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ABSTRACT
Moving sensors refers to an emerging class of data intensive
applications that impacts disciplines such as communica-
tion, health-care, scientific applications, etc. These appli-
cations consist of a fixed number of sensors that move and
produce streams of data as a function of time. They may
require the system to match these streams against stored
streams to retrieve relevant data (patterns). With commu-
nication, for example, a speaking impaired individual might
utilize a haptic glove that translates hand signs into written
(spoken) words. The glove consists of sensors for different
finger joints. These sensors report their location and val-
ues as a function of time, producing streams of data. These
streams are matched against a repository of spatio-temporal
streams to retrieve the corresponding English character or
word.

The contributions of this study are two folds. First, it intro-
duces a framework to store and retrieve “moving sensors”
data. The framework advocates physical data independence
and software-reuse. Second, we investigate alternative rep-
resentations for storage and retrieval of data in support of
query processing. We quantify the tradeoff associated with
these alternatives using empirical data from RoboCup soc-
cer matches.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications—
spatial databases and GIS ; E.2 [Data Storage Represen-
tations]: Composite Structures
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1. INTRODUCTION
Applications involving moving objects and sensors pose nu-
merous challenges for both information retrieval and data-
base communities. Moving objects applications store the
spatial coordinates of objects that change position over time
[25, 9, 11, 6, 3, 15, 23, 21]. Example applications include
those that query the location of trains, cars and planes dur-
ing a time interval. One challenge investigated by recent
studies is how to model the large spatio-temporal data to
track the position of any object at any given time (either
in the past, present or future). For example, storing new
instances of an object every time that its location or shape
changes (as proposed in [15, 3]) results in large and grow-
ing databases for continuously changing objects such as cars
with GPS devices. Other studies propose techniques that
only keep track of the current and predicted future posi-
tions of the moving objects [21] thus reducing the target
data set size.

Moving sensors applications collect data from sensory de-
vices that move in an environment. These sensors might be
robots on the surface of Mars, MEMS-based devices inside
the human body performing remote surgery, etc. This ap-
plication class constitutes the focus of this study. While it
shares common characteristics with those of moving object
applications, it has its own unique features. First, the num-
ber of sensors (or objects) for a given application is almost
always fixed. That is, during the lifetime of an application,
sensors are added and removed infrequently. Second, data
from one sensor might provide context for the other sensors.
In essence, the data from all sensors might convey more in-
formation than the sum of its pieces (especially across mul-
tiple time instances). Of course, the independent movement
of a single sensor may still be of interest, but unlike cars with
GPS devices, analyzing the location/value of all sensors in
a frozen time frame (or a short time interval) becomes an
important query. Here are three example applications for
moving sensors.

American Sign Language (ASL) recognition: ASL is
a gestural language used by hundreds of thousands of North
Americans as their primary means of communication [14].
Machine recognition of ASL is still at a research level, and
hidden Markov models [22, 24] along with classification and
clustering techniques [4, 20] have been studied as possible
approaches to recognize signs. One approach is to analyze
the haptic data [17, 18] generated by a haptic device (e.g.,



CyberGlove from http://www.immersion.com/products/3d/-
interaction/cyberglove.shtml) that is worn by the individual
when signing. A high-end model of the CyberGlove consists
of 22 sensors plus three sensors on the Pholemus Fastrak
system for reporting hand coordinates in space. Hence, the
number of sensors is fixed and small. In addition, to rec-
ognize a sign, the value of all sensors should be analyzed
collectively.

RoboCup Soccer: RoboCup [12] is an annual robot com-
petition in which teams of autonomous robots compete in
a fast-changing environment of a well-known game: Soc-
cer. RoboCup data is intrinsically spatio-temporal in na-
ture, and automated analysis of this data is a significant
problem for pattern recognition systems [1, 16]. A robot can
be represented as a moving sensor in a fixed environment.
Our proposed framework can capture the spatio-temporal
characteristics of these moving sensors and facilitate query
processing. An example is presented in Section 2.1. This
environment consists of 23 sensors, one for the ball and one
for each of the 22 players (11 per team). The collection of
sensors may be analyzed to identify if a team is in offside
position or for statistical analysis.

