number of iterations. These 
results were obtained for P=0.999 and N=25. 
 

 

 
Fig.3.  The evolution of number of iterations according to the size of 
the current set of CS consensus and the probability P of 
identification of the best model for the number of measurement 
points N=25 i δ=0.03 mm. 

 
As is apparent from Fig.4., the necessary number of 

iterations does not exceed 250 in any trial as compared to the 
number of permutations of three-element sample with 25-
element set of 13800 and it is the result justifying the use of 
the proposed approach. RANSAC method, as proposed by its 
creators, does not guarantee that the resulting solution is 
optimal for the threshold δ. Therefore, there are works in 
which the authors propose to consider additional criteria, 
improving the quality of solution. In reference [10], the 
following rule to change the model was proposed: 
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𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐(𝐶𝐶𝐶𝐶) > max
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

(𝐶𝐶𝐶𝐶)𝑜𝑜𝑒𝑒
𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐(𝐶𝐶𝐶𝐶) = max

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
(𝐶𝐶𝐶𝐶)𝑐𝑐𝑎𝑎𝑐𝑐 𝜎𝜎 < min _𝜎𝜎 �           (3) 

 
where: 
maxcard(CS) – maximum reached cardinality of CS, 
min_σ – minimum value of the standard deviation for the 
models for which card(CS) = maxcard(CS). 
 

 
 

Fig.4.  Development of cardinality of CS set and the number of 
iterations required to achieve these results depending on pre-set 

threshold δ. 
 

RANSAC method, although effective in the case of very 
large sets of points cannot be included in the precise methods 
for the measurement of small area and with a small number 
of measuring points. The method assumes that the three 
points are randomly selected to a designated plane, while each 
point is defined with unknowable error. Therefore, the 
determined plane can only be regarded as an approximation 
of the optimal solution. Nevertheless, the RANSAC method 
can significantly reduce the search area, and thus accelerate 
the effect of more accurate methods. 

 
3.  ESTIMATION OF POSITION AND ORIENTATION OF THE 
PLANE BY RANDOM METHODS 

The search for solution through random search of decision 
space of estimated model parameter is a recognized and even 
a preferred method of finding solutions [1], [3]. To reduce the 
likelihood of omission of the optimal solution, to improve the 
quality of solutions and at the same time to reduce the 
computation time it is very beneficial to limit the size of 
search area of conditions. In case of estimating position and 
orientation of plane, the RANSAC method can be used. 

Let the estimated plane associated with the coordinate 
system XYZE in reference coordinate system XYZR (Fig.5.) 

determine displacement vector of coordinate origin 𝑅𝑅𝑅𝑅�����⃗ =[xR, 
yR, zR]T and differential vector of orientation  𝑅𝑅𝑅𝑅�����⃗ =[xR, yR, zR]T. 
Vector 𝑅𝑅"𝑅𝑅′��������⃗  can be clearly determined by giving its r and the 
angle of rotation γ around Z’R axis. This allows to determine 
the components of the X and Y axis. The third component in 
the Z-axis results from the assumption that the vector has unit 
length. Decisive area in the above premise will be five-
dimensional, and its parameters are xR, yR, zR, r,γ. Origin of the 
unit normal vector of the estimated plane is inside a sphere 
with a center at point R and radius ρ, while its end is on the 
area of sphere segment embedded at point E, with unit radius 
and angle 2ε. Parameters ρ and ε define in this case the size 
of decisive area in search for the best suited plane. Number 
of degrees of freedom of determined model can easily be 
limited to three, after the adoption of easy to accept 
assumptions: determined plane is not parallel to ZR axis, point 
E lies on ZR axis and component Z of vector 𝑅𝑅𝑅𝑅�����⃗  has a 
direction agreeing with the ZR axis. Then the decisive area has 
only three dimensions zR, r,γ, which significantly speeds up 
the process of estimating the correct plane. The position of 
decisive area in the latter case changes dynamically, as 
component Zr is set to a range ±dZ with respect to the best 
currently achieved solution. 

 

 
 

Fig.5.  Reciprocal linking of geometric size in estimation position 
and orientation of the plane. 

