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Alternative Semantic Representations for
Zero-Shot Human Action Recognition

Qian Wang (B) and Ke Chen

School of Computer Science, The University of Manchester,
Manchester, M13 9PL, UK

{qian.wang,ke.chen}@manchester.ac.uk

Abstract. A proper semantic representation for encoding side informa-
tion is key to the success of zero-shot learning. In this paper, we explore
two alternative semantic representations especially for zero-shot human
action recognition: textual descriptions of human actions and deep fea-
tures extracted from still images relevant to human actions. Such side
information are accessible on Web with little cost, which paves a new way
in gaining side information for large-scale zero-shot human action recog-
nition. We investigate different encoding methods to generate semantic
representations for human actions from such side information. Based
on our zero-shot visual recognition method, we conducted experiments
on UCF101 and HMDB51 to evaluate two proposed semantic represen-
tations . The results suggest that our proposed text- and image-based
semantic representations outperform traditional attributes and word vec-
tors considerably for zero-shot human action recognition. In particular,
the image-based semantic representations yield the favourable perfor-
mance even though the representation is extracted from a small number
of images per class.

Keywords: Zero-Shot Learning, Semantic Representation, Human Ac-
tion Recognition, Image Deep Representation, Textual Description Rep-
resentation, Fisher Vector

1 Introduction

Zero-Shot Learning (ZSL) aims to recognize examples from new classes which
are not seen in the training data. It is a promising alternative to the traditional
supervised learning which requires labour-intensive annotation work on all the
classes involved. As shown in Figure 1, in ZSL, the knowledge learned from train-
ing data is transferred to recognise unseen classes through the side information
which can usually be acquired with less effort. Although most existing works in
ZSL focus on the development of novel recognition models, the side information
for knowledge transfer plays an equivalent role in the success of ZSL. The most
popular side information used in ZSL literature are attributes and word vectors.
Although they have been widely used in ZSL [9,12,14,26,27], both of them have
obvious drawbacks as well, especially for zero-shot human action recognition in
video data.
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Fig. 1. A schematic diagram of zero-shot learning framework. The work in this paper is
highlighted in the dashed box. Human action classes are denoted by coloured markers
(blue and black for training and unseen classes respectively) with different shapes. The
training data are used to learn the mapping P and training class embedding (blue filled
markers in the latent space), then the unseen class embedding (black filled markers
in the latent space) is achieved by preserving the semantic distances (red lines). See
Section 4.2 for more details of our ZSL method.

The definition and annotation of attributes for human actions (e.g., the at-
tributes defined for UCF101 [10] include “bodyparts-visible: face, fullbody, one-
hand”, “body-motion: flipping, walking, diving, bending”, etc.) are subjective
and labour-intensive. When a large number of human actions are involved, more
attributes are needed to distinguish one human action from the other. As a re-
sult, attributes based semantic representations are inappropriate for large scale
zero-shot human action recognition. On the other hand, as stated in [2], using a
word vector of the class label to represent a human action is far from adequate
to illustrate the rich appearance variations. In addition, the word vectors are
learned from textual corpus, thus suffering from the semantic gap problem (i.e.,
the difference of information conveyed by visual media and texts).

To address the limitations of existing semantic representations for ZSL, we
attempt to explore alternative side information towards enhanced zero-shot hu-
man action recognition. The essentials of side information for ZSL are twofold.
Firstly, it should be achievable for a large number of human actions without
much effort. More importantly, the side information should be able to capture
the visually discriminative semantics thus benefiting the ZSL by easily bridging
the semantic gap. Therefore, we can employ action relevant images as the side
information resources to extract the semantics of human actions. With the aid
of search engines, it is effortless to collect a set of action relevant images by
using the action name as the key words. Although still images lack of temporal
information in human actions, they provide abundant visually discriminative in-
formation which can be exploited to extract high-level semantic representations
for human actions. On the other hand, we aim to enhance the word vectors by
collecting and encoding textual descriptions of human actions. We believe that
the contextual information in the action relevant texts (e.g., description articles
of human actions from the web) will remove the ambiguity of the semantics in
the original action word vectors which are based solely on the action labels.

