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ABSTRACT

Shortest path computation is a fundamental problem in road net-
works with application in various domains in research and indus-
try. However, returning only the shortest path is often not satisfy-
ing; users are also interested in alternative paths which might be
longer but have other advantages, e.g., less frequent traffic con-
gestion. In this paper, we formally introduce the k-Shortest Paths

with Limited Overlap (k-SPwLO) problem seeking to recommend
k alternative paths which are (a) as short as possible and (b) suf-
ficiently dissimilar based on a user-controlled similarity threshold.
We propose two algorithms that examine the paths from a source
s to a target t in increasing order of their length and progressively
construct the result set. The baseline algorithm BSL builds upon a
standard algorithm for computing k-Shortest Paths, followed by a
filter step. The OnePass algorithm considers the overlap constraint
in each expansion step while traversing the network. We evaluate
the performance of both algorithms on real road networks and show
that OnePass always outperforms BSL.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—Spatial

databases and GIS
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1. INTRODUCTION
Computing the shortest path between two locations of a road net-

work is a fundamental problem that has attracted a lot of attention
both in research and in industry. State-of-the-art methods [1, 2]
compute the shortest path in linear time, even for world-scale road
networks. However, determining solely the overall shortest path
is not sufficient in many real-world scenarios. Most commercial
route planning and navigation systems offer alternatives longer than
the shortest path but with other desirable properties, e.g., less traf-
fic. Another important scenario arises in emergency situations such
as natural disasters or terrorist attacks, where different evacuation
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Figure 1: Motivational Example.

plans need to be determined and communicated. In both examples,
it is important that the alternatives are not only short, but also sig-
nificantly different from each other.

A direct approach for computing alternative paths is the k-
Shortest Paths problem [3, 4]. However, in most cases the returned
paths share a large number of edges and thus they are not valued
as true alternatives by users. Consider Figure 1, which shows three
distinct paths from location s to t in the city center of Bolzano.
The solid/black line indicates the shortest path from s to t. The
dotted/red line shows the next path by length which is very similar
to the shortest path. Finally, the dashed/green line shows a path
which is longer than the dotted/red path but significantly different
from the shortest path as they traverse different parts of the city’s
road network. In applications like the ones discussed above, it is
the dashed/green path that can be considered a good and useful al-
ternative to the shortest path.

The problem of alternative routing has been studied before.
However, previous works differ substantially in the underlying sim-
ilarity definition and the algorithmic approach they take. Given a
source node s and target node t, [5] incrementally computes a set
of k dissimilar alternative paths. First, the shortest path from s to t
is added to the result set. Then, an extension of Yen’s algorithm [3]
is adopted to progressively produce paths that obey a given sim-
ilarity constraint (shared length). In contrast to this method, [6,
7, 8] first compute a large set of candidate paths and then filter
candidates with respect to some similarity constraints (e.g., their
length or the nodes they cross). Another approach is to repeatedly
run a shortest path algorithm on a network that is progressively
changed by adding penalties to edge weights. The penalties are de-
rived from the overlap of the actual path with previously computed
paths [9, 10]. Finally, the alternative routing problem has also been
approached as skyline query on multi-criterion networks [11, 12,
13].

In contrast to our approach in this paper, the above studies do
not provide any guarantees regarding the quality of the alternative
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paths, i.e., being as short as possible. In addition, most of the cur-
rent methods do not compute alternative paths that are dissimilar to
each other, rather only the similarity to the shortest path is consid-
ered. For any k > 2, this typically produces unsatisfactory results.

