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Abstract

Unavoidable sample size issues beset psychological research that involves scarce
populations or costly laboratory procedures. When incorporating longitudinal
designs these samples are further reduced by traditional modeling techniques, which
perform listwise deletion for any instance of missing data. Moreover, these tech-
niques are limited in their capacity to accommodate alternative correlation struc-
tures that are common in repeated measures studies. Researchers require sound
quantitative methods to work with limited but valuable measures without degrading
their data sets. This article provides a brief tutorial and exploration of two alterna-
tive longitudinal modeling techniques, linear mixed effects models and generalized
estimating equations, as applied to a repeated measures study (n = 12) of pairmate
attachment and social stress in primates. Both techniques provide comparable
results, but each model offers unique information that can be helpful when deciding
the right analytic tool.
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In psychological studies involving unique populations, costly laboratory procedures,

or animals, sample size issues are unavoidable. Although measurement reliability and

statistical power hinge on adequate subject pools, it is not often feasible for research-

ers to conduct large-sample, population-level studies (Button et al., 2013). Small sub-

ject pools may yield reduced variability estimates that may not generalize to the

population, but if based on robust research methods and free of measurement error,

these estimates are still revealing in context. When conducted longitudinally, small-

sample studies can provide very rich information about sample-specific phenomena.

Studies that incorporate longitudinal data gain statistical power with repeated

measures. Various quantitative methods may be used to analyze repeated measures

and account for the dependency of the data, as well as individual and group variabil-

ity. Standard longitudinal techniques include traditional models based on ordinary

least squares (OLS) estimation, such as repeated measures analysis of variance (RM

ANOVA). However, traditional OLS models require complete data and can degrade

data sets by performing listwise deletion on cases with missingness. In such models,

a subject’s entire record is dropped from analysis when any one measure is missing.

This is a significant drawback for small data sets (Rubin, Witkiewitz, Andre, &

Reilly, 2007).

Furthermore, RM ANOVA’s inability to flexibly model within-person correlations

may result in biased and less-precise estimates when correlations are truly unequal

across repeated measures. Theory often indicates that time-based effects cause sub-

ject scores to deviate differently across repeated measures, negating assumptions of

independent residuals. For example, residuals at different occasions may exhibit

autoregressive covariance (covariance changes as a function of the lag time between

measures), or unstructured covariance (covariance differs uniquely across measures),

in addition to independence (no covariance across repeated measures). If a model

does not account for such variation, or its correlation structure is too simple, we

underestimate standard errors of our estimates, which may inflate Type 1 error. Thus,

RM ANOVA’s assumption of equal variance is a challenge for longitudinal designs

and increasingly so for smaller samples where standard errors are inherently larger

(Howell, 2007).

To avoid these RM ANOVA issues for small longitudinal samples, various tech-

niques offer modeling alternatives. One choice is to use imputations to replace miss-

ing data and calculate replacement values based on intact observations. Although

imputation helps preserve sample size, this technique may be risky if missing values

are outcome measures, the central focus in our model. Imputations add uncertainty

and may misrepresent the sample. In a small data set, where individual values have

more influence on variability estimates, this added uncertainty risks causing the very
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problems that imputations were meant to avert: biased estimates and diminished pre-

cision (Cohen, Cohen, West, & Aiken, 2003).

Bayesian estimation methods also provide a sound alternative to RM ANOVA

because of their proven advantages in working with limited samples and missing

data. These techniques incorporate data-based evidence from previous studies to con-

struct informative priors and offer additional information to model the study at hand.

Research has shown great success for Bayesian models applied to small, unbalanced

samples, and interested readers should pursue the literature further (Hsieh & Maier,

2009). Bayesian inference is beyond the scope of this article, which is within the fre-

quentist framework.

Last, researchers may consider simply extending the RM ANOVA technique with

the variance component approach to handling unbalanced data. Variance component

analysis surmounts the issue of listwise deletion by adjusting sums of squares for

each individual, independently estimating each subject’s variance. Researchers may

choose this option if confident that the correlation structure of their variables is equal

across repeated measures; however, the variance component technique remains lim-

ited by the inability of RM ANOVA to handle alternative correlation structures

(Graybill & Wortham, 1956).

In light of the above alternatives, this article intends to explore the advantages of

two models that more flexibly handle correlation structures and unbalanced longitu-

dinal data. We will focus on linear mixed effects (LME) models and generalized esti-

mating equations (GEEs) and aim to advance the literature on their use for

longitudinal research, in the context of limited sample sizes.

In this article, we apply LME and GEE models to a study of social stress and part-

nership in monogamous male titi monkeys (Callicebus cupreus) and examine whether

they provide comparable measures of significance and precision in this small, unba-

lanced, repeated measures data set. Our goal with this article is to offer multifaceted

considerations for modeling small longitudinal psychology data sets and to open the

door for future exploration with LME and GEE models.