To summarise, the contributions of this paper include:
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Table 1. A survey on semantic representations in ZSL

Authors and Year Semantic Representation

Lampert et al. (2009) [12] Attributes, annotated manually
Sharmanska et al. (2012) [21] Attributes, enhanced by learning from visual data
Liu et al. (2011) [14] Attributes, enhanced by learning from visual data
Qin et al. (2016) [18] Attributes, enhanced by learning from visual data
Fu et al. (2014) [8] Attributes, enhanced by learning from visual data

Inoue et al. (2016) [9] Word vector, enhanced by a weighted combination
of related word (from WordNet) vectors.

Alexiou et al. (2016) [2] Word vector, enhanced by the synonyms of labels
(from Internet dictionaries)

Mukherjee et al. (2016) [16] Word Gaussian distribution
Sandouk et al. (2016) [20] Word vector, enhanced by contexts (from tags)

Elhoseiny et al. (2013) [6] Tf-idf, based on Wikipedia articles
Akata et al. (2016) [1] BOW, based on Wikipedia articles
Rohrbach et al. (2010) [19] WordNet path length, based on WordNet ontology

Hit-counts, based on web search results
Chuang et al. (2015) [5] WordNet path length, based on WordNet ontology

– We propose and implement the idea of using textual descriptions to enhance
the word vector representations of human actions in ZSL.

– We propose and implement the idea of using action related still images to
represent semantics for video based human actions in ZSL.

– Experiments are conducted to evaluate the effectiveness of the proposed se-
mantic representations in zero-shot human action recognition, and significant
performance improvement has been achieved.

2 Related Work

The semantic representation is key for the success of ZSL. Recently, attempts
have been made to explore more effective semantic representations for objects/
actions towards improved ZSL performance. In this section, we will review the
prevailing semantic representations used in ZSL (Table 1), including a variety
of extensions of attributes and word vectors, as well as many other less popular
approaches proposed in literature.

Attributes based semantic representations were firstly proposed for ZSL in
[12], thereafter, attributes have been employed for ZSL in many works [3,26,27,
28]. A set of binary attributes need to be manually defined to represent the se-
mantic properties of objects. As a result, each object class can be represented by
a binary attribute vector in which the value of one or zero indicates the presence
or absence of each attribute respectively. Since the attributes are shared by seen
and unseen classes, the knowledge transfer is enabled. However, as mentioned
above, the definition of attributes require experts with domain knowledge to
discriminate different classes, and the attribute annotation for a large number
of classes could be subjective and labour-intensive.
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Alternatively, attributes can be mined automatically from visual features
by discriminative mid-level feature learning [7, 8, 14, 18, 21], but their semantic
meanings are unknown, thus inappropriate for direct use in ZSL. To enhance
the attributes’ discriminative power and semantic meaningfulness, the manu-
ally defined attributes and the ones automatically learned from training data
are usually combined. However, the data-driven attributes are usually dataset
specific and probably fail on a different dataset.

The other kind of prevailing side information used in ZSL is derived from
text resources. One of the most popular semantic representations is word vector
(e.g., the ones generated by the word2vec tool [15]) due to its convenience and
effectiveness. A class label can be easily represented with the vector representa-
tion of the corresponding word or phrase. However, word vectors are deficient
to discriminate different classes from the visual perspective due to the semantic
gap, i.e., the gap between visual and semantic information. As a result, word
vectors are usually outperformed by attributes in ZSL.

To alleviate the semantic gap problem, some attempts have been made to
enhance the word vectors [2, 9, 16, 20]. Inoue et al. [9] aim to adapt the original
word vectors to make two visually similar concepts close to each other in the
adapted word vector space by representing a concept with a weighted sum of its
original word vector and its hypernym (based on WordNet) word vectors. And
the weights are learned from visual resources. Alexiou et al. [2] enrich the word
vector representation by mining and considering synonyms of the action class
labels from multiple Internet dictionaries. Mukherjee et al. [16] use Gaussian
distribution instead of a single word vector to model the class labels so that the
intra-class variability can be expressed properly in the semantic representations.
To address the issue of polysemy, Sandouk et al. [20] learn a specific vector rep-
resentation for a word together with its context. That is to say, the same word
could have different vector representations when it is in different contexts. In-
spired by these works, our work further investigates the possible side information
and enabling techniques to enhance the word vectors for ZSL.