 
MCM method applied to solve the task of estimating the 

best suited plane is based on random generation of model of 
the plane, and then verification of the model fitting to the 
measuring point cloud. Each point in the above defined five-
dimensional decisive area represents one plane. Repeating the 
cycle of generation and test several times, we were able to 
reach a satisfactory solution. Match criterion of generated 
plane to the point cloud is usually the minimum sum of 
squared distances of measurement points of the estimated 
plane. MCM is therefore simple to implement, even directly 
in the control system of an industrial robot. The only 
requirement is access to the proper quality of random number 
generator. 
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A more advanced, but also random method of searching the 
state space is first proposed by the Kennedy and Eberhart 
method of swarm of particles [11]. Basis of optimization 
methods derives from the natural behavior of living 
individuals, living and moving in large clusters as fish, birds, 
bees, etc. Each individual (particle) is determined to achieve 
the best position in the swarm, guaranteeing it survival, 
access to food and/or reproduction. Hence, the movement 
vector of particle (Fig.6.) to a new position 𝑃𝑃𝑐𝑐𝑃𝑃𝑛𝑛��������⃗  is the result 
of three components: inertia component of particle 𝑃𝑃𝑐𝑐𝑃𝑃1��������⃗  
determined as part of the motion vector in the previous 
iteration cycle, a component resulting from the best position 
of particle in the swarm 𝑃𝑃1𝑃𝑃2��������⃗  , and the component resulting 
from the best position so far memorized by the particle 𝑃𝑃2𝑃𝑃𝑛𝑛��������⃗ . 

 

 
Fig.6.  Determination of the new position of particle  

in the method of PSO. 
 

Movement of the particle in subsequent movements 
described by the equation: 

 
𝑃𝑃𝑐𝑐𝑃𝑃𝑛𝑛��������⃗ = 𝑃𝑃𝑐𝑐𝑃𝑃1��������⃗ + 𝑃𝑃1𝑃𝑃2��������⃗ + 𝑃𝑃2𝑃𝑃𝑛𝑛��������⃗

𝑃𝑃𝑐𝑐𝑃𝑃1��������⃗ = 𝑤𝑤1𝑅𝑅1𝑃𝑃𝑝𝑝𝑃𝑃𝑐𝑐��������⃗

𝑃𝑃1𝑃𝑃2��������⃗ = 𝑤𝑤2𝑅𝑅2𝑃𝑃𝑐𝑐𝑃𝑃𝑙𝑙𝑔𝑔�����������⃗

𝑃𝑃2𝑃𝑃𝑛𝑛��������⃗ = 𝑤𝑤3𝑅𝑅3𝑃𝑃𝑐𝑐𝑃𝑃𝑝𝑝𝑔𝑔�����������⃗ ⎭
⎪
⎬

⎪
⎫

  (4) 

where: 
w1, w2, w3: weight of individual components, 
R1, R2, R3: random numbers in the range [0,1] of the normal 

distribution. 
Many researchers are trying to introduce the modifications 

to the basic PSO algorithm [4], [12], [13]. They focus mainly 
on the dynamic control of weights of individual components. 
Positive results can be achieved by setting initial low weight 
w2, which ensures uniform penetration throughout the 
decisive area through swarm, in the first phase of the 
algorithm. In turn, determination of high level of w2 in the 
final phase causes the particles to penetrate the closed area 
exactly at the best solution, which allows further 
improvement of the solution. It is also proposed to introduce 
a global factor of speed of the particle, allowing reducing the 
value of position correction in the final phase of the 
algorithm. Authors' own experience shows that properly 
chosen and dynamically adjusted speed of particles has a 
decisive influence on the efficiency of PSO algorithm. 

Another line of modifications concerns the resignation of 
globally best representative of the population in favor of 
locally best representatives within a certain environment. 
Further modifications can affect the introduction of braking 
mechanism of the particles in the event of leaving the 
acceptable area. Alternatively, the solution is killing the 
particle after crossing the allowable area and generating in its 
place a new particle. This latter approach brings the PSO 
algorithm closer to the genetic algorithm. 