Broader Goals

This study intends to advance the longitudinal dialogue about LME and GEE mod-

els. Among others, we extend from the works of Burton, Gurrin, and Sly (1998) and

Krueger and Tian (2004).

In Burton et al.’s (1998) tutorial, empirical application to a large sample longitudi-

nal study (629 measures taken from 12 subjects) demonstrated comparable LME and

GEE performance. Results showed that equivalent parameter value estimates across

GEE and LME models (LME: b = 0.247, GEE: b = 0.247) had substantially larger

standard errors in GEEs (LME: SE = 0.033, GEE: SE = 0.065; Burton et al., 1998).

This study highlighted advantages, disadvantages, and deciding factors between

LME and GEE, but only as applied to large samples. We aim to step forward from

Burton et al.’s tutorial to examine whether GEE and LME performance remains
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consistent with small samples. We hypothesize that our results will mirror

Burton’s—that GEE standard errors will remain larger than LMEs because of their

inflated robust estimation.

In light of our small-sample focus, we draw from Krueger and Tian’s (2004)

research, which similarly examines LME’s facility for modeling around small, unba-

lanced, longitudinal data. This study applied LME and RM ANOVA models to a

study of biology and behavior with over 50% of observations missing (105 possible

observations decreased to 43). Results showed clear challenges for RM ANOVA

(which limited observations from 43 to 22 using listwise deletion), while LME mod-

els incorporated the total observations (Krueger & Tian, 2004). We aim to advance

Krueger and Tian’s findings by examining GEEs in addition to LMEs, with a small

longitudinal data set with missing values.

Overall we intend to provide insight into the efficiency of LME and GEEs, in

application, to help inform practical model choice. Readers should thus note through-

out, our focus on measures of precision across LME and GEE models.

Description of LME and GEE

In repeated measures data, an individual’s outcome scores are related to their scores

at each subsequent time point. Statistically, these repeated outcomes exhibit within-

cluster correlations, or patterns of variation corresponding to an individual, and thus

contain dependency. Longitudinal data may contain within-cluster dependency asso-

ciated with random predictor variables as well as residual scores. Residual correla-

tion signifies that an individual’s random deviations from model predictions vary in

structured patterns across measures. Such forms of dependency must not be ignored.

If treated independent, repeated measures can lead to biased parameter estimates,

underestimated standard errors, and untrustworthy estimates (Diggle, Heagerty,

Liang, & Zeger, 2002). Longitudinal dependency presents problems for traditional t

tests, ANOVA, and simple regression models, which assume independent outcomes

and residuals. LME and GEE techniques, however, flexibly model within-cluster cor-

relations across measurement occasions and do not assume equal correlations across

repeated measures, unlike the RM ANOVA technique (discussed below; Burton

et al., 1998). Both LME and GEE efficiently account for dependency in outcome

scores without inflating sample size, distorting the true structure of the data set (a

consequence of ignoring correlation structure; Burton et al., 1998), or handling unba-

lanced designs with listwise deletion (Rubin et al., 2007). Likewise, LME and GEE

handle correlated and heteroscedastic residuals (Ghisletta & Spini, 2004).

LME and GEE models partition repeated measures dependencies by estimating a

general pooled prediction model (variation across all individuals) and accounting for

each subject’s correlation structure (variation within one individual). LME and GEE

differ in how they model this correlation structure—LME estimates the structure

simultaneously in a multilevel model and GEE does so orthogonally (Burton et al.,

1998), as we will discuss in detail. As a result of these differences, as well as
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differences in calculating standard errors, we expect LME and GEE models to yield

equivalent estimates under certain conditions and divergent estimates under others.

This hypothesis will be explored further in our results and discussion. The next sec-

tions provide a brief overview of the RM ANOVA approach, followed by descrip-

tions of and comparisons between LME and GEE techniques.

Repeated Measures Analysis of Variance

Repeated measures ANOVA extends the ANOVA technique for comparing mean

differences across repeated measures by accounting for groups with correlated data.

This method partials out the dependency in repeated measures by subtracting within-

person variability from the sum of squares error (Krueger & Tian, 2004). Although

RM ANOVA partials dependency in repeated measures, the technique assumes equal

correlations within subject and does not accommodate alternative structures. The RM

ANOVA approach is represented by the following structural model (Howell, 2007):

mij ¼ a þ si þ tj þ eij: ð1Þ

In the RM ANOVA model, expected individual outcome scores mij for individual

i in measurement assessment j are represented as a function of a grand mean a, a

fixed subject effect si for the ith individual, a fixed treatment effect tj for the jth mea-

surement assessment, and a random residual error for each individual in each assess-

ment eij:
RM ANOVA models are calculated with OLS estimation, which traditionally

requires balanced designs. For repeated measures data, this means a wide-format data

set with one row per subject, and equal measures across all rows. In order to avert

introducing bias in estimates, the estimation procedure performs listwise deletion

when encountering any cell with missing data (Howell, 2007).