Other than attributes and word vectors, other side information has also been
investigated for knowledge transfer in ZSL, only if they are able to model the
relationships among different classes and relatively easy to obtain. For example,
WordNet path length is used to measure the semantic correlations between two
concepts in [5,19]. The Internet together with search engines provides a natural
opportunity to get side information to measure between-class semantic relation-
ships based on hit-count on search results [19]. Textual descriptions of a class
rather than the single class name are employed to represent a class in [1, 6].
Concept related textual descriptions (e.g., Wikipedia page) can be readily ob-
tained from the Internet and then processed with techniques in natural language
processing (NLP). Considering our focus on zero-shot human action recognition
based on video data, images from the Internet can be alternative side information
to texts which have been a typical choice for zero-shot image classification.
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3 Method

In this section, we propose our methods of generating semantic representations
for zero-shot human action recognition from text and image resources respec-
tively. Firstly, we use search engines to collect action relevant texts and images
as the side information. Some typical examples are shown in Fig.2. Once the side
information are collected, we use different encoding approaches to generate the
semantic representations for human actions.

…  Moisturize your lips with some lip balm. Open the 

lip balm and run the stick across your bottom and 

upper lip; if it comes in a little jar, use your finger to 

apply it instead. This will not only help soften your lips 

and make them smooth, but it will also help the lip 

liner and lipstick go on more evenly. … 

… Learn about the keyboard. The keyboard of a piano 

repeats its notes from top to bottom across several 

octaves. This means that the notes change from low 

(left side) to high (right side), but don't vary in pitch. 

There are twelve notes a piano can produce: seven 

white key notes (C, D, E, F, G, A, B) and five black … 

… Bend your knees so your shins rest on the front of 

the boots and lean forward slightly. The length of the 

skis will make falling forward unlikely. Leaning back, 

though tempting when you're feeling out of control, 

will not normally stop you and will actually make the 

skis even harder to control. … 

Apply Lipstick 

Playing Piano 

Skiing 

Fig. 2. Examples of collected description texts and images of three human actions from
UCF101 (i.e., “Apply Lipstick”, “Playing Piano” and “Skiing”).

3.1 Text-based Semantic Representation

Texts Collection Motivated by the fact a class label is insufficient to depict
the complex concepts in the human action, we try to collect textual descriptions
from the web to represent each human action. Textual descriptions of human
actions can be derived from WikiHow, a website teaching people “how to do
anything”. Inevitably, the description texts for some actions (e.g., “pick”, “sit”,
etc.) are not available from WikiHow, for which we turn to alternative sources
including Wikipedia and Online dictionary.

Pre-Processing Once the textual descriptions for all the human actions are
collected, we end up with a document for each human action class. We use
natural language processing techniques to pre-process the unstructured textual
data before encoding them into semantic representations. In the first step, we
tokenize the documents to get all the words appearing in the documents. After
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removing the stop words (i.e., the words carrying little semantic meanings such
as “is”, “you”, “of” and etc.), we have a dictionary containing d words.

Term-Document Matrix (TD) Given the documents and the dictionary con-
taining all the terms/words in the documents, a term-document matrix M is
constructed to represent the term frequency in all documents. Mij denotes the
frequency of term i in document j, where i = 1, 2, ..., d and j = 1, 2, ..., C, C
is the number of documents, i.e., the number of human actions in a specific
dataset. Thus the column vectors in M can be used to represent the seman-
tic representations of human actions. We denote this approach as TD in the
following sections.