Avatar Animation: In order to produce realistically an-
imated models of humans in immersive environments [17],
several sensory devices such as video cameras with track-
ing capabilities monitor and capture real human movements
(e.g., the VaRionettes project at Lucent presented at SIG-
GRAPH 2000). For example, in support of teleconferencing
using a low bandwidth communication channel, researchers
in computer graphics have proposed the tracking of only a
few feature points [7, 13], to be utilized for avatar animation.

The contributions of this study are two fold. First, we
present a framework for these applications that advocates
physical data independence and software reuse. Second, we
focus on the three lowest layers of this framework and in-
vestigate alternative approaches to represent data produced
by moving sensors. We evaluate a physical implementation
of these approaches using data from the RoboCup Soccer
matches.

To elaborate on the second contribution, in addition to tra-
jectory models employed for moving objects (e.g., [9]), we
propose a new conceptual representation, termed frame-
based, that groups sensors per time instance. As demon-
strated in Section 4, the frame-based representation im-
proves the response time of certain query types. We study
several logical representations to store moving sensor data
in an object-relational database:

• MULT employs a single table to encapsulate the chang-
ing positions of multiple sensors over time. Each row
of this table denotes data pertaining to a single sensor
per time instance.

• UNIT also employs a single table. However, there is
now one column for each sensor; a row corresponds to
the value of all sensors per time instance. This repre-
sentation is closest to the frame-based representation.
It is less flexible than MULT because it is not trivial
to introduce new sensors into the environment. This
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Figure 1: A hierarchical framework to represent
moving sensors.

is not of significant importance for the class of appli-
cations that constitute the focus of this study.

• TBINS constructs one table for each sensor. Each row
of this table contains the value of a specific sensor for
a given time instance.

Our evaluation considers alternative index structures with
each design to enhance query processing time. UNIT and
one of the indexed versions of MULT, MULT(time,sensor),
are the closest to the frame-based model. The other indexed
version of MULT, MULT(s,t), strives to cluster together the
trajectory information of each sensor; TBINS is an extreme
version of this approach.

Our experimental results reveal that UNIT and MULT are
superior to TBINS. Queries which involve short time inter-
vals and several sensors are more efficiently evaluated with
UNIT and MULT(t,s), while MULT(s,t) is more appropriate
for the opposite types of queries. Hence, the representation
choice depends on the database workload. Given the avail-
ability of cheap mass storage devices, one may store data
redundantly and choose the appropriate representation at
runtime to process a specific query.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines a framework to represent moving sensors. In
Section 3, we describe our several alternative approaches to
represent moving sensors. Section 4 uses RoboCup as an
example application to demonstrate the tradeoffs between
MULT and UNIT. Section 5 offers brief conclusions and our
future research directions.

2. A FRAMEWORK
Our framework for representing moving sensors is based on
a layered architecture. Figure 1 shows the different layers of
our framework. As one traverses its different layers starting
with the bottom one, each layer becomes more abstract away
from the physical sensors and more relevant to the target
application. We start with a description of the layers. Next,
we describe RoboCup as an example to demonstrate each
layer. Finally, we describe the transformation procedures
that facilitate data exchange between these layers.



Sensor Data: is the lowest level of the hierarchy and de-
scribes the data produced by the sensors. This data is de-
pendent on the input device. While some preprocessing is
allowed at this layer, e.g., smoothing, no application-specific
features are extracted. For example, one may store the data
as a table in a relational database management system where
the number of columns is equal to the total number of sen-
sors offered by the device and the rows represent the samples
collected as a function of time. In the CyberGlove, there are
31 columns, corresponding to sensors for angle, position, and
velocity. (Section 3 explores other alternatives that repre-
sent a sensor value as a table row instead of a column.)

We do not describe application specific processes, algorithms
and filters at this level for three reasons. First, this layer
is entirely device-dependent; if a new sensing device be-
comes available, none of the previously gathered data can
be reused. Second, querying data at this low level of rep-
resentation is nonintuitive, since the data is expressed in
the vocabulary of the sensing device, rather than in the vo-
cabulary of the application itself. For example, it is more
intuitive to ask, “when was the user’s index finger bent?”
instead of asking, “when was the value of angular sensor A8

greater than 60 degrees?” Finally, we believe that automatic
clustering and classification algorithms may perform better
when presented with a more abstract representation scheme.
In our future work, we intend to investigate whether a richer
representation does indeed improve the performance of those
classification systems studied in [4].