Linear Mixed Effects Models

To account for correlated outcome measures, LME models estimate a pooled multi-

level equation by simultaneously incorporating fixed and random effects. This model

can be represented as (Singer, 1998)

mij = a0j + b1j tij + eij: ð2Þ

In this Level 1 equation, outcome scores mij for individual i in repeated assess-

ment j are represented as a linear combination of a random mean a0j for each assess-

ment, a random slope b1j for each individual in each assessment (tij, measurement

occasion, or any other underlying metric), and a random residual error for each indi-

vidual in each assessment eij:
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Simultaneous to this pooled equation, LME models estimate random effects that

account for variation across individuals (Singer, 1998). In a basic model, these ran-

dom effects include an intercept and a slope, as follows:

a0j = a00 + ui, ð3Þ

b0j = b10 + vi: ð4Þ

In these Level 2 equations, random intercepts a0j are represented as a function of a

grand mean a00 and conditional deviations mi from it. Random slopes b0j are repre-

sented as a function of a group-specific slope b10, and conditional slope deviations vi:
As illustrated, the LME model extends the generalized linear model by allowing

varying intercepts and slopes across individuals. When calculating parameters,

LME’s multiple levels allow for a fluctuating structure of correlation between

repeated outcome scores and between residuals, thereby accounting for dependency

in scores nested within an individual (Burton et al., 1998). Various correlation

matrices may be specified to account for differing structures of covariance in random

variables as well as residuals. Most statistical programming software assumes default

correlation structures. This study used the default structure in R’s lme package (R

Development Core Team, 2011), an independent matrix, corresponding to zero

within-group correlations and zero residual correlations.

Generalized Estimating Equations

Like LME models, GEEs estimate pooled regression equations. However, instead of

multilevel estimation, they use solely this population-level equation and account for

dependency in repeated measures through the residuals and their correlation structure.

GEE equations are calculated by first removing residuals from the general model.

This marginal model is represented as (Burton et al., 1998) follows:

E(mij) = a + btij: ð5Þ

In the marginal model, expected individual outcome scores E(mij) for individual i

in measurement assessment j are represented as a function of a grand mean a and a

common slope b for all individuals at each assessment t:
Residuals are then orthogonally and iteratively estimated as

rij = mij � (a + btij): ð6Þ

Residuals rij for each individual i are estimated as a function of the individual’s

observed outcome mij, minus the combined grand mean a and common slope for all

individuals in all assessments btij: These residual estimates are incorporated in a pre-

determined correlation matrix, which iteratively estimates the marginal model para-

meters. The iterative process continues until marginal estimates stabilize and

converge (Burton et al., 1998).
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To handle dependency in GEE models, one must explicitly specify the residual cor-

relation matrix for GEE estimation (Halekoh, Hojsgaard & Yan, 2006). This matrix is

referred to as a working correlation matrix, because of its estimation of robust standard

errors that provide consistent and unbiased estimates regardless of misspecification

(Ghisletta & Spini 2004). These robust standard errors are inflated measures, calcu-

lated using the matrix of squared residuals (Zorn, 2006). GEEs use various types of

working correlation matrices, which include several key structures (Gosho, 2014):

1. Independent: zero correlation over time (i.e., all off-diagonal elements of the

correlation matrix are zero)

2. Exchangeable: constant correlation over time (i.e., all off-diagonal elements

are equal)

3. Autoregressive: diminishing correlation over time

4. Unstructured: freely estimated correlation (i.e., no equality constraints within

correlation matrix, model is saturated)

5. Specified or fixed: fixed correlation, uniquely determined by user (i.e., unique

matrix is designed by analyst based on theory) (Ghisletta, & Spini, 2004)

These structures may also be used for LME models, but as mentioned above,

LME, unlike GEE, assumes independent matrices by default unless otherwise

specified.

Of these working correlation matrices, the more complex structures that estimate a

large number of parameters and use a high number of degrees of freedom should not

be chosen for small-sample data sets. This includes unstructured matrices (see above),

which may be theoretically sound, but freely estimate all correlation parameters and

require more degrees of freedom than available in small data (Grace-Martin, n.d.).

Correlation specification should be approached with forethought, preferably using

substantive theory of how subject scores relate at each repeated measure. For exam-

ple, an exchangeable structure would be reasonable if an individual’s test scores were

expected to correlate equally over time, and earlier tests were not expected to influ-

ence later scores. Accuracy of parameter estimates depends on choosing the correct

structure. Misspecified structures may result in inefficient and inconsistent parameter

estimates (Gosho, 2014). That said, as mentioned above, GEE accounts for potential

misspecification with robust standard errors. Although inflated measures are less pre-

cise, they remain unbiased, regardless of correlation matrix misspecification

(Ghisletta & Spini, 2004).