Average Word Vector (AWV) We aim to enhance the word vectors by in-
corporating the collected textual information. Taking advantage of the compo-
sitional property of word vectors, we can represent a document with the average
of all the included word vectors.

AWV (j) =
1

nj

nj∑
i=1

vi (1)

where nj is the number of terms in the j-th document, vi ∈ RD denotes the
word vector of the i-th term in the document, and D is the dimensionality of
word vectors.

Fisher Word Vector (FWV) In contrast to AWV using the mean of all
word vectors to represent a document, FWV aims to model the distribution of
word vectors in a document. Fisher Vector represents a document (i.e., a set of
words) by the gradient of log likelihood with respect to the parameters of a pre-
learned probabilistic model (i.e., Gaussian Mixture Model) [17, 25]. A Gaussian
Mixture Model (GMM) is used to fit the distribution of the word vectors involved
in all documents, where the parameters Θ = {µk, Σk, πk}, k = 1, ...,K. Let
V j = {v1, ..., vnj

} be a set of word vectors from the j-th human action description
document. Then the Fisher Vector of j-th document can be denoted by:

FWV (j) = [GV
j

µ,1, ...,GV
j

µ,K ,GV
j

σ,1, ...,GV
j

σ,K ], (2)

where

GV
j

µ,k =
1
√
πk

∑
vi∈V j

γk,i(
vi − µk
σk

), (3)

GV
j

σ,k =
1√
2πk

∑
vi∈V j

γk,i(
(vi − µk)2

σ2
k

− 1), (4)

γk,i =
exp[− 1

2 (vi − µk)TΣ−1k (vi − µk)]

ΣK
t=1exp[− 1

2 (vi − µt)TΣ−1k (vi − µt)]
. (5)

The dimension of the Fisher Vector is 2DK, where D and K are the dimension-
ality of word vectors and the number of components in the GMM respectively.
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3.2 Image-based Semantic Representation

Human actions are difficult to describe with texts due to the complexity and
intra-class variations. Although they lack temporal information, still images can
provide abundant information for the understanding of human actions. Com-
pared to the video examples, still images are much easier to collect, annotate
and store. Thus we hold the view that still images are a proper kind of side
information which can benefit modelling human action relationships with little
effort.

Image Collection Given a human action, we use the label as the key word and
search relevant images with search engines. For most human actions we can get
a collection of images each of which gives a view of the action. However, for some
action names which could have multiple meanings, the additional explaining key
words are needed to get reasonable searching results. For example, we use “salsa
spin + dancing” and “playing + hula hoop” for the actions “salsa spin” and
“hula hoop” respectively. For each human action, we get different numbers of
relevant images after removing the ones of poor quality (e.g., irrelevant ones and
the ones smaller than 10Kb) from the returned results. The image collection and
filtering can be processed automatically without many human interventions 1.

Feature Extraction We aim to extract useful information from a set of images
to represent a human action. Recently, deep convolution neural networks have
been used to extract image features carrying high-level conceptual information.
By feeding the images into a pre-trained CNN model, the deep image features
can be obtained easily. Then each human action is represented with a set of
image feature vectors F j = {f1, ..., fnj

}. In the next two sections, we use two
approaches to encode the set of image features into the action-level semantic
representation.

Average Feature Vector (AFV) Similar to Eq.(1), we can use the average
of multiple image features as the human action semantic representation.

AFV (j) =
1

nj

nj∑
i=1

fi (6)

Fisher Feature Vector (FFV) Similar to the processing applied on word
vectors in Section 3.1, we use Fisher Vector to encode a set of image feature
vectors relevant to a specific human action.

FFV (j) = [GF
j

µ,1, ...,GF
j

µ,K ,GF
j

σ,1, ...,GF
j

σ,K ], (7)

where GF j

µ,i and GF j

σ,i can be calculated in the same way as Eq.(3-5).