In this paper, we introduce a novel definition of alternative paths.
Our focus is to recommend a set of k paths (including the shortest
path p0) such that every path in the result is (a) sufficiently dis-
similar to all its predecessors (based on a user-specified similarity
threshold) and (b) as short as possible. We formalize this form
of alternative routing as the k-Shortest Paths with Limited Over-

lap (k-SPwLO) problem and propose two evaluation algorithms,
termed BSL and OnePass. Both algorithms examine the paths in
increasing order of their length from the source node and terminate
as soon as k paths within the similarity and length constraints are
identified. The baseline algorithm, BSL, first computes a (neces-
sarily large) set of candidate shortest paths and applies similarity
filtering in a second step. In contrast, the OnePass algorithm tra-
verses the network once and expands only those paths that qualify
the similarity constraint. Our experiments on real road networks
show that OnePass always outperforms BSL.

The rest of the paper is organized as follows. Section 2 intro-
duces our approach on alternative routing and formally defines the
problem of k-shortest paths with limited overlap. Section 3 de-
scribes two algorithms for the problem at hand, which are experi-
mentally evaluated in Section 4. Finally, Section 5 concludes the
paper.

2. PROBLEM DEFINITION
Let N denote a set of nodes that represent road intersections. A

road network is a directed graph G(N,E), where E ⊆ N × N
is the set of edges, (nx, ny), each representing a road segment that
connects nodes nx and ny . A weight function w : E → R

+

assigns to each edge (nx, ny) a weight wxy , which captures the
cost of moving from nx to ny , e.g., travel time or distance. A
(simple) path, p(s→t), from node s to t (or just p if s and t are
clear from the context) is a connected and cycle-free sequence of
edges p(s→t) = 〈(s, nx), . . . , (ny, t)〉. The length ℓ(p) of a path
p equals the sum of the weights for all contained edges, i.e.,

ℓ(p) =
∑

∀(nx,ny)∈p

wxy. (1)

Next, we introduce the concept of an alternative path. Consider
a set of paths P from a source node s to a target node t on a road
network G(N,E). We call any path p(s→ t) alternative to P if p
is sufficiently dissimilar to every path p′ ∈ P . The similarity of a
path p to another p′ is determined by their overlap ratio:

Sim(p, p′) =

∑
(nx,ny)∈p∩p′

wxy

ℓ(p′)
, (2)

where pi ∩ p denotes the set of edges shared by p and p′. For the
overlap ratio we have 0 ≤ Sim(p, p′) ≤ 1, where Sim(p, p′) = 0
holds if p shares no edge with p′ and Sim(p, p′) = 1 if p ≡ p′.
Since we consider only simple paths, i.e., cycle-free, the similarity
between different paths is strictly lower than 1. Using the above
similarity measure, we formalize the concept of alternative paths in
the following definition.

DEFINITION 1 (ALTERNATIVE PATH). Let P be a set of

paths from s to t and θ ∈ [0, 1) be a similarity threshold. A

path p is alternative to P iff (a) p is also from s to t and (b)

∀pi ∈ P : Sim(p, pi) ≤ θ.
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Figure 2: Example of a road network and alternative rout-
ing: shortest path p0〈(s, n3)(n3, t)〉, non-alternative path
p1〈(s, n3)(n3, n1)(n1, t)〉, alternative path p2〈(s, n1)(n1, t)〉

Note that our definition of similarity in Equation (2) is asym-
metric. We briefly discuss the intuition behind this choice. The
concept of alternative paths is always defined between one candi-

date alternative path and a given set of alternative paths. Let p be
a candidate path and P = {pi, pj} a set of alternative paths. The
goal is to determine whether p is an alternative path to set P , i.e.,
sufficiently dissimilar to paths pi, pj . In other words, set P is the
fixed reference in this test and hence, the similarity of any candi-
date path depends on its overlap to pi and pj , i.e., the nominator of
Equation (2).

Consider the road network in Figure 2. The shortest path from
node s to t is p0 with length ℓ(p0) = 6. Assume that set P con-
tains only the shortest path, i.e., P = {p0}. The figure also shows
paths p1 and p2 as candidate alternative paths to set P ; p1 shares
only edge (s, n3) with p0 and so, Sim(p1, p0) = ws,n3

/ℓ(p0) =
4/6 = 0.67, while Sim(p2, p0) = 0 as paths p0 and p2 share no
edge. Assuming a similarity threshold θ = 0.5, only p2 is in fact
alternative to set P .