LME and GEE in Comparison

For many studies, including those that hypothesize unequal within-subject correla-

tions or significant random effects, or that contain high proportions of missing data,

these two longitudinal approaches offer clear advantages over traditional OLS-based

estimation methods for repeated measures. The LME and GEE techniques are both
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sound modeling choices for repeated measures data, capable of handling dependency

and missingness efficiently. Both approaches present a general, fixed-level equation,

whereas LME models offer multilevel equations that incorporate random effects, and

GEE models offer one marginal equation tailored to prespecified correlation matrices.

The two models have distinct approaches to partialing dependency in repeated mea-

sures, and as a result may provide different estimates for the same data.

We hypothesize that the extent to which LME and GEE estimates differ relates to

factors that most influence their unique features: correlation specification and stan-

dard error estimation. Differences in the efficacy between LME and GEEs may be

most influenced by correlation structure and sample size, for at least two reasons.

First, estimates depend on the complexity of the correlation structure and the extent

to which LME or GEE capture it accurately. For instances of misspecification, LME

and GEE models may diverge, in which case GEEs may be preferable due to robust

standard errors. Second, robust standard errors and normal standard errors vary

according to sample size, power, and precision. In large samples that more closely

represent population behavior, LME and GEE estimates will likely appear more sim-

ilar, whereas in smaller, less reliable samples, differences between LME and GEE

estimates may increase. In small samples with lower power, GEEs may be preferable

for their robust standard errors. We explore these hypotheses in the following empiri-

cal application by examining differences and similarities between LME and GEEs in

light of correlation structure and sample size conditions.

Given the assumptions of LME and GEEs, we aim to examine the relevance of

these models for small-sample, longitudinal studies with missing data. The next sec-

tion provides our empirical application. We first outline the theoretical rationale

behind the study, and then apply the proposed methods to the data and describe

results. We conclude with comparisons and recommendations for the use of LME

and GEE.

Empirical Illustration

Biological Effects of Stress and Separation in Longitudinal Study of Titi
Monkeys

Titi monkeys (Callicebus cupreus) are a monogamous species that demonstrate

strong heterosexual pair bonds in adulthood through such behavioral attributes as

proximity seeking and separation distress (increased vocalization, heart rate, and

cortisol levels; Mason & Mendoza, 1998). Previous studies indicate that pair bond-

ing has measurable effects on physiological processes and systems, including the

hypothalamic–pituitary–adrenal (HPA) axis, the central hub of the neuroendocrine

system for physiological stress response regulation and homeostasis restoration.

Pair bonding has been linked to at least two change processes involving the HPA

axis.

First, titi monkey pairmates exhibit stress buffering. This social mechanism has

been observed in a variety of species with relationships characterized by attachment
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or emotional bonds. In stress buffering, mates may protect each other from experien-

cing the full array of physiological responses to stress, which has broad implications

for affecting HPA system functionality and reactivity (Hennessy, 1997).

Second, research suggests that pair bonding leads to a regulatory shift in the HPA

system. This regulatory shift negatively alters the normal physiological restoration of

homeostasis after stress-induced HPA activation—a process known as the negative

feedback loop. When separated from their pairmates, titi monkeys exhibit an

impaired negative feedback loop, or failure to restore homeostasis after stress

(Mendoza, Capitanio, & Mason, 2000). On pairing, subjects also exhibit a change in

regulation of negative feedback, leading to lower baseline levels of cortisol and

chronically lower basal HPA activity (Mendoza et al., 2000). Moreover, subjects in

long-term partnerships have shown globally higher brain activity than unpartnered

peers, possibly due to changes in cortisol, a primary metabolic hormone (Bales,

Mason, Catana, Cherry, & Mendoza, 2007). It should be noted that the regulatory

shift accompanying pair bonding does not alter subjects’ ability to respond to stress,

demonstrated by the fact that lone and paired males exhibit cortisol elevation in

response to acute stressors (e.g., capture and handling; Rothwell, Mendoza, Mason,

Ragen, & Bales, 2013).

In sum, pair bonding is predicted to elicit these two HPA change processes, thus

suggesting a link between pair bonds and biological social bonding as well as biologi-

cal stress response (Bales et al., 2007). To date, however, attachment studies have not

measured the pair bonding effects of social stress buffering or regulatory shifts across

extended levels of partnership (other than early relationship bonds) and separation

(other than 1-month separation).

Method
Participants. This study examined data from titi monkeys housed at the California

National Primate Research Center, in Davis, California. Subjects were 12 captive-

born adult males, with their cohabitating female partners. The mean age of subjects

was 5.8 years (range = 2.9-8.7), and their average length of cohabitated partnership

with female mates was 0.97 years. Subjects participated in five experimental condi-

tions of separation and partnership, designed to compare whether the magnitude

(either long term or short term) of partnership and/or separation affected hormone

levels. These conditions included baseline, short-term separation, long-term separa-

tion, partnering with strange female, and reunion with long-term mate. All but three

subjects were measured at all five conditions (two measured only at baseline and

short-term separation, and one measured only at baseline). In addition, cases of miss-

ing hormone data varied for individuals at each measurement occasion, because of

sensitivity of hormone assays.

