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Abstract

Continuous K nearest neighbor queries (C-KNN) are defined as finding the nearest points of interest along

an entire path (e.g., finding the three nearest gas stations to a moving car on any point of a pre-specified

path). The result of this type of query is a set of intervals (or split points) and their corresponding KNNs, such

that the KNNs of all points within each interval are the same. The current studies on C-KNN focus on vector

spaces where the distance between two objects is a function of their spatial attributes (e.g., Euclidean distance

metric). These studies are not applicable to spatial network databases (SNDB) where the distance between

two objects is a function of the network connectivity (e.g., shortest path between two objects). In this paper,

we propose two techniques to address C-KNN queries in SNDB: Intersection Examination (IE) and Upper

Bound Algorithm (UBA). With IE, we first find the KNNs of all nodes on a path and then, for those adjacent

nodes whose nearest neighbors are different, we find the intermediate split points. Finally, we compute the

KNNs of the split points using the KNNs of the surrounding nodes. The intuition behind UBA is that the

performance of IE can be improved by determining the adjacent nodes that cannot have any split points in

between, and consequently eliminating the computation of KNN queries for those nodes. Our empirical exper-

iments show that the UBA approach outperforms IE, specially when the points of interest are sparsely

distributed in the network.

Keywords: continuous nearest neighbor queries, spatial network databases

1. Introduction

The problem of K nearest neighbor (KNN) queries in spatial databases has been studied

by many researchers. This type of query is frequently used in Geographical Information

Systems (GIS) and is defined as: given a set of spatial objects and a query point, find the

K closest objects to the query. An example of KNN query is a query initiated by a GPS

device in a vehicle to find the five closest restaurants to the vehicle. Different variations

of KNN queries are also introduced. One variation is the continuous KNN query which is

defined as the KNNs of any point on a given path (i.e., continuous with respect to space).

An example of continuous KNN is when the GPS device of the vehicle initiates a query

to find the five closest restaurants to the vehicle at any point of a given path from a

source to a destination. The result of this type of query is a set of intervals, or a set of
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split points, and their associated KNNs. The split points specify where on the path the

KNNs of a moving object will change, and the intervals (bounded by the split points)

specify the locations that the KNNs of a moving object remains the same. The challenge

in this type of query is to efficiently specify the location and the KNNs of the split points

(or intervals).

The majority of the existing work on KNN queries and its variations are aimed at

Euclidean spaces, where the path between two objects is the straight line connecting

them. These approaches are usually based on utilizing index structures. However, in

spatial network databases (SNDB), objects are restricted to move on pre-defined paths

(e.g., roads) that are specified by an underlying network. This means that the shortest

network path/distance between objects (e.g., a vehicle and the restaurants) depends on

the connectivity of the network rather than the objects’ coordinates. Index structures that

are designed for spaces where the distance between objects is only a function of their

spatial attributes (e.g., Euclidean distance), cannot properly approximate the distances

in SNDB and hence, the solutions that are based on index structures cannot be extended

to SNDB.

In our previous work [5], we introduced a Voronoi based approach, VN3, to efficiently

address regular KNN queries in SNDB. The VN3 has two major components, network

Voronoi polygons (NVP) for each point of interest, and the pre-computed distances

between the border points of each polygon to the points inside the polygon. The VN3

approach provides the result set in an incremental manner and it works in two steps: the

filter step uses the first component to generate a candidate set, and the pre-computed

component is used in the refinement step to find the distances between the query objects

and the candidates, and hence refine the candidates.

In this paper, we propose different approaches to address continuous KNN queries in

SNDB. Depending on the number of neighbors requested by a C-KNN query, we divide

the problem into two cases. When only the first nearest neighbor is requested (e.g.,

finding only the closest restaurant to a vehicle on a given path), our solution relies

entirely on the properties of VN3. We show that the split points on the path are simply

the intersections of the path with the NVPs of the network, which are a subset of the

border points of the NVPs.