Object Data: defines a set of objects, which are composed
of points and regions. A set of standard predicates and
operations can be applied to objects, regions, and points.
Some of the predicates include touch, pass through, and
distance; the operators include border, intersection, union,
etc. A good description of these predicates for 2-dimensional
spatio-temporal data is provided in [8].

The objects that are defined at this level are specified by the
application. For example, if we were interested in collecting
data about the human hand, then relevant objects would
include the position of each fingertip and the palm, and
the angles at various joints. With the PowerGlove, some
of this data might be approximated from the sensor data.
If instead, we are concerned with a set of RoboCup soccer
playing robots, the relevant objects would be the position
and orientation of each robot (derived from the angle the
robot is facing), along with the ball, and perhaps the goals
and sideline. While the objects found at this level are based
on features of the task, the representation scheme is neutral
with respect to the task, as are the predicates and operators.
In addition, the representation is neutral with respect to
the device. The positional coordinates of each object are
determined from the sensors using the methods described
in the ASL example of the previous section, so as to obtain
physical data independence.

The advantage of working at this level of representation is
that it is the most basic common denominator between var-
ious tasks and devices. It is independent of task, since the
predicates and operations are general. It is also independent
of the physical input device. Consequently, applications that
are built around data at this level of description are the most

portable and reusable.

Subject Data: In the ASL example, the device-neutral
representation was informally described in terms that are
specific to the human hand. For example, we spoke about
objects such as the index finger, knuckles, and the wrist, and
properties such as extension. In RoboCup, we would speak
in terms such as goalie, ball, pass, and goal. This stands
in contrast to the Object Data level of representation, in
which queries had to be formulated in generic terms, such
as “When was object O3 touching object O7?” but not in
terms of subject-specific features, such as “When was the
index finger extended?”

In order to pose queries at this level, the user must: a) de-
fine a taxonomy of object-specific terms and predicates, and
b) map these terms onto features at the lower level of rep-
resentation. For example, the term “Index Finger” can be
mapped onto objects O3, O5, and O8, which might repre-
sent the positions of the fingertip and two knuckles. Higher-
level predicates, such as Extended(finger) can be computed
from the positions and characteristics of the lower-level ob-
jects. The programmer specifies how these functions are
computed, although some automatic solution based on ma-
chine learning may be possible. In this case, the user would
present examples of each predicate to a classification system,
which could infer general rules for determining the value of
each predicate.

There are several advantages to working at this relatively
high level of abstraction. First, it corresponds well to the
way humans think about problems such as hand sign recog-
nition. Many tutorials in sign language express their instruc-
tions in terms that are amenable to this level of representa-
tion. It is hard, if not impossible, to imagine a sign language
tutorial working in the low level terms of object data. Fur-
thermore, we hope to show that this level of abstraction is
more useful than raw data for machine learning systems,
which are known to benefit from feature extraction [2].

Task data: In our sign-language example, the previous
level of representation made it possible to formulate queries
about the hand itself. The representations used at this level
are still somewhat general. They are not specific to the sign
language, and could just as easily have been used in a telep-
resence application such as virtual surgery. A fourth and
final level of representation is necessary if the user wishes
to formulate queries that are specific to the task itself. In
the sign language case, the user might ask when a partic-
ular sign was made; in the virtual surgery case, a teacher
might want to query when a medical student made a partic-
ular incision. Such queries provide greatest value to a user
who is unfamiliar with the specifics of the system, and who
therefore may not have the ability to formulate queries at
the lower levels of abstraction.

Again, a taxonomy of application-specific terms and pred-
icates must be defined. At this high level of abstraction,
it seems unlikely that the derivational rules for connecting
with the lower levels of abstraction could be specified by
hand. Some kind of pattern-recognition will likely have to
be employed. Still, it is hoped that the highly structured
nature of our data-representation scheme will enable this



pattern recognition to be far more simple than a traditional
approach where classification is performed on the original,
low-level data.

2.1 An Example: RoboCup Soccer
Thus far, we have described the framework using the sign-
language as our target application. This section demon-
strates the power of our data representation hierarchy using
the RoboCup soccer application. We use the high-level Task
data queries to describe general features of the entire field
of play, rather than of a single player. For our example, let’s
suppose that a RoboCup “coach” is looking at her team’s
game logs, trying to tighten up the defense. One relevant
query is “select all events in which the opposing team scored
by achieving a breakaway.”