Measures. Subjects, pairmates, and offspring less than 1 year old were relocated to a

metabolism room 48 hours prior to blood draws. This relocation period was underta-

ken to reduce possible effects of novel housing on subject metabolism, as described
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in Bales et al. (2007). Blood and cerebrospinal fluid (CSF) samples were collected

from all subjects, and plasma samples were assayed for plasma cortisol, vasopressin

(AVP), oxytocin (OT), cerebrospinal fluid vasopressin (CSF AVP), cerebrospinal

fluid oxytocin (CSF OT), plasma glucose, and plasma insulin. These outcome vari-

ables are all implicated in pair bonding and stress response (Bales et al., 2007).

Details of hormone assays can be found in substantive analyses.

All procedures in this study were approved by the corresponding university’s

Animal Care and Use Committee and complied with National Institutes of Health

ethical guidelines as set forth in the Guide for Lab Animal Care. Blood draw pro-

tocol can be found in detail, identical to previous research on pair bonding (Bales

et al., 2007).

Design. Male subjects underwent separation and partnership conditions with concur-

rent hormone measurement. The first two conditions were counterbalanced: baseline

(control) and 48 hours of separation from pairmate (short-term separation). All sub-

jects were then separated from their pairmates for approximately 2 weeks and mea-

sured for long-term separation (i.e., all subjects had the same third condition). After

this 2-week separation, the last two conditions were also counterbalanced: reunion

with pairmate and encounter with a strange female. The same stimulus ‘‘stranger’’

female was used for all stranger-partnership conditions. This female had been previ-

ously hysterectomized and was not ovulating while in the presence of subjects. She

was observed closely during repeated exposures to strange males; in all cases she

appeared unstressed and interacted normally with subjects. All animals were fed

twice daily; details of husbandry, training, and caging are identical to those described

in Tardif et al. (2006).

In addition to counterbalancing, it should be noted that measures were not equally

spaced for all subjects—some males were separated from their mates longer than oth-

ers by approximately 1 to 2 weeks.

Experimental conditions were parameterized in three ways such that, including

two interaction models, we tested five different categories of models (R Development

Core Team, 2011). The first two model types used parameters based on condition,

dummy coding either condition by group (partnered vs. separated) or each condition

separately. The third model used a predictor based on time to model measurement

order, ignoring condition. The resulting models were the following:

1. Partnership: partnership (reference) versus separation conditions

2. Condition: baseline (reference) versus four experimental conditions

3. Time: measurement order, counterbalanced and unique to each subject

4. Partnership 3 Time: interaction model

5. Condition 3 Time: interaction model

For each model type, we tested seven hormones as separate outcomes. Figure 1

provides a descriptive summary of mean changes in hormone levels across conditions
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(based on the sum of individual z scores, standardized at the baseline condition mean

for each hormone).

Our analyses aimed to determine whether differences in stress-induced responses

exist across long-term versus short-term separation, and long-term versus stranger-

partnership conditions. LME and GEE models were applied to address these ques-

tions and to examine the unique contributions of each approach. For methodological

purposes, the following analyses strive to illustrate the benefits and limitations of

GEE and LME as applied to a small sample, repeated measures data.

Results

A Comparative Starting Point: RM ANOVA

In the first set of analyses, we use RM ANOVA as a starting point for comparative

assessment. Table 1 summarizes significant parameter estimates from these RM

ANOVA tests of two of our five model types. The two model types, (a) partnership

or (b) condition, were applied to each hormone outcome. Across all models (non-

significant results are not included), RM ANOVA captures multiple measures of sig-

nificance for plasma cortisol models and separation predictors. For example, consider

the significant estimates in the Plasma Cortisol–Partnership and Plasma Cortisol–

Condition models (separation: b = 0.577, SE = 0.213; short-term separation: b =

1.059, SE = 0.331). However, RM ANOVA performs listwise deletion for cases of

missingness, reducing both the sample size and the analytic power. CSF AVP and

CSF OT models, for example, reflect reduced sample sizes of n = 4 and n = 5. In an

already small sample, this reduction in power is quite drastic.