We now introduce the problem of k-Shortest Paths with Limited

Overlap (k-SPwLO). Given a s and a target t, the goal is to rec-
ommend a set of k paths from s to t, sorted by length in increasing
order such that (a) the shortest path p0(s → t) is always included,
(b) every path is dissimilar to its predecessors with respect to a
similarity threshold θ, and (c) all k paths are as short as possible.
Intuitively, this task can also be seen as progressively recommend-
ing k paths to the user starting from the shortest path p0. Every
path pi recommended next is alternative to the set of paths already
recommended and as short as possible. We formalize the k-SPwLO
problem in the following definition.

DEFINITION 2 (k-SPWLO PROBLEM). Given a source node

s, a target node t, and a threshold θ, a query k-SPwLO (s, t, θ, k)
returns a set PLO = {p0, . . . , pk−1} of k paths from s to t, such

that:

• p0 is the shortest path from s to t,

• ∀pi, pj ∈ PLO with i 6= j: Sim(pi, pj) ≤ θ, and

• ∀p /∈ PLO: either ℓ(p) ≥ ℓ(pi) holds ∀pi ∈ PLO or ∃pi ∈
PLO with ℓ(pi) ≤ ℓ(p) and Sim(p, pi) > θ.

The first bullet of Definition 2 guarantees that the shortest path
p0(s→ t) is always recommended. The second bullet assures that
the recommended paths in PLO are sufficiently dissimilar to each
other. Finally, the third bullet guarantees that PLO contains the
shortest among all paths qualifying the previous constraints.

Consider again the road network of Figure 2 and the k-
SPwLO(s, t, 0.5, 2) query, i.e., θ = 0.5 and k = 2. The result



Algorithm 1: BSL

Input: Road network G(N,E), weight function W , source node s, target
node t, number of results k, similarity threshold θ

Output: Set PLO of k paths

1 initialize PLO ← ∅;
2 while PLO contains less than k paths and pc not null do

3 pc ← NextShortestPath(G, s, t); ⊲ Use Yen’s alg.

4 if Sim(pc, pi) ≤ θ for all paths pi ∈ PLO then

5 add pc to PLO ; ⊲ Update result set

6 return PLO ;

set PLO contains the shortest path p0 = 〈(s, n3), (n3, t)〉 and the
path p2 = 〈(s, n1)(n1, t)〉 since Sim(p2, p0) = 0 ≤ 0.5. No-
tice that although the path p1 = 〈(s, n3)(n3, n1)(n1, t)〉 is shorter
than p2, the path p1 is not recommended as it is too similar to p0,
i.e., Sim(p1, p0) = 0.67 > 0.5. In other words, with the recom-
mended paths being dissimilar to each other, the result set {p0, p2}
is more attractive and valuable to the user compared to {p0, p1}.

3. PROPOSED ALGORITHMS
A naïve approach for computing k-SPwLO queries is to iterate

over all paths from the source node s to the target node t and to
compute their pairwise overlap ratio. However, such a solution is
impractical as the computation of all possible paths from s to t is
a #P -complete problem [14]. Due to this examination order, the
algorithms manage to consider in practice only a subset of all paths
from s to t and hence, early terminate the search.

3.1 A Baseline Solution
Algorithm 1 illustrates our baseline algorithm, denoted BSL. It

constructs the result set PLO by examining paths from s to t in
length order. More specifically, the shortest path p0(s→t) is first
added to PLO (Line 1). Then, we enter a loop, where Yen’s algo-
rithm is invoked (Line 3) to generate the next path pc from s to t
in increasing length order. Note that Yen’s algorithm does not run
from scratch each time it is called, but continues from its previous
state. For every path pc, BSL checks whether the path is alterna-
tive to the already recommended paths in PLO (Line 4). If this is
the case, pc is added to PLO . BSL proceeds to the next path in
line until PLO contains k paths or all possible paths from s to t are
examined.