The first step is to decompose this query into one or more
queries on the Subject level. The query can be rewritten
as a conjunction: “select all events such that the opposing
team scores with a breakaway formation,” or more formally
“select goal (opponents) and breakaway (opponents).” Goal
is already a Subject Data query, and require no further de-
composition. We can define Breakaway(A) to be true when
a robot from team A is closer to team B’s goal than any
robot from team B, except the goalkeeper1. More formally,
at time T, we define: Breakaway (A) ≡ For all robots Bi

(2 ≤ i ≤ 11), there exists some robot Aj (1 ≤ j ≤ 11) such
that Distance (Bi, GoalB) > Distance (Aj , GoalB).

Team B’s goalie is B0, so this definition permits the goalie
to be the closest player to the goal. Note that in this case it
was possible to perform to derivations between the Subject
and Task Data by hand, and without the help of any pattern
recognition techniques. The distance predicate used in this
derivation is an Object Data predicate, since it is general
enough to apply to almost any type of spatio-temporal data,
and is not specific to RoboCup. Hence, the decomposition
of this part of the query to the Object Data representa-
tion level is trivial. However, the decomposition of the goal
predicate, which occurs on the level of Subject Data, is more
interesting. At time T: Goal scored (goaln) ≡ pass through
(ball, goaln).

Finally, we can decompose all of these queries into Sensor
Data. Informally, pass through (O1, O2) is true iff at time
T1, intersection (O1, O2) = null, and then at some later time
T2, inside (O1, O2) 6= null. Thus, pass through is defined
in terms of other Object Data queries. Intersection can be
defined by directly examining the sensors values, thus bring-
ing us all the way back to the level of Sensor Data. The
distance predicate can also be defined directly in terms of
Sensor Data.

2.2 Transformation Procedures
Transformation procedures for generating higher level pred-
icates from low-level sensor information is clearly one of the
most important issues for users of the proposed framework.
Such procedures can be relatively trivial, as in the case of
the goal scored predicate in the example above. Such pro-

1We are not insisting that the breakaway player has the ball.
This was left out for clarity; it should be obvious how this
additional condition might be modeled.

time sensorid x y Value

100 0 100 104 -77
124 1 102 15 102
131 2 101 115 12
141 1 102 15 98
. . . . . . . . . . . . . . .

Figure 4: MULT representation.

cedures can easily be handcrafted by many users. In other
cases, these procedures are more complex. For example, the
trigonometric analysis required to find the position of a fin-
gertip from the values of several angular sensors. Finally,
some cases will require the use of automatic pattern recog-
nition algorithm. The recognition of ASL signs from Subject
Data describing the configuration of the hand seems to be
such a case. In our future work, we hope to build systems
that support the user in the transformation of data between
the levels of this representation hierarchy.

In the next section, we present the conceptual design for
spatio-temporal constructs that store and retrieve the mov-
ing sensory data.

3. CONCEPTUAL REPRESENTATION OF
SENSOR DATA

This section outlines our approaches to represent the moving
sensor data. These representations can be used at the three
lowest layers of our hierarchical framework2. The central
idea of encapsulating the data derived from a small, fixed
number of moving sensors leads to two orthogonal concep-
tual representations. We term these as the frame based and
trajectory based representations.

The frame based representation captures the data from all
the sensors in a sequence of single, frozen time frames. Each
time frame is a 3-dimensional (x, y, z) cube that describes
the sensors along with their data. Figure 2 illustrates this
representation. The trajectory based representation cap-
tures the data for each sensor over time. This can be il-
lustrated by a solid line in 3-dimensional space, where each
point on the line represents the position and value of the sen-
sor at a particular time. Figure 3 illustrates the trajectory
based representation.

Based on these conceptual representations, we propose three
logical representations: MULT, UNIT, and BINS. All are
based on the relational (or object-relational) model.

3.1 The MULT representation
An obvious choice of representation is to create a single table
with one row per sensor and time instant. This results in
multiple rows for each of the sensors over time. We term this
representation as a MULTiple Time/Sensor encapsulation
(MULT). Figure 4 illustrates a MULT representation for a
group of moving sensors.