To briefly compare LME and RM ANOVA results, consider the first half of

Table 2, which corresponds with Table 1. Like RM ANOVA estimates, LME para-

meters capture similar measures of significance (magnitude and direction of effects)

in plasma cortisol models, also with separation predictors. In contrast, however,

LME estimates are more precise due to handling missing data without listwise dele-

tion. For example, consider the estimates of the predictor short-term separation in

Plasma Cortisol–Condition models (RM ANOVA: b = 1.059, SE = 0.331; LME: b =

1.012, SE = 0.266). Similarly, in the first half of Table 3, GEE’s handling of missing

data reflects an advantage over RM ANOVA (short-term separation in Plasma

Cortisol–Condition models: RM ANOVA: b = 1.059, SE = 0.331; GEE: b = 0.944,

SE = 0.258). The key distinction here is the model estimation method. While LME

and GEE work around missing data with maximum likelihood and iteratively

reweighted least squares estimation, RM ANOVA performs listwise deletion for

cases of missingness.

We do not extend use of RM ANOVA beyond this preliminary overview, but now

offer more thorough analyses of LME and GEE models only. These models are a

clear choice over RM ANOVA for these data because of their ability to handle miss-

ingness without listwise deletion.
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Hormone Measures: LME Versus GEE Models

The following sections summarize results from comparable LME and GEE tests of

our five model types. As outlined earlier, these models tested planned comparisons

for (a) partnership, (b) condition, (c) time (ignoring condition), (d) time by partner-

ship interaction, and (e) time by condition interaction. These models were chosen to

assess parameters that best explain the variance in hormone scores.

Precision and Efficacy. Table 4 illustrates a full comparison of significant and nonsigni-

ficant results, across all models tested for plasma cortisol. This is a snapshot (10 mod-

els) from 91 total models: 35 total LME models (5 contrast models for each of 7

dependent variables), 35 GEE models with an initial correlation structure (Structure

1), and 21 follow-up GEE models with a comparison correlation structure (Structure

2). Structure 1 GEE models incorporate two types of correlation structures: (a)

exchangeable, for models that did not include time as a predictor, and (b) autoregres-

sive, for time-based models. This specification reflects a joint hypothesis: (a) obser-

vations within a subject are equally correlated across counterbalanced conditions

(i.e., when ignoring measurement order); and (b) when accounting for order, correla-

tions diminish at each subsequent measurement (i.e., scores from conditions that were

Figure 1. Mean hormone levels at each measurement occasion.
Note. SBL = baseline; SST = short-term separation; SLT = long-term separation; RSTr = partnership with

stranger; RPM = reunion with pairmate.
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measured further apart are less correlated than those measured closer together). To

explore the possibility of misspecification for the autoregressive component in

Structure 1, Structure 2 GEEs test time-based equations with exchangeable correla-

tion. Theoretically, these exchangeable models reflect a second correlation hypoth-

esis: observations within a subject are equally correlated across conditions, regardless

of when the measures were taken.

Table 4 gives a closer view of parameter comparisons across LMEs and GEEs

(Structure 1 only), and their varying levels of uncertainty in standard error estimates.

These estimates show GEE robust standard errors are more precise overall than LME

estimates. Structure 2 GEE estimates (not detailed here) are also more precise overall

than LMEs. This outcome disproves our initial hypothesis that LME models would

be more precise than GEEs, as observed with large sample studies (Burton et al.,

1998).

Table 5 gives a full comparison across all models tested for all hormones. In sum-

mary, GEE model estimates for both sets of correlation specifications are more pre-

cise than LME estimates in over 75% of our results. Although, as seen in Table 4, the

differences between LME and GEE standard errors estimates are sometimes slight,

the frequency (75.8% to 83.6%) with which we observe GEE’s superior precision is

notable (Table 5). Moreover, we assess GEE precision in light of the fact that these

standard errors are robust estimates, inflated to buffer against correlation structure

misspecification. LME standard errors are not inflated estimates; thus, if these

Table 1. Parameter Estimates From RM ANOVA, Within-Subjects Effects.

Hormoneb Source Contrast value SE df t contrast p value

Partnership
Plasma cortisol

Separation 0.577 0.213 32 2.706 .011
CSF OTa

Separation 0.625 0.299 16 2.088 .053
Condition

Plasma cortisol
Short-term separation 1.059 0.331 32 3.204 .003

Plasma glucose
Partner stranger 1.167 0.582 32 2.006 .053

Plasma insulin
Partner stranger 1.234 0.471 28 2.620 .014
Reunion pairmate 1.310 0.471 28 2.782 .010

CSF OTa

Long-term separation 1.580 0.464 16 3.407 .004

Note. RM ANOVA = repeated measures analysis of variance; CSF AVP = cerebrospinal fluid vasopressin;

CSF OT = cerebrospinal fluid oxytocin. Only significant effects are reported.
aCSF AVP n = 4, due to missingness, CSF OT n = 5, due to missingness.
bScores standardized at mean of baseline condition.
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models were equal in performance, we would expect LME standard errors to be

smaller than GEEs, as observed in large sample studies (Burton et al., 1998).

This distinction suggests that, for this data set, we may trust GEE model measures

of significance (and nonsignificance) more than LME model estimates. Because of

their superior precision, GEE models may be more accurate and reliable for sample-

specific inference.