PSO method in the context of the search for the best suited 
plane requires in its first chase of swarm initialization 
generating a set of unit vectors, embedded inside a sphere 
with center at the reference radius ρ (Fig.7.a)), or embedded 
in a section of Zr axis (Fig.7.b)). During this phase the best-
defined particle of pre-generated random collection is found. 
Drawn position of the particle is initially recognized as the 
best position of the particle. This phase does not differ from 
the MCM method. In the next iteration steps, each particle 
changes its position according to (3). The algorithm on-line 
modifies the best position of the particle and particle with 
globally best position in the whole swarm. 

 

 
a) generated inside the sphere.   b) generated on a section of Z axis. 

 
Fig.7.  Swarm of unit vectors. 

 
4.  RESULT OF CONDUCTED TESTS 

The object of the study were two basic objects in the form 
of master plate (Fig.8.a)) and a rectangular body in which the 
upper area was beveled with respect to the base at an angle of 
about 10° (Fig.8.b)). For the master plate height research was 
conducted, whereas the second object was set in four different 
positions (0°, 90°, 180°, and 270°), in each case in order to 
determine the angle between the base area and the top area. 

The first stage of tests compared the speed of the method 
and sensitivity of the results achieved on the size of decisive 
area, characterized by parameters dZ and ε. The test results 
allow to conclude that MCM (Fig.9.) requires a very large 
number of iterations to achieve satisfactory results. In the 
present test, the criterion was to achieve a standard deviation 
of less than 0.019. MCM is also very sensitive to increase in 
the decisive area. Doubling the dimensions of decisive area 
increased the computation time 10 times. In case of the PSO 
method (Fig.10.), the number of iterations to achieve a 
satisfactory outcome fluctuated at the level of less than 5000, 
without showing visible dependence on dimensions of the 
decisive area. Given the size of the population of particle 
swarm (50), the calculation time for obtaining criterion was 4 
times less than in the case of MCM. 
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               a) Master plate.                 b) Cuboid with a beveled wall. 
 

Fig.8.  Measured object. 
 

 
 
Fig.9.  Examples of two courses of the RANSAC+MCM algorithm. 
 

 
 
Fig.10. Examples of two courses of the RANSAC+PSO algorithm. 

For the determination of uncertainty components arising 
solely from the computational method a series of tests on the 
same measurement data was carried out, each repeated 25 
times. The results of computation of plane position in the Z 
axis and the angle of the plane in relation to the reference 
plane were shown in Table 1. Differences in the 
reproducibility of each method are best illustrated in Fig.11. 
and Fig.12., representing graphs of probability density, 
assuming that the distributions are normal. 

 
Table 1.  Test results illustrating reproducibility 

of calculation methods. 
 

 Z position, mm Angle, …° 
Method average Std. 

Dev. 
average Std. 

Dev. 
RANSAC 9.853 0.0071 10.289 0.0131 
PSO 9.843 0.0036 10.293 0.0070 
RANSAC+MCM 9.836 0.0047 10.268 0.0072 
RANSAC+PSO 9.849 0.0018 10.286 0.0028 

 

 
 

Fig.11.  Comparison of repeatability of four methods of calculation 
when determining the position of the plane in Z axis. 

 
Table 2. shows calculation results of the angle of inclination 

of the top plane of measured object (Fig.8.b)) to the base 
plane in four different angular settings relative to the base. 
The calculation was carried out in four methods described 
above.  

 

 
 

Fig.12. Comparison of repeatability of four methods of calculation 
when determining the angle of the plane in relation to the reference 
plane. 
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Table 2.  Results of measurements of the angle of inclination of 
inclined area. 

 

Method position number  
of tests min …° max …° average 

…° 
std. dev.  