We propose two solutions for the cases when more than one neighbor is requested by

the continuous KNN query (i.e., K > 1). The main idea behind our first approach is that

the KNNs of any object on a path between two adjacent nodes (e.g., intersections in road

system) can only be a subset of any point(s) of interest (e.g., restaurants) on the path,

plus the KNNs of the end nodes. Hence, the first solution is based on breaking the entire

path to smaller segments, where each segment is surrounded by two adjacent nodes, and

then finding the KNNs of all the segment nodes. We then show that for two adjacent

nodes with different KNNs, by specifying whether the distances from a query object to

the KNNs of the nodes will be increasing or decreasing as the object moves, we can find

the location of the split points between the two nodes.

The intuition behind our second solution is that if an object moves slightly, its KNNs

will probably remain the same. Our second approach is then based on finding the mini-

mum distance between two subsequent nearest neighbors of an object, only when the two
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neighbors can have a split point between them. This distance specifies the minimum

distance that the object can move without requiring the submission of a new KNN query.

Our empirical experiments show that the second approach always outperforms the first

solution. To the best of our knowledge, the problem of continuous K nearest neighbors in

spatial network databases has not been studied before.

The remainder of this paper is organized as follows. We review the related work on

regular and continuous nearest neighbor queries in Section 2. We then provide a review

of our VN3 approach that can efficiently address KNN queries in SNDB in Section 3. In

Section 4, we discuss our approaches to address continuous KNN queries. Finally, we

discuss our experimental results and conclusions in Sections 5 and 6, respectively.

2. Related work

The regular K nearest neighbor queries have been extensively studied and for which

numerous algorithms have been proposed. A majority of the algorithms are aimed at

m-dimensional objects in Euclidean spaces and are based on utilizing one of the vari-

ations of multidimensional index structures. There are also other algorithms that are

based on computation of the distance from a query object to its nearest neighbors on-line

and per query. The regular KNN queries are the basis for several variations of KNNs,

e.g., continuous KNN queries. The solutions proposed for regular KNN queries are either

directly used, or have been adapted to address the variations of KNN queries. In this

section, we review the previous solutions for regular and continuous KNN queries.

The regular KNN algorithms that are based on index structures usually perform in two

filter and refinement steps and their performance depends on their selectivity in the filter

step. Roussopoulos et al. [10] present a branch-and-bound R-tree traversal algorithm to

find the nearest neighbors of a query point. The main disadvantage of this approach is

the depth-first traversal of the index that incurs unnecessary disk accesses. Korn et al.

[6] present a multi-step k-nearest neighbor search algorithm. The disadvantage of this

approach is that the number of candidates obtained in the filter step is usually much more

than necessary, making the refinement step very expensive. Seidl and Kriegel [11] pro-

pose an optimal version of this multi-step algorithm by incrementally ranking queries on

the index structure. Hjaltason and Samet [2] propose an incremental nearest neighbor

algorithm that is based on utilizing an index structure and a priority queue. Their ap-

proach is optimal with respect to the structure of the spatial index but not with respect to

the nearest neighbor problem. The major shortage with all these approaches that render

them impractical for networks is that the filter step of these solutions performs based on

Minkowski distance metrics (e.g., Euclidean distance) while the networks are metric

spaces, i.e., the distance between two objects depends on the connectivity of the objects

and not their spatial attributes. Hence, the filter step of these approaches cannot be used

for, or properly approximate exact distances in networks.

Papadias et al. [9] propose a solution for SNDB which is based on generating a search

region for the query point that expands from the query, which performs similar to

Dijkstra’s algorithm. Shekhar and Yoo [12] and Jensen et al. [4] also propose solutions
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for the KNN queries in SNDB. These solutions are based on computing the distance

between a query object and its candidate neighbors on-line and per query. Finally, [5],

we propose a novel approach to efficiently address KNN queries in SNDB. The solution

is based on the first order network Voronoi diagrams and the result set is generated

incrementally.