1 We will make our tools publicly available on our web page.
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4 Experimental Settings

4.1 Dataset

We use two human action datasets to evaluate the proposed approaches for
zero-shot recognition, i.e., UCF101 [22] and HMDB51 [11]. UCF101 is a hu-
man action recognition dataset collected from YouTube. There are 13,320 real
action video clips falling into 101 action categories. In our experiments, we use
5 randomly generated 51/50 (seen/unseen) class-wise data splits. HMDB51
contains 6,766 video clips from 51 human action classes. Similarly, we use 5
randomly generated 26/25 splits in all experiments.

4.2 Zero-Shot Recognition Method

We employ our recently developed ZSL method, bidirectional latent embedding
learning (BiDiLEL) [26], as a test bed in our experiments 2. To make the paper
self-contained, we will briefly describe the main idea of BiDiLEL in this section.

The method employs a two-stage latent embedding algorithm to learn a la-
tent space in which the semantic gap is bridged and zero-shot recognition can be
done (see Fig.1). In bottom-up stage, we learn a projection matrix P by super-
vised locality preserving projection (SLPP) [4], such that the examples close to
each other in the original visual space will still be close in the latent space. By
exploiting the local structures and labelling information in the training data, the
learned latent space preserves the data distribution and is more discriminative.
The properties are expected to generalise well for test examples from unseen
classes.

In the top-down embedding, the latent embedding of each seen class can be
calculated by averaging the projections of all the training examples from the class
and then serve as landmarks guiding the learning of latent embedding of unseen
classes. We use the landmarks based Sammon mapping (LSM) [26] which aims
to preserve the inter-class semantic distances (measured in the semantic space).
As a result, the semantic distances between seen and unseen classes as well as
between any pair of unseen classes will be preserved in the latent space.

Once the latent embedding of both seen and unseen classes are obtained, we
can do the zero-shot learning in the latent space using the nearest neighbour
method. Specifically, given a test example, we use projection matrix P to map
it into the latent space, where its distances to all the class embedding can be
calculated, and it will be assigned to the closest class label. For more details, we
refer the readers to [26].

4.3 Video Representation

C3D was proposed in [24] for human action recognition. It utilizes 3D Con-
vNets to learn spatio-temporal features for video streams. According to [26],

2 Like attributes and word vectors, our proposed semantic representations may be
directly deployed in all the existing zero-shot human action recognition methods.
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the C3D video representation outperforms its counterparts in zero-shot human
action recognition. We use the model pre-trained on Sports-1M dataset and
follow the setting in [24, 26] to extract spatio-temporal deep features (i.e., the
4096-dimensional “fc6” activations of the deep neural network) from 16-frame
segments. Finally, the visual representation of a video stream is calculated by
averaging the features of all the segments from the video.

4.4 Evaluation

In most existing ZSL works, the evaluations are based on the assumption that
test examples are only from unseen classes, which is often referred as to con-
ventional zero-short learning (cZSL). In practice, however, the test examples
can be from either training classes or unseen classes. To evaluate ZSL methods
in a more practical scenario, the problem of generalised ZSL has been formu-
lated and investigated in [3,27]. In gZSL, given a test example, the label search
space consists of both seen and unseen classes. In our experiments, we follow the
protocols in [27] and report both conventional and generalised ZSL (cZSL and
gZSL) results using per-class accuracy. In the generalised ZSL scenarios, except
the examples from test classes, we also reserve 20% examples from each training
class for testing and the rest 80% examples from each training class for training.

Concretely, we report the recognition accuracy of test examples from unseen
classes by setting the search space in the unseen label set U for the cZSL; the
accuracy is denoted by AU→U . For gZSL, we set the search space in the whole
label set T = S ∪ U and report three types of per-class accuracies, i.e., the
recognition accuracy of test examples from unseen classes AU→T , the recognition
accuracy of test examples from seen classes AS→T and the harmonic mean,

H = 2 ∗AU→T ∗AS→T /(AU→T +AS→T ). (8)

The ZSL method employed in our experiments works in the inductive setting
(i.e., the test example is processed individually), but can be extended to the
transductive setting (i.e., all the test examples are assumed to be available as a
collection when doing the recognition) easily by using the structured prediction
method [26, 28]. The method of structure prediction uses Kmeans to group all
the test examples into clusters (the number of clusters is set to be the number
of unseen classes) and find a one-to-one map from the clusters to unseen classes.
In our experiments, we will report the results of cZSL in both inductive and
transductive settings.