One may construct index structures to minimize the num-
ber of disk I/O required to process a query. We investigated
a B-tree index using a composite key consisting of sensor

2We did not discuss these representations at the task data
layer because that layer is application specific.
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and time. We analyzed the two possible combination: 1)
MULT(s,t) employs sensor as the first portion of the com-
posite key, and 2) MULT(t,s) with time as the first portion
of the composite key. Intuitively, MULT(s,t) clusters to-
gether all information for each sensor and MULT(t,s) clus-
ters together all information for a time frame. Figures 5(a)
and 5(b) illustrate the MULT(s,t) and MULT(t,s) represen-
tations. Thus, MULT(t,s) corresponds to the frame based
representation and MULT(s,t) corresponds to the trajectory
based representation. In our experiments (see Section 4),
we used Informix Dynamic Server (IDS) 9.2 to implement
MULT. Although we cannot confirm the detailed imple-
mentation of composite index structures with IDS, our re-
sults support our intuition about the clustering behavior of
MULT(t,s) and MULT(s,t).

In our experiments, we also considered scenarios where there
is only a single B-tree index on time attribute, MULT(t), or
on the sensorid attribute, MULT(s), or two B-trees on both
attributes, MULT(t/s). However, all these alternatives were
outperformed by either MULT(t,s) or MULT(s,t). Hence,
we do not discuss them any further. We also considered
R-tree index on sensor coordinates and/or time attributes.
However, this performed drastically worse than B-tree be-
cause of how IDS implements R-trees3. We intend to in-
vestigate multidimensional index structures as part of our
future research studies.

The MULT representation provides flexibility to add/delete

3With IDS, the attributes indexed by an R-tree must be
defined as geopoints, a more complex data type (when com-
pared with short integers), resulting in increased query pro-
cessing and response times.

sensors easily because it simply involves adding or removing
a tuple from the table. The MULT representation results
in less redundancy if we assume that sensors move and/or
emit information independently. For example, it is possible
that one sensor moves while others stay still. In this case,
only time tuples corresponding to the moving sensor needs
to be appended to MULT. However, if all sensors move and
emit information collectively (e.g., CyberGlove sensors) then
several time tuples need to be added for all the sensors.

3.2 The UNIT representation
For those applications whose sensors move collectively, it
may be better to capture the information of all sensors in
a time instant into a single object. The UNIT representa-
tion encapsulates information for this object over time in a
single table. Figure 6 illustrates the UNIT representation
for a set of 23 moving sensors. Each individual row in the
table contains the data from all the sensors in a particu-
lar time instant. This abstraction of information from all
sensors into one object closely resembles the frame based
conceptual representation. A B-tree index is kept on the
time attribute ensuring efficient retrieval of the objects for
temporal queries.

UNIT is not flexible for adding/deleting sensors as it involves
adding/deleting columns in the table. In addition, a large
number of sensors results in a large tuple size, which impacts
the query response time drastically. However, for those mov-
ing sensors applications that deal with a small and fixed
number of collective sensors, the UNIT representation may
be the superior alternative. With UNIT, a tuple is added
when the position and/or value of a single sensor changes. If
we assume that sensors move/emit independently, then this



sensorid time x y Value

0 100 100 104 -77
0 101 102 15 102
. . . . . . . . . . . . . . .

1 100 101 115 12
1 101 102 15 98
. . . . . . . . . . . . . . .

time sensorid x y Value

100 0 100 104 -77
100 1 102 15 102
. . . . . . . . . . . . . . .

100 22 10 105 112
101 0 101 115 12
101 1 102 15 98
. . . . . . . . . . . . . . .

a. MULT(s,t) b. MULT(t,s)

Figure 5: Indexed MULT representations.

Time s0x s0y s0Value . . . s22x s22y s22value

1 12 14 -7 . . . 12 15 -10
2 12 15 -12 . . . 20 23 2

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Figure 6: UNIT representation.

representation results in a great deal of redundancy. How-
ever, with all of the example applications considered in this
paper (which we categorize as the class of moving sensors),
the positions and/or values of most of the sensors would
change per time unit collectively. Moreover, by keeping the
information of all sensors for a given time instant together,
the query response time of UNIT is expected to be low. Our
experimental results verify this fact since with moving sen-
sors class of applications majority of queries probe all the
sensors collectively for a short time interval.

3.3 The BINS representation
Finally, the information related to each sensor or a time
instant could be kept in separate tables. This approach
creates BINS or repositories of information for time/sensor.
We have studied the following representations based on the
BINS approach.