Sistla et al. [13] first identified the importance of the continuous nearest neighbors and

described modeling methods and query languages for the expression of these queries, but

did not discuss the processing methods. Song and Roussopoulos [14] proposed the first

algorithms for CNN queries. Their solution utilizes a fixed upper bound that specifies the

minimum distance that an object can move without requiring a new KNN to be issued.

They also proposed a dual buffer search method that can be used when the position of the

query can be predicted. Tao and Papadias [15], [16] presented a solution that is based on

the concept of time parameterized queries. The output of this approach specifies the

current result of the CNN query, the expiration period of the result, and the set of objects

that will effect the results after the expiration period. This approach provides the

complete result set in an incremental manner. Tao and Papadias [15], [16] proposed a

solution for CNN queries based on performing one single query for the entire path. They

also extended the approach to address C-KNN queries. The main shortcoming of all of

these approaches is that they are designed for Euclidean spaces and utilize a spatial index

structure, hence they are not appropriate for SNDB.

Iwerks et al. [3] propose a method to maintain the continuous KNN queries for moving

objects when the updates are allowed and the motion of the objects is represented as a

function of time. Their solution is based on substituting a continuous KNN query with a

window query, where the objects that are within a specific distance from the object are

filtered. This solution is appropriate when the motion of the objects can be expressed as a

function. Li et al. [7] describe a method to continuously monitor the nearest neighbors in

the mobile environment by examining only the K-th and (k + 1)-st nearest neighbor. They

propose considering the moving objects in a time-distance space, where each object is

represented by a curve, and hence reduce the problem to simply monitoring the location

(in time) where the distance of the (k + 1)-st neighbor becomes less than the distance of

the k-th neighbor. The shortcoming of this approach is that it cannot detect when the

order of the first K nearest neighbors are changed. Xiong et al. [17] propose a solution to

continuously answer a collection of continuous KNN queries based on incremental

evaluation and shared execution. As opposed to the solution provided in Iwerks et al. [3],

this solution does not make any assumption about the trajectory of the movement of the

object(s). However, the solution is based on utilizing methods that are based on R-tree

index structures and hence, cannot be applied to spatial network databases.

Finally, Feng and Watanabe [1] provided a solution for C-NN queries in road

networks. Their solution is based on finding the locations on a path that a NN query must

be performed at. The main shortcoming of this approach is that it only addresses the

problem when the first nearest neighbor is requested (i.e., continuous 1-NN) and does not

address the problem for continuous K-NN queries. To the best of our knowledge, the

problem of continuous K nearest neighbor queries in spatial network database has not

been studied.
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3. Background: VN3

Our proposed solutions to address continuous KNN queries utilize the VN3 approach [5]

to efficiently find the KNNs of an object. The VN3 approach is based on the concept of

the Voronoi diagrams. In this section, we start with an overview of the principles of the

network Voronoi diagrams. We then discuss our VN3 approach to address KNN queries

in spatial network databases. A thorough discussion on Voronoi diagrams and VN3 are

presented in Okabe et al. [8] and Kolahdouzan et al. [5], respectively.

3.1. Network Voronoi diagram

Consider a set of limited number of points, called generator points (or points of interest),

in the Euclidean plane. We associate all locations in the plane to their closest gener-

ator(s). The set of locations assigned to each generator forms a region called Voronoi

polygon (VP) of that generator. The set of Voronoi polygons associated with all the

generators is called the Voronoi diagram with respect to the generators set. Con-

sequently, a Voronoi diagram divides a space into disjoint polygons where the nearest

neighbor of any point inside a polygon is the generator of the polygon. The Voronoi

polygons that share the same edges are called adjacent polygons.

A network Voronoi diagram, termed NVD, is a specialization of the Voronoi diagrams

and is defined for directed and undirected weighted non-planar graphs (e.g., road net-

works), where the location of objects (e.g., cars) is restricted to be on the links (e.g.,

streets) that connect the nodes (e.g., intersections) of the graph and the distance between

objects is defined as their shortest path in the network rather than their Euclidean distance.