Estimates. Given the notable differences in standard errors, we now compare mea-

sures of significance and corresponding parameters captured by LME and GEE mod-

els. Refer again to Table 2 for statistically significant LME results. In 35 LME

Table 2. Parameter Estimates From LME Models.b

Hormone Source Value SE df t value p value

Partnership
Plasma cortisol

Separation 0.566 0.207 37 2.730 .010
Condition

Plasma cortisol
Short-term separation 1.012 0.266 34 3.810 .001

CSF AVPa

Partner stranger 21.023 0.419 24 22.440 .022
Reunion pairmate 21.000 0.433 24 22.310 .030

CSF OTa

Short-term separation 0.786 0.382 27 2.060 .050
Long-term separation 1.295 0.405 27 3.200 .004
Partner stranger 0.830 0.397 27 2.090 .046

Plasma insulin
Short-term separation 0.670 0.319 33 2.100 .044
Long-term separation 1.000 0.339 33 2.950 .006
Partner stranger 1.190 0.444 33 2.690 .011
Reunion pairmate 1.550 0.328 33 4.720 0

Time point
Plasma insulina Time 0.325 0.093 36 3.500 .001

Time Point 3 Partnership
Plasma cortisol Separation 1.156 0.470 35 2.457 .019
Plasma AVP

Separation 0.789 0.383 32 2.058 .048
Time 3 separation 20.296 0.135 32 –2.197 .035

Plasma insulina

Time 0.408 0.117 34 3.500 .001
Time point 3 condition

Plasma cortisol Short-term separation 1.269 0.532 29 2.390 .024

Note. LME = linear mixed effects; CSF AVP = cerebrospinal fluid vasopressin; CSF OT = cerebrospinal

fluid oxytocin. Only significant effects are reported.
aOriginal model did not converge with maximum likelihood estimation; model refit using restricted

maximum likelihood, with random effects fixed at 1.
bNo significant random effects.
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hormone models, 17 out of 126 predictors produce p values significant to reject a

null hypothesis of parameters equal to zero in the population. No LME models

account for significant random effects. Several LME models of CSF AVP, CSF OT,

plasma AVP, and plasma insulin scores did not converge with maximum likelihood,

and were reestimated with restricted maximum likelihood and random effects set

equal to zero. By stabilizing random effects, these models converged, and CSF AVP,

CSF OT, and plasma insulin models contained significant fixed effects.

Likewise for GEE models, 24 out of 126 predictors produce p values significant

to reject the corresponding null hypotheses (Table 3). Unlike LME, no convergence

issues were encountered with GEE models.

Comparison of parameter estimates from Tables 2 and 3 illustrates that LME and

GEE models provide similar measures of significance for separation and partnership

predictors—most commonly with plasma cortisol models. For example, consider esti-

mates for the predictor Separation, in Plasma Cortisol–Partnership (LME: b = 0.566;

SE = 0.207; GEE exchangeable: b = 0.564; SE = 0.113). As discussed, GEE esti-

mates are more precise than the LMEs, with smaller standard errors and p values,

excluding several less precise estimates in time-based GEE models that used an auto-

regressive correlation structure. This may be resultant from a misspecified correlation

structure. Perhaps, measurements taken further apart are still equally correlated, not

diminishing.

Structure 2 GEE models were implemented to test time-based equations with

exchangeable correlation structures. Across all time-based GEE models, 11 out of 91

autoregressive (Structure 1) versus 12 out of 91 exchangeable predictors (Structure

2) produce significant p values. Table 6 provides all significant follow-up measures

with exchangeable correlations, to be compared with autoregressive time-based mea-

sures in Table 3. The autoregressive versus exchangeable time models share eight

significant predictors (all with effect sizes of same direction and relatively equivalent

magnitude), and seven of eight are now more precise in models with exchangeable

correlations. For example, compare estimates of the predictor Separation, in Plasma

Cortisol–Time 3 Partnership (LME: b = 1.156; SE = 0.470; GEE autoregressive:

b = 1.371; SE = 0.639; GEE exchangeable: b = 1.119; SE = 0.527).

Discussion

Methodological Considerations

The preceding results provide distinct comparisons between LME and GEE models,

as applied to this small-sample, longitudinal data. On the whole, LME and GEE

models handle the data set well. LME and GEE both preserve sample size despite

missingness, an advantage over RM ANOVA, and provide similar measures of sig-

nificance. However, several indicators suggest the LME approach is less efficient for

these measures than GEE. First, in this empirical study, we are only interested in

population-level trajectories, not in the estimation of variability in individual trajec-

tories of change, as modeled by LME. Moreover, the small sample does not in fact
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support tests for random effects. This reinforces previous simulation studies that indi-

cate random effects function poorly with small samples, as a result of making too

many estimates from too few pieces of information (Bell, Ferron, & Kromrey, 2008).