• SBINS (Sensor BINS) hold information for all the sen-
sors in a single time instant. The SBINS representa-
tion for moving sensors has a set of tables depending on
the number of discrete time instants. This closely re-
sembles a frame based conceptual representation with
data from all sensors in a time instant in one table.
The general class of moving sensor applications deal
with a large number of time frames. This renders
the SBINS approach impractical due to the extremely
large number of tables created for moving sensor ap-
plications.

• TBINS (Time BINS) hold information over time for
each sensor. A TBINS representation would thus have
a set of tables, each having complete temporal evolu-
tion for a sensor. The idea of abstracting information
per sensor follows the trajectory based conceptual rep-
resentation. The TBINS representation is feasible for
the general class of moving sensors applications with
a small number of fixed sensors. Figure 7 shows the
TBINS representation for a group of sensors. For ef-
ficient retrieval of data from each of the TBINS, we
indexed the data using a B-tree index on the time at-
tribute for each table.

time position Value

100 (10,104) -77
101 (12,15) 102
. . . . . . . . .

. . .

time position Value

100 (3,104) -7
101 (12,15) 10
. . . . . . . . .

TBINS(Sensor 0) TBINS(Sensor 22)

Figure 7: TBINS representation.

With TBINS, the update operation is as simple as MULT be-
cause it only involves appending new tuples to the BINS. In
addition, similar to MULT it is more appropriate when sen-
sors move independently (i.e., only the corresponding BIN
needs to be updated). However, queries across several sen-
sors are both complicated to write and are expensive to per-
form because of the multiple join operations involved. We
consider TBINS in our experiment for the sake of complete-
ness.

4. PERFORMANCE EVALUATION
Our experiments were performed on a Sun Sparc Enterprise
250 Server with dual UltraSparcII chips and 0.5 gigabyte of
memory, running Solaris 2.6. For the implementation of the
two representations, we used the Informix Dynamic Server
2000 with a Geodetic Datablade Spatial Extender v3.0.

4.1 RoboCup Data
The dataset consisted of 31 log files taken from the RoboCup
domain. Each log file was preprocessed and broken into 23
separate data files - one for each player, and one for the ball.
The average size of each of these data files was roughly 100
kilobytes. The data files included 6000 frames, with each
frame representing one tenth of a second. After preprocess-
ing the data, we stored five attributes per time frame: player
number, x-position, y-position, angle, and game state. Con-
sequently, the size of the data was roughly 21.39 MB; 31
× 23 × 6000 × 5 = 2.139 × 107. The spatial granularity
was 1680 for the x-position and 1088 for the y-position; the
angular granularity was 360 degrees.

4.2 Query Performance Cost
A query may reference either sensors, time, or both using
either a conjunctive or a disjunctive predicate. In each case,
it might perform either an exact-match, a range lookup,
or combine the value of different sensors with one another.
For this performance evaluation, we considered conjunctive
predicates that reference both sensor and time. We consid-
ered four possible query types: SRangeTExact, SRangeTRange,
SExactTRange, and SExactTExact. (S stands for sensor, T
denotes time, Range implies a range predicate while Ex-



act identifies an exact match predicate.) We eliminate the
SExactTExact query from further consideration because the
representation that does well for SRangeTExact (or SExactTRange)
with low selectivity for sensor would provide comparable
performance. The queries pertaining to the other three pos-
sibilities are:

1. SRangeTExact query type: Was team A in offside at
time frame X?

2. SRangeTRange: Was there at least one defender in the
goalie box within the 10 seconds (100 frames) prior to
the scored goal?

3. SExactTRange: How often was the ball on team A’s half
court during intervals 30 and 240?

4. SRangeTExact: At time X, how many players of team
A were within 2 unit distance from the goalie of team
B?

Note that both query 1 and 4 are SRangeTExact query types.
The details of each of the queries are contained in [5].

4.3 Experimental Results
We conducted our experiments on the four queries. The re-
sults shown for each query were averaged over 100 runs,
where each run was conducted at different time instants
and/or sensors to prevent the distortion of the result due
to the caching of the previous query results in the database.
The coefficient of variance over these runs was between 1%
to 10%, which shows the independence of our results from a
specific run.

Query type TBINS UNIT MULT(s,t) MULT(t,s)

Query 1 5.571 0.034 2.534 0.0571
Query 2 0.057 1.07 0.189
Query 3 0.0373 0.093 0.028 1.14
Query 4 5.998 0.013 0.231 0.012

Table 1: Response time of the queries in seconds.