5 Experimental Results

In this section, we present the designed experiments and the results to evaluate
the effectiveness of proposed semantic representations 3.

3 The scripts and data used in our experiments will be available on our web page.
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Table 2. Results of different text-based semantic representations (mean±standard er-
ror of recognition accuracy %) on UCF101 and HMDB51 datasets. (Sem.Rep.–Semantic
Representation, Att–Attributes, WV–Word vector)

Sem. Rep.
UCF101 (51/50) HMDB51 (26/25)

Inductive Transductive Inductive Transductive

Random 2.00 2.00 4.00 4.00
Att 21.54± 0.72 32.00± 2.30 - -
WV 19.42± 0.69 22.05± 1.74 21.53± 1.75 24.14± 3.43
TD 19.54± 0.75 24.29± 0.65 15.26± 0.57 15.33± 1.72
AWV 24.38± 1.00 30.60± 2.67 21.80± 0.87 26.13± 1.29
FWV(K=1) 23.76± 0.72 28.54± 0.70 19.57± 1.21 20.41± 1.74
FWV(K=2) 23.61± 1.08 28.64± 1.45 18.80± 1.22 20.01± 1.74
FWV(K=3) 22.21± 0.96 24.33± 2.34 17.35± 1.93 21.37± 3.16
FWV(K=4) 22.11± 0.62 28.76± 1.03 17.07± 1.41 18.80± 2.95
FWV(K=5) 21.50± 0.67 27.56± 2.43 16.95± 1.19 17.20± 1.92

5.1 Text-based Representation

We conduct experiments of zero-shot human action recognition by utilising the
proposed text-based semantic representations in Section 3.1, i.e., TD, AWV and
FWV. We use the 300-dimensional word vectors pre-trained with word2vec on
Google News dataset (about 100 billion words) 4. For FWV, we set the value of
K in Eq.(2) to be {1, 2, 3, 4, 5}. The experiments aim to investigate how different
text-based semantic representations perform in zero-shot human action recogni-
tion. In our experiments, we follow the protocols in [26] using class-wise cross
validation to find the optimal values of hyper-parameters. According to the per-
formance on the validation data, cosine distances are employed to calculate the
semantic distances for FWV, and Euclidean distances are employed for AWV.

We report the results of conventional ZSL in both inductive and transductive
settings in Table 2. With only the textual description sources, the simple encod-
ing method TD can achieve the accuracy of 19.54% and 15.26% respectively
on UCF101 and HMDB51, which indicates the textual descriptions collected by
search engines are useful for modelling the inter-class relationships. By incorpo-
rating the pre-trained word vectors, AWV improves the accuracy to 24.38% and
21.80% respectively on UCF101 and HMDB51. On the other hand, by compar-
ing FWV with different K values, we know that K = 1 gives the best results
with an accuracy of 23.76% on UCF101 and 19.57% on HMDB51; however, it is
still outperformed by AWV on both datasets regardless of inductive or transduc-
tive settings. To conclude, AWV performs the best among different text-based
semantic representations.

5.2 Image-based Representation

In our experiments, we collect variant numbers of relevant images for different
human actions. The average number of relevant images per class is around 200

4 https://code.google.com/p/word2vec/
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Table 3. Results of different image-based semantic representations (mean±standard
error of recognition accuracy %) on UCF101 and HMDB51 datasets.