3.2 The OnePass Algorithm
To boost k-SPwLO queries, we employ a pruning criterion based

on the following observation. Let p(s→ n) be a path from source
node s to a node n and pi(s→t) ∈ PLO be an already recom-
mended path. Assume that p is extended to reach the target t, re-
sulting in path p′(s→ t). As p′ contains all edges shared by p and
pi, the similarity of p′ to pi is greater or equal to the similarity of
p to pi, i.e., Sim(p′, pi) ≥ Sim(p, pi). Hence, given a threshold
θ, if there exists a path pi ∈ PLO such that Sim(p, pi) ≥ θ, path
p can be safely discarded as all extensions p′ of p will also violate
the similarity constraint. Lemma 1 captures this pruning criterion.

LEMMA 1. Let PLO be the set of already recommended paths.

If p is an alternative path to PLO with respect to a threshold θ, then

Sim(p′, pi) ≤ θ holds for every subpath p′ of p and any pi ∈ PLO .

Lemma 1 also shows the monotonicity of the similarity function.
Let pi be a path in PLO , p be a path not in PLO , and p′ be a path
that extends p, i.e., p is a subpath of p′. According to Lemma 1, the
similarity Sim(p′, pi) can only be greater or equal to Sim(p, pi),
and it will not decrease under any circumstances.

Algorithm 2: OnePass

Input: Road network G(N,E), weight function W , source node s, target
node t, number of results k, similarity threshold θ

Output: Set PLO of k paths

1 initialize PLO ← shortest path p0(s→ t);
2 initialize min-heapH with source node s;
3 while PLO contains less than k paths andH not empty do

4 [pc, ℓ(pc), VSim(pc)]← H.pop(); ⊲ Current path

5 nc ← the last node in pc;
6 if nc is target node t then

7 add pc to PLO ; ⊲ Update result set

8 foreach label [pq, ℓ(pq), VSim(pq)] inH do

9 update VSim(pq);
10 if Sim(pq, pi) > θ, ∀pi ∈ PLO then ⊲ Lemma 1

11 remove [pq, ℓ(pq), VSim(pq)] fromH;

12 else

13 foreach outgoing edge (nc, n) ∈ E do

14 create path p← pc ◦ (nc, n); ⊲ Expand pc

15 compute VSim(p);
16 if ∀pi ∈ PLO : Sim(p, pi) ≤ θ then ⊲ Lemma 1

17 H.push([p, ℓ(p), VSim(p)]);

18 return PLO ;

We next present OnePass, a label-setting algorithm which tra-
verses the road network and expands every path from source
s that qualifies the pruning criterion of Lemma 1. The paths
are examined in increasing length order. OnePass keeps a label
[p, ℓ(p), VSim(p)] for each distinct path p(s → n), where vec-
tor VSim(p) records the similarity of p to every path in PLO , i.e.,
VSim(p)[i] = Sim(p, pi). Each time a new path to the target node
t is added to PLO , an update procedure takes place for all remaining
incomplete paths p(s → n), which updates VSim(p) and checks
p against Lemma 1. OnePass terminates when either k paths are
recommended or all paths from s to t that qualify Lemma 1 are
examined.