As shown in Table 1, Queries 1 and 4 performed signifi-
cantly better with the UNIT representation. This is because
each of these queries can be evaluated by examining several
sensors in a single time frame. As discussed in Section 4,
MULT(t,s) clusters the sensors for a time frame together
and hence shows a fairly good response time for both Queries
1 and 4. Query 1 with the UNIT representation executed
more than75 times faster than that with the MULT(s,t) or
TBINS. Query 4 for a UNIT representation also shows more
than 18 times improvement in response time when compared
with MULT(s,t) or TBINS. Query 2 involves a range of sen-
sors over a range of time instants. The TBINS approach
fails for this query because of the prohibitive cost of join for
a time range across multiple tables.

Query 3 performed significantly better with MULT and TBINS
representation because each of these queries is evaluated by
examining a single sensor (one player) across several time
frames. The UNIT approach still has a fairly good response
time for query3. Moreover, the MULT(s,t) representation of
Query 3 shows 30 times improvement in response time over
the corresponding MULT(t,s) representation.
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Figure 8: Impact of varying time range/sensor range
on response time for UNIT and MULT(s,t).

We conclude that the UNIT model is best suited for moving
sensors applications as it consistently performs well for all
the spectrum of queries. However we confirm that a tradeoff
exists with the size of the UNIT (the number of sensors) and
the response time. We synthetically increased the number
of sensors to over 500. We conducted a test for UNIT and
MULT(s,t) over the entire spectrum of queries (Time Exact
& Sensor Range to Time Range & Sensor Exact). Figure 8
shows that a tradeoff exists for the number of sensors and
the response time.

The results show the following. On one hand, UNIT is su-
perior for those queries that are selective on time, i.e., ex-
amine sensor values during a few time instances. On the
other hand, MULT is superior for queries that are selective
on sensors, i.e., examine a few sensor values across time.
From Figure 8, depending on the number of sensors and
time range records, a system designer can choose between
UNIT and MULT. We intend to develop an analytical model
that consumes the queries that constitute the workload of a
system to choose between UNIT and MULT.

5. CONCLUSIONS & FUTURE RESEARCH
DIRECTIONS

This paper reports on our preliminary investigation of mov-
ing sensors. Our primary contribution is a framework that
builds upon a layered architecture. We investigated trajectory-
based and frame-based approaches as two alternatives for
representing sensory data. Our performance results demon-
strates the following tradeoff: a) the UNIT approach is su-
perior when queries can be evaluated by examining several
sensors in a single time instance (frame) or short intervals,
and b) the MULT approach is superior when queries can be
evaluated by examining a few sensors across several time in-
stances (frames). For a mixed workload, the best approach
may be to store data redundantly rendering both represen-
tations.

We intend to extend this work in several directions. First,
we plan to design the appropriate physical layer for each of
the UNIT and MULT representations. Although in our ex-
perimental setups we implemented the two representations
on top of an object-relational database, our ultimate goal is



to build them directly into the pages of an underlying file
system. For example, each frame of the UNIT representation
can be considered as a disk block. We can benefit from our
background in the design of continuous media servers [10]
in order to place and schedule these frame blocks to (say)
play back a recorded haptic experience. These pages or disk
blocks can then be incorporated directly as nodes of a spa-
tial or temporal index structure (i.e., clustered indexing).
Such clustering of sensors would reduce the number of disk
I/Os and hence improve performance.

Second, we want to demonstrate that pattern recognition
techniques can benefit from the structure imposed by our
hierarchy of spatio-temporal data representation. By apply-
ing pattern recognition techniques between each two layers,
rather than attempting to recognize high level information
directly from the sensor data, we hope to improve the speed
and accuracy of pattern recognition. In addition, we specu-
late that our representation hierarchy will allow for a more
collaborative approach. Human designers can specify the
transformation rules that they are able to hand-code, and
then an automated algorithm can be used to find the others.
Beyond improving performance, this approach should make
it easier for humans to understand the results.

Finally, following our second future plan, as we bridge the
gap between users’ semantic queries and the raw sensory
data, the framework must consider user preferences. This is
because the queries in these environments are very subjec-
tive to human perceptions. We plan to build on our previous
work on using fuzzy-logic to incorporate human perception
in querying image databases [19].
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