A network Voronoi polygon NV P for the point of interest pi (i.e., NV P( pi)) contains

( portion of ) the links where pi is the closest point of interest to any point on those links.

Note that the points of interest in a spatial network database can only be located on the

links of the network. A border point of two NVPs is defined as the location where a link

crosses from one NVP to another. The edges of the NVPs are generated by connecting the

adjacent border points. Unlike a regular Voronoi polygon where edges are straight lines,

the edges of an NVP are not straight lines and hence, an NVP usually has a complex

shape. However, we can still generate an R-tree index structure for these polygons and

utilize the index to locate the polygon that contains a query object. Figure 1 shows an

example of a network Voronoi diagram where { p1, p2, p3} are the points of interest (or

generators), { p3, . . . , p16} are the nodes of the network, the thick solid lines depict the

edges of the NVPs, and {b1, . . . , b7} indicate the border points of the NVPs.

Two of the basic properties of the (network) Voronoi diagrams that we exploit in our

VN3 approach are:

Property 1: The Voronoi diagram of a point set P, V D(P), is unique.

Property 2: The nearest generator point of pi (e.g., pj) is among the generator points

whose Voronoi polygons share similar Voronoi edges with V P( pi).
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3.2. Voronoi-based network nearest neighbor: VN3

Our proposed approach to find the K nearest neighbor queries in spatial networks [5],

termed VN3, is based on the properties of the Network Voronoi diagrams and also

localized pre-computation of the network distances for a very small percentage of

neighboring nodes in the network. The intuition is that the NVPs of an NVD can directly

be used to find the first nearest neighbor of a query object q. This can be achieved by

utilizing an R-tree index structure generated for the NVPs to locate the polygon that

contains q. Subsequently, NVPs’ adjacency information can be utilized to provide a

candidate set for other nearest neighbors of q. Finally, the pre-computed distances can be

used to compute the actual network distances from q to the generators in the candidate

set and consequently refine the set. This component of VN3 can also be used to find the

actual shortest path from q to its nearest neighbors. The filter/refinement process in VN3

is iterative: at each step, first a new set of candidates is generated from the adjacent

generators of the generators that are already selected as the nearest neighbors of q, then

the pre-computed distances are used to select Bonly the next^ nearest neighbor of q. VN3

consists of the following major components:

1. Pre-calculation of the solution space: As a major component of the VN3 filter step, the

NVD for the points of interest (e.g., hotels, restaurants, . . .) in a network must be

calculated and its corresponding NVPs must be stored in a table. Note that separate

NVDs and set of NVPs must be generated for different types of points of interest.

2. Utilization of an index structure: In the first stage of the filter step, the first nearest

neighbor of q is found by locating the NVP that contains q (e.g., using Contain(q)

function in spatial databases). This stage can be expedited by using a spatial index

structure generated on the NVPs. Note that although an NVD is based on the network

distance metric, its NVPs are regular polygons and can be indexed using index

structures that are designed for the Euclidean distance metric (e.g., R-tree). This

means that the Contain(q) function invoked on an R-tree index structure generated for

NVPs will return the NVP whose generator has the minimum network distance to q.

Figure 1. Example of a network Voronoi diagram (NVD).
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3. Pre-computation of the exact distances for a very small portion of data: The

refinement step of VN3 requires that for each NVP, the network distances between its

border points be pre-computed and stored. These pre-computed distances are used to

find the network distances across NVPs, and from the query object to the candidate

set generated by the filter step.

3.3. VN3 filter step

The filter step of our VN3 approach is based on the following two properties. These

properties help the filter step to limit its search space to only the adjacent Voronoi

polygons.

Property 3: Property 2 (in Section 3.1) suggests that the second nearest generator to

Bany location^ inside a Voronoi polygon V ( pi) is among the adjacent generators of pi.

Property 4: Let G = {g1, . . . , gk} 2 P be the set of the first k nearest generators of a

location q inside V (g1), then gk is among the adjacent generators of {G \gk}.