Sem. Rep.
UCF101 (51/50) HMDB51 (26/25)

Inductive Transductive Inductive Transductive

Random 2.00 2.00 4.00 4.00
AFV 37.24± 0.89 50.48± 1.35 25.55± 1.66 30.77± 3.23
FFV(K=1) 40.12± 1.30 50.67± 2.45 25.82± 1.19 31.51± 1.67
FFV(K=2) 38.01± 1.58 49.60± 1.82 25.50± 0.95 28.98± 1.94
FFV(K=3) 36.52± 1.38 45.48± 0.73 24.27± 1.10 26.95± 3.38
FFV(K=4) 35.31± 1.17 44.76± 2.40 23.22± 1.25 25.26± 2.32
FFV(K=5) 34.98± 0.68 45.08± 1.82 23.09± 1.12 23.93± 2.06

and 100 for UCF101 and HMDB51 respectively. To extract the image features,
we use the GoogLeNet [23] model pre-trained on ImageNet dataset 5. The acti-
vations of top fully connected layer of GoogLeNet of 1024 dimensions are used
as the deep image features. We evaluate the image-based semantic representa-
tions encoded with different approaches described in Section 3.2, i.e., AFV and
FFV. Again, we set the values of K in Eq.(7) to be {1, 2, 3, 4, 5}. We employ the
same experiment protocols as those used in the previous experiments (Section
5.1). According to the performance on the validation data, cosine distances are
employed to model the semantic distances for FFV, and Euclidean distances are
employed for AFV.

The experimental results are shown in Table 3. Apparently, K = 1 again
gives the best performance of FFV, achieving 40.12% and 25.82% respectively
on UCF101 and HMDB51 in the inductive setting, 50.67% and 31.51% respec-
tively on UCF101 and HMDB51 in the transductive setting. Different from the
text-based semantic representations, image-based semantic representations FFV
encoded by Fisher Vector outperforms the AFV on both datasets.

5.3 Comparison with Other Semantic Representations

In this experiment, we compare the proposed semantic representations with other
popular ones. From Table 2 and 3, we know that AWV and FFV(K=1) perform
the best among the text- and image-based semantic representations respectively.
So we consider AWV and FFV(K=1) as the representatives of the proposed
text- and image-based semantic representations. As described in Section 4.4, we
conduct the experiments in both conventional and generalised ZSL scenarios in
our experiments.

We present the experimental results in Table 4. Clearly, the proposed two se-
mantic representations (i.e., AWV and FFV(K=1)) outperform word vectors and
attributes consistently in terms of the conventional ZSL evaluation metric. On
UCF101, the use of textual information enhances the word vectors based solely
on the action labels by lifting the accuracy from 19.42% to 24.38%, even higher

5 http://www.vlfeat.org/matconvnet/
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Table 4. A comparison of different semantic representations on UCF101 and HMDB51
datasets (mean±standard error)%.

Dataset Sem. Rep.
cZSL gZSL

AU→U AU→T AS→T H

UCF101

Random 2.00 1.00 1.00 1.00
WV 19.42± 0.69 4.54± 0.64 84.79± 0.91 8.59± 1.17
Att 21.54± 0.72 2.48± 0.62 86.39± 1.37 4.78± 1.18

AWV 24.38± 1.00 5.32± 1.53 86.43± 1.06 9.85± 2.66
FFV 40.12± 1.30 16.55± 1.30 82.38± 1.17 27.49± 1.86

HMDB51

Random 4.00 2.00 2.00 2.00
WV 21.53± 1.75 2.64± 0.33 58.70± 1.40 5.05± 0.61

AWV 21.80± 0.87 2.99± 0.35 62.00± 2.57 5.69± 0.64
FFV 25.68± 1.07 5.91± 0.90 58.57± 1.50 10.65± 1.48

than that of labour-intensive attributes (21.54%). The image-based semantic rep-
resentation FFV encoded with Fisher Vector gives the best accuracy of 40.12%,
significantly higher than its counterparts. This is attributed to the narrower se-
mantic gap between video representation space and image-based semantic space.
The still images contain abundant visually discriminative information which can
be further encoded into high-level semantic representations of human actions.
On HMDB51, the same conclusions can be drawn. It is noteworthy that AWV
is only slightly better than WV for HMDB51 dataset. The reason might be the
existence of actions which are difficult to describe with texts in this dataset, such
as, “sit”, “talk”, “turn”, “stand”, “pick”, “catch”, and etc.