Algorithm 2 illustrates the pseudocode of OnePass. The algo-
rithm uses a min-heap H (initialized with source s) to traverse the
road network. The heap organizes the labels of the incomplete
paths according to their length. T The result set PLO is initial-
ized with the shortest path, p0, from s to t (Line 1). From Line 3–
17, OnePass examines the contents of H until either k paths are
recommended or the heap is depleted. At each iteration, the label
[pc, ℓ(pc), VSim(pc)] of the shortest path pc(s → nc) is deheaped
from H (Line 4). If the end node nc of the path pc is the target t,
a new path is added to PLO (Line 7). Furthermore, for each label
[ph, ℓ(ph), VSim(ph)] in H, the similarity vector VSim(ph) is up-
dated, i.e., compute the similarity of ph to the newly recommended
path pc and determine whether ph qualifies the pruning criterion of
Lemma 1. If Sim(ph, pc) > θ, then ph can be safely discarded1.
If the end node nc is not the target t, OnePass expands the cur-
rent path pc, considering all outgoing edges (nc, n) (Lines 13–17),
provided that the new path p ← pc ◦ (nc, n) qualifies the pruning
criterion of Lemma 1 (Line 16).

3.3 Optimization
The performance of both BSL and OnePass can be improved

by employing a lower bound, dN (n, t), for the network distance
dN (n, t) of a node n to the target t, i.e., the length of the shortest
path from n to t. By using the lower bound dN (n, t), the algo-
rithms traverse the network in an A∗ fashion. One approach for

1In practice, our OnePass implementation performs lazy updates;
vector VSim(ph) is updated and the pruning criterion of Lemma 1
is checked every time a [ph, ℓ(ph), VSim(ph)] label is deheaped.



deriving such bounds is to precompute offline the distance of all
nodes from/to a set of selected landmark nodes. A lower bound
dN (n, t) is then computed based on the triangle inequality [15].
An alternative approach to compute dN (n, t) is to first reverse the
edges of the road network and then run Dijkstra’s algorithm from
target t to every node n of the network [16]. Without loss of gen-
erality, our implementations of BSL and OnePass adopt the second
approach as determining the best method for dN (n, t) is out of the
scope of this paper.

4. EXPERIMENTAL EVALUATION
For our experiments we used the road networks for the city of

Oldenburg (6,105 nodes, 14,058 edges) and the city of San Joaquin
(18,263 nodes, 47,594 edges). To assess the performance of our al-
gorithms, we measure the average response time over 1,000 queries
(i.e., pairs of nodes), varying (a) the number of requested paths k
and (b) the similarity threshold θ. On each test, we vary one of the
parameters while fixing the other to its default value (3 for k and
0.5 for θ). Due to the high execution time of BSL, we consider
a timeout of 120 secs for each query. All algorithms were imple-
mented in C++ and the tests run on a Quad-Core Intel Xeon X5550
(2.67GHz) with 48GB of RAM running Ubuntu Linux.

Figure 3 reports the response time of our algorithms while vary-
ing parameters θ and k. We observe that both BSL and OnePass run
faster as the similarity threshold θ increases (Figure 3(a), (b)), and
slower as the number of requested paths k increases (Figure 3(c),
(d)). As expected, BSL is impractical due to the large number of
paths examined in length order, i.e., the paths returned by Yen’s al-
gorithm. On the other hand, OnePass is faster than BSL because
a number of incomplete paths can be pruned using Lemma 1. Our
tests also unveiled an important trade-off. As θ increases, the prun-
ing power of Lemma 1 deteriorates, i.e., more incomplete paths
qualify the pruning condition, and OnePass constructs more paths
(supporting measurements omitted due to lack of space). But at
the same time, the next recommended path will be naturally deter-
mined earlier and hence, the total execution time drops.

5. CONCLUSIONS
We studied the problem of alternative routing on road networks.

Our goal was to recommend k paths that are sufficiently dissimilar
to each other and as short as possible. We formalized this task as
the k-Shortest Path with Limited Overlap problem and designed
two evaluation algorithms. Our experimental analysis showed that
the OnePass algorithm is always faster than BSL.

Future work includes the study of various optimizations in our
proposed algorithms as well as approximation solutions. Further-
more, we plan to extend the definition of alternative routing by con-
sidering additional constraints and criteria besides the overlap be-
tween the paths and their length.
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