…° 

RANSAC 

0° 25 9.994 10.115 10.039 0.034 

90° 25 10.168 10.255 10.217 0.023 

180° 25 10.234 10.315 10.286 0.025 

270° 25 10.179 10.266 10.218 0.023 

All 100 9.994 10.315 10.190 0.096 

RANSAC 
 + MCM 

0° 25 9.991 10.126 10.039 0.040 

90° 25 10.212 10.265 10.239 0.016 

180° 25 10.214 10.336 10.286 0.037 

270° 25 10.201 10.256 10.225 0.015 

All 100 9.991 10.336 10.197 0.099 

PSO 

0° 25 9.968 10.032 9.994 0.017 

90° 25 10.141 10.283 10.223 0.045 

180° 25 10.280 10.321 10.303 0.010 

270° 25 10.160 10.240 10.197 0.020 

All 100 9.968 10.321 10.179 0.095 

RANSAC 
 + PSO 

0° 25 9.991 10.031 10.007 0.010 

90° 25 10.308 10.333 10.320 0.007 

180° 25 10.263 10.289 10.280 0.007 

270° 25 10.128 10.158 10.139 0.009 

All 100 9.991 10.333 10.187 0.124 
       

 
The best is the RANSAC + PSO method. The standard 

deviation score for each of the four different settings does not 
exceed in this case 0.01°. At the same time this RANSAC + 
PSO method is best illustrated by the fact (Fig.12.) that in the 
case of measuring the same surface in various settings of the 
object one should expect a certain discrepancy of results. In 
order to obtain the results of the measurements of normal 
vector components of the plane subject to a low rate of 
uncertainty, you should take in the same position of the object 
and previously eliminate systematic error by taking into 
account the results of pattern measurement of the angle, 
carried out in the same position and in the same workshop 
conditions.  

Table 3. shows the results of measurement of height of the 
plate, by designating the position of base plane and the upper 
plane. Measurements of the height of the plate with 
micrometer device showed differences in the height of the 
plate in the area 8.998÷9.005. Presented results relate to the 
corners of the plate with the greatest height. Results of 
conducted tests of measurement of height of the object with 
laser sensor also prefer the RANSAC + PSO method, for 
which the standard deviation is less than half than for the 
RANSAC method alone. 

 
 

Fig.13.  Dispersion of the results of the measurement of angle of 
inclination of plane using RANSAC+PSO. 

 
Table 3.  Results of measurements of the height of master plate. 
 

Method 
 

number 
of tests Min [mm] Max [mm] 

Average 
[mm] 

std. 
dev. 

RANSAC 25 8.981 9.037 9.012 0.013 

RANSAC+MCM 25 8.982 9.029 9.006 0.011 

PSO 25 8.996 9.027 9.013 0.008 

RANSAC+PSO 25 9.000 9.018 9.014 0.006 
 
5.  SUMMARY 

The presented paper shows four approaches to estimation of 
the position and orientation of the plane based on a cloud of 
scanned points. The RANSAC method, although simple to 
implement, can only roughly estimate the parameters of the 
studied plane. However, it allows the removal of excessive 
errors that may appear in a cloud of scanned measurement 
points. It also radically reduces the search area, in the next 
phase of accurate estimation of parameters of the plane. The 
Monte Carlo method is also easy to implement, but it needs a 
very large number of iterations to achieve a satisfactory 
result. The rationale for its use is when we are able to reduce 
the search area to a very small size and calculation time is not 
too important. The PSO method is very effective, but has a 
developed algorithm that also needs to be adjusted by 
carrying out a series of simulation tests. This requires more 
experience and competence from the person using this 
algorithm. A combination of RANSAC with random 
optimization methods gives the best results both in terms of 
time to generate results and their quality. 

All considered methods in a wide range use random values 
and statistical functions. Unfortunately, control systems of 
industrial robots and controllers of optical triangulation 
sensors do not offer this type of feature as standard. In order 
to use these methods more widely in practical solutions, 
manufacturers of industrial robot controllers should equip 
them with software richer in this regard. 
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On the basis of the experience it can be said that the current 
state of the art measuring equipment used and the 
methodology of calculations, maintaining the proper 
diligence measurement workshop, can be used for 
measurements of length tolerated within a range ± 0.05 mm. 
In case of angular dimensions, the result of the measurement 
is strongly dependent on the size of the measured area. 

It would be a natural continuation of the above research to 
solve the problem of determining the plane using a mobile 
robot. Due to the extent of the issue, this may be the subject 
of another scientific paper. 
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