The proofs of the above properties are described in Kolahdunzan et al. [5].

Using a hypothetical NVD shown in Figure 2, we now describe the filtering step of

VN3. The figure shows a query point q, a set of generators (P1, . . . , P13) and their network

Voronoi polygons, the border points of the polygons, and the network inside NV P(P1).

The definition of NVD requires that the first nearest neighbor of q be P1 since V (P1)

contains q, hence P1 can be found by issuing the Contain(q ) function on an index

structure generated for the NVPs of the NVD. Property 3 suggests that the second nearest

neighbor of q is among the adjacent generators of P1, i.e., C = {P2, P3, P4, P5, P6}. This

adjacency information is determined and stored during the generation of NVD and can

be efficiently retrieved from a lookup table. At this stage, we invoke the refinement step

of VN3 to compute the exact distances between q and all the generators in C to find the

second nearest neighbor. Let us assume that the second nearest neighbor of q is P3.

Property 4 then requires that the third nearest neighbor of q be among the adjacent

Figure 2. A sample network Voronoi diagram.
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generators of {P1, P3}, i.e., C = {P2, P4, P5, P6, P10, P11, P12}. Consecutive nearest

neighbors of q can then be found using the same iterative approach.

3.4. VN 3 refinement step

Once a nearest neighbor of a query point q is found and the candidate set C is updated,

the distances from q to all the elements of C must be computed in order to find the next

nearest neighbor. We propose alternative approaches to find the distances between q and

the elements of C. These approaches are based on the properties of NVPs and the

intuition behind all of them is that in an NVD, all possible paths that can connect an

object from outside an NVP to a node inside it, including the polygon’s generator, must

pass through the border points of the polygon. Hence, our proposed approaches are based

on calculating the distance from q to c, a member of the candidate set C, in three steps:

1. From q to the border points of the polygon that contains q (e.g., P1): we propose two

solutions for this step. The first solution is similar to the method proposed in Papadias

et al. [9] where by expanding the network around q, we calculate the distances from q

to the border points of P1. The second solution is based on precalculating and storing

the distances from the border points of each polygon to all the points (i.e., network

nodes) of that polygon in an off-line process. The advantage of this approach is the

significant boost in performance by replacing execution of a complex algorithm (e.g.,

Dijkstra) by a series of simple table lookups.

2. From the border points of p1 to the border points of c: we also propose two solutions

to find these distances. Our first solution works as follows. We assume a network that

is made of the border points of the polygons in C. Since the distances from each

border point of a polygon to the border points of the same polygon are computed and

stored (i.e., third component of VN3), we can easily compute the distance from one

border point to all the border points of the polygons in C. Since the number of border

points is a small percentage of the number of points in the network, this can be

efficiently achieved in memory using Dijkstra’s algorithm. Our second approach

improves the performance of the first approach by only performing Dijkstra for a

small subset of the border points.

3. From the border points of c to c: these distances are computed during the generation

of the NVD and are stored in, and can be efficiently retrieved from a lookup table.

Our empirical experiments shows that VN3 outperforms the only other proposed

approach [9] for KNN queries in SNDB by up to one order of magnitude.

4. Continuous nearest neighbor queries

Continuous nearest neighbor queries are defined as determining the K nearest neighbors

of an object on any point of a given path (i.e., continuous with respect to the space). An
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example of this type of query is shown in Figure 3 where a moving object (e.g., a car) is

traveling along the path (A, B, C, D) (specified by the dashed lines) and we are interested

in finding the first 3 closest restaurants (restaurants are specified in the figure by {r1, . . . ,

r8}) to the object at any given point on the path. The result of a continuous NN query is a

set of split points and their associated KNNs. The split points specify the locations on the

path where the KNNs of the object change. In other words, the KNNs of any object on

the segment (or interval) between two adjacent split points is the same, and it is identical

to the KNNs of the split points. Note that on a split point, the (K+1)-th NN is identical to

the K-th NN (i.e., the definition of switching KNNs). Hence, the KNNs of a split point is

identical to the KNNs of any point in its adjacent segments. The challenge for this type

of query is to efficiently find the location of the split point(s) on the path and their

corresponding KNNs. The current studies on continuous NN queries are focused on

spaces where the distance function between two objects is one of the Minkowski distance

metrics (e.g., Euclidean). However, the distance function in spatial network databases