Regarding the generalised ZSL scenario, the proposed AWV and FFV per-
form better on the test examples from unseen classes (with 5.32% and 16.55%
respectively on UCF101, 2.99% and 5.91% respectively on HMDB51), outper-
forming the attributes and word vectors. We also notice that FFV does not
perform the best on test examples from seen classes (i.e., AS→T ), although it is
significantly better than others in terms of harmonic mean (H). This is reason-
able and practically preferable with the trade-off between recognition accuracy
of examples from seen and unseen classes.

5.4 How Many Images Are Enough?

In the previous experiments, we use all the collected images to encode the image-
based semantic representations. In this experiment, we investigate how the num-
ber of images affects the encoded semantic representations. We use AFV and
FFV(K=1) as the encoding methods and generate the semantic representations
for each human action with the number of relevant images to be 5, 10, 20, 30,
40, 50, 60, 70, 80, 90 and 100 respectively (For the case when the total num-
ber of collected images for one human action is less than the expected number,
we simply use all the collected images of that action in the experiment). The
experiments are conducted on two human action datasets in conventional ZSL
scenario under both inductive and transductive settings.



Alternative Semantic Representations for Zero-Shot Action Recognition 13

The performances of two types of image-based semantic representations with
different numbers of images are shown in Fig.3. For a direct comparison, we
display the baseline performance of attributes and word vectors in the figure
as well. Using more images usually benefits the performance of AFV and FFV
on both datasets. In specific, we can see a dramatic performance boost with the
number of images increased from 5 to 40 per class for UCF101. A further increase
of images does not improve the performance significantly, which is especially true
in the inductive setting. For HMDB51 dataset, the similar trend of performance
improvement can be observed from Fig.3, and the performance improvement
stops until the number of images per class increases to around 80. In addition, the
proposed image-based semantic representations using only 5 images per class can
achieve better performance on UCF101 than attributes and word vectors, and the
number rises to 20 for HMDB51 to beat word vectors. To summarise, we are able
to use a small number of relevant images to encode the semantic representations
of human actions, yet boosting the zero-shot human action recognition accuracy
to a large extent.
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Fig. 3. Effects of number of images on the performance of AFV and FFV(K=1).

6 Conclusions and Future Work

We explore the alternative side information to the existing attributes and word
vectors towards improved zero-shot human action recognition. The textual de-
scriptions of human actions from the Internet can be used as side information for
knowledge transfer in ZSL. In addition, the combination with pre-trained word
vectors can further improve the power of text-based semantic representations,
even better than the manually annotated attributes. On the other hand, the
image-based semantic representations achieve dramatic performance improve-
ment compared with the ones based on other side information (e.g., texts and
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human annotations), due to the narrower semantic gap. Our experiments also
show that a small number of images are enough to gain significant performance
improvement.

There are quite a few directions we can follow in our future work. Firstly,
we only use a very simple encoding method (TD) for text-based semantic repre-
sentations in this paper, which results in an extremely high dimensionality and
sparse vector representation per document. It has been chosen in this work as a
proof of concept, but could be optimised by using alternative techniques such as
latent Dirichlet allocation (LDA), latent semantic indexing (LSI), etc. Besides,
in our methods of text-based representation encoding, only the occurrences of
different words in a given document are considered, and the word orders which
play an important role in text understanding have been ignored. Thus the mean-
ing of sentences containing “not” and “but” would be destroyed. To overcome
this limitation, some potential techniques recently developed in NLP (e.g., docu-
ment2vec [13]) would be investigated. Currently, we extract image features with
deep CNN models pre-trained on large scale object classification dataset (i.e.,
ImageNet). Although the pre-trained models have already shown great general-
ization and transferability to other visual recognition tasks, better performance
can be expected by fine-tuning the models with our specific human action image
data. We have done some preliminary experiments on the combination of two
different types of semantic representations, but only get results no better than
the use of image-based semantic representation alone. We do not want to rush to
the conclusion that the image- and text-based semantic representations are not
complementary before further studying the combination methods in our future
work.
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