Last, as mentioned, LME models face convergence issues when handling the most

reduced samples in this data set. This is not an issue for GEE models. GEE models,

on the other hand, facilitate exploration of the correlation structure over time as well

as the effect of time as a predictor of outcome scores. Interestingly, predictors in

GEE models are generally more precise than LME predictors, a notable advantage

and dissimilarity.

Consistent with our hypothesis that small samples may yield greater differences in

LME and GEE estimates, because of reduced reliability, we indeed found divergence

of standard error estimates across LME and GEE models. However, we were sur-

prised to find consistently superior precision with robust GEE standard errors. This

may be due to multiple factors, namely, those influencing the correlation structure

and the standard error estimation. These models provide different estimates, corre-

sponding with different correlation specifications, which may result from each mod-

el’s ability to accurately model the true correlation. In this study, GEE models appear

more reasonable for their theory-driven correlation structure and standard errors that

are buffered for misspecification. Moreover, these results raise the possibility that

GEEs may be more efficient than LME models for small samples.

Substantive Considerations

First, as mentioned above, inferences from this small-sample study should be cau-

tious. Tables 4 and 5 demonstrate the range of standard errors across models, which

make us question the extent to which we can generalize beyond our sample. Yet, as

discussed below, these longitudinal measures provide valuable considerations for the

behavior of our sample subjects.

From a substantive standpoint, patterns in significant and nonsignificant effects

are distinguishable across models. Several key patterns warrant follow-up measures

and inferential exploration. The most frequently significant hormone outcome is

plasma cortisol, by a far margin. This pattern suggests that separation and partnership

may have a stronger impact on this particular hormone, as compared with others.

Condition-based models capture more significant variance than partnership-based

models. In other words, more variance in hormone measures is explained by account-

ing for each condition separately, than by grouping them as partnership versus separa-

tion. This suggests that each condition—short-term separation, long-term separation,

partnership with stranger, and reunion with pairmate—may have a unique effect on

baseline measures of biological attachment and social stress markers in male titi mon-

key, and provides further cause to investigate the two separate processes linked to

pair ponding, stress-buffering effects, and shifts in negative feedback regulation.

Last, time has nonsignificant effects on hormone measures overall and reduces sig-

nificance of condition predictors in interaction models. In other words, time may be a

Muth et al. 81
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poor predictor of partnership and separation effects on hormone levels. Our results

indicate several substantive possibilities to influence subsequent research questions:

(a) hormone measures react differently to time as a predictor (some hormones are less

sensitive to time than others); (b) different hormone measures have different residual

correlation structures (some hormones are more robust to time effects than others);

(c) time is an unreliable predictor in this counterbalanced study, and models best

account for variance in outcome scores when ignoring measurement occasion (or

time).

These highlights simply touch on the range of patterns distinguishable from LME

and GEE models, both individually and in comparison with each other. This level of

comparison, precision, and sophisticated inclusion of time would not have been pos-

sible with models based on OLS estimation.

Conclusion

This article aimed to illustrate the application of two modeling techniques to analyze

repeated measures data with in a small sample. Inferences are limited when analytic

models do not adjust for small sample sizes. However, knowing which models best

fit one’s data enables us to test hypotheses and explore patterns of variability more

efficiently.

Through application to small unbalanced longitudinal data, our analyses suggest

that GEE models may be more efficient than LME models under the given condi-

tions. To confirm or counter this possibility and make sufficient recommendations for

a broader audience, further research should investigate the reliability of these models

across multiple small-sample longitudinal data sets.

We hope that our analyses might help inform modeling of repeated measures in

studies of limited sample size. Such studies, especially when driven by strong

Table 5. LME Versus GEE Precision Comparison: Percentage of Most Precise Standard
Errors (Out of Total) by Parameter Groupings.

Model

Comparison 1 Comparison 2

LME GEE1a LME GEE2b

Partnership 0.071 0.929 0.071 0.929
Condition 0.382 0.618 0.382 0.618
Time 0.357 0.643 0.071 0.929
Time 3 Partnership 0.286 0.714 0.250 0.750
Time 3 Condition 0.114 0.886 0.043 0.957
Cumulative percentage 0.242 0.758 0.164 0.836

Note. LME = linear mixed effects; GEE = generalized estimating equations.
aGEE1 = Exchangeable for non-time-based models, autoregressive for time-based models.
bGEE2 = Exchangeable for all models.
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theories about longitudinal correlations, may benefit from the use of GEE models,

with its theory-based working correlation matrix. Even if these theories are not

strong, robust standard errors may buffer misspecification. On the other hand, if the-

ory is completely unavailable to inform time-based modeling choices, and a

researcher is interested in both inter- and intra-individual change, LME may provide

less error-prone—although less precise—estimates. Still, it is important to note that

GEE and LME are both adequate approaches and helpful as dual techniques that pro-

vide multiple perspectives on small sample data.
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