(e.g., a road network) is usually defined as their shortest path (or shortest time) which is a

function of the network connectivity and is computationally complex. This renders the

approaches that are designed for Minkowski distance metrics, or the ones that are based

on utilization of vector or metric spatial index structures, impractical for SNDB.

In this section, we discuss our solutions for C-KNN queries in spatial network

databases.We first present our solutions for the scenarios when only the first NN is

desired (i.e., C-NN), and then discuss two solutions for the cases where the KNN of any

point on a given path are requested.

4.1. Continuous 1-NN queries

Our solution for C-NN queries, when only the first nearest neighbor is requested, is based

on the properties of VN3. As we showed in Section 3, a network Voronoi polygon of a

point of interest pi specifies all the locations in space (space is limited to the roads in

SNDB), where pi is their nearest neighbor. Hence, in order to specify the C-NN of a

given path, we can first specify the intersections of the path with the NVPs of the

network. This can be achieved by performing a simple Intersect() function on an R-tree

Figure 3. Example of continuous K nearest neighbor query.
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index structure that is generated for the NVPs. Subsequently, we can conclude that pi is

the C-NN of the segments of the path that are contained in NV P( pi). Note that this

approach cannot be extended to C-KNN queries since the network Voronoi polygons are

first order NVPs, i.e., they can only specify the first nearest neighbor of an object.

For example, assume the network Voronoi diagram shown in Figure 4 where

{ p1, . . . , p7} are the points of interest. As depicted in the figure, the path from S to D

crosses NV P( p1), NV P( p5) and NV P( p7) and can be divided to 4 segments. We can

conclude that p5, p1, and p7 are the first nearest neighbors of any point on segments {1,

3}, {2}, and {4}, respectively.

4.2. Continuous KNN queries

In this section, we discuss two approaches to address continuous KNN queries where

both approaches are aimed to find the location of the split point(s) on a given path. Our

first solution, IE, is based on examining the KNNs of all the nodes on the path, while our

second approach, UBA, eliminates the KNN computation for some of the nodes that

cannot have any split points in between.

4.2.1. Intersection examination: IE. Our first approach to address continuous KNN

queries in SNDB is based on finding the KNNs of the intersections on the path. We

describe the intuition of our IE approach by defining the following properties:

Property 5: Let p(ni, nj) be the path between two adjacent nodes ni and nj, o1 and o1
0 be

the first nearest points of interest (or neighbors) to ni and nj, respectively, and assume

that p(ni, nj) includes no point of interest, then the first nearest point of interest to Bany^
object on p(ni, nj) is either o1 or o1

0.

Proof: This property can be easily proved by contradiction. Assume that the nearest

point of interest to a query object q on p(ni, nj) is ok =2 {o1, o1
0}. We know that the shortest

path from q to ok, p(q, ok), must go through either ni or nj. Suppose p(q, ok) goes through

Figure 4. Continuous first nearest neighbor.
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ni and hence distance (q, ok) = distance (q, ni) + distance (ni, ok). However, we know that

distance (ni, ok) > distance (ni, o1) since o1 is the first nearest point of interest to ni and

hence, its distance to ni is smaller than the distance of any other point of interest to ni.

Subsequently, we can conclude that distance (q, ok) > distance (q, o1) which means that

o1 is closer to q than ok, contradicting our initial assumption. Ì

As an example, this property suggests that in Figure 3, the first nearest restaurant to

any point between A and B can be either r1 or r3 since r1 and r3 are the first nearest

neighbors of A and B, respectively.

Property 6: Let p(ni, nj) be the path between two adjacent nodes ni and nj, O =

{o1, . . . , ok} and O 0 = {o1
0, . . . , ok

0} be the k nearest points of interest to ni and nj,

respectively, and assume that p(ni, nj) includes no point of interest, then the k nearest

points of interest to Bany^ object on p(ni, nj) is a subset of {O [ O 0}.

Proof: This property is in fact the extension of property 5 and can be similarly proved

by contradiction. Ì

As an example, this property suggests that in Figure 3, since the three nearest res-

taurants to A and B are {r1, r2, r3} and {r3, r4, r5}, respectively, the three nearest

restaurants to any object between A and B can only be among {r1, r2, r3, r4, r5}.

From the above properties, we can conclude that:

Y If two adjacent nodes have similar KNNs, every object on the path between these

nodes will have similar KNNs as the nodes, meaning that there will be no split

points on the shortest path between the nodes. That is simply because O and O 0 (in

property 6) are the same and hence, {O [ O 0} = O = O 0.

Y In order to find the continuous KNN of any point on a path, we can first break the

path into smaller segments where each segment obeys the above properties. We then

find the continuous KNN for each segment and finally, the union of the results for all

segments generates the result set for the entire path.

The above properties are not valid for a path p if p includes one or more points of

interest (e.g., the path between B and C in Figure 3 which includes r3). We can address

this issue by the following two alternative approaches.

1. The first approach is to further break p to smaller segments where each segment

does not include any points of interest. For example, we can break the path (B, C )

of figure 3 to (B, r3) and (r3, C ). This will require that in addition to B and C, the

KNNs of r3 be determined, which incurs additional overhead. However, in the real

world data sets, the points of interest usually constitute a very small percentage of

the nodes in the graph (e.g., in the State of California, restaurants that have a

density of less than 5%, are the points of interest with the maximum density).

Hence, the incurred overhead by this approach is usually negligible. Note that if
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the percentage of the points of interest are unusually high, VN3 performs sub-

stantially faster, as the result of our experiments [5] show that VN3 performs more

efficiently for higher densities of the points of interest, and hence, will compensate

for this overhead.

2. The second solution is based on extending Properties 1 and 2 as: we can easily

prove that by including points of interest that are on p in the candidate set, the

above properties will again become valid for p. For example, this solution suggests

that the three closest restaurant to any point on the path (B, C ) is a subset of {r3

?{r3, r4, r5} ?{r6, r8, r3}}.

For the rest of this paper, we use the first solution.

Once the KNNs of the nodes in the network are specified, we need to find the loca-

tion and the KNNs of the split points on each segment (i.e., path between two adjacent

nodes). Note that split point(s) only exist on the segments where the nodes of that

segment have different KNNs. We divide the KNNs of a node ni to two increasing and

decreasing groups: the NNs that their distances to a query object q, which is traveling

from ni in a specific direction, increases as the distance of q and ni increases, are called

increasing NNs and vice versa. Note that whether a NN is increasing or decreasing

depends on the direction that q is traveling, i.e., the increasing NNs become decreasing

if q travels in the opposite direction (i.e., q travels toward ni). We can specify whether

a point of interest is considered as increasing or decreasing NN using the following

property:

Property 7: Let ni and nj be two adjacent nodes, d(x, y) specifies the length of the

shortest path between objects x and y, and O = {o1, . . . , ok} be the set of points of interest

in the network, then the shortest path from ni to oa 2 O goes through nj if and only if

d(ni, oa) = d(ni, nj) + d(nj, oa).

Proof: This property is self-evident and we omit its proof. Ì

We now formally define increasing/decreasing NNs as:

Definition: A point of interest o is called an increasing NN for an object that travels on

direction ni Y nj if the shortest path from ni to o does not pass through nj, and it is called

decreasing otherwise.

An example of the above definition and property suggests that in Figure 3, r3 is

considered as a decreasing NN for a query object (i.e., its distance to the query

decreases) when the query is traveling from A toward B. This is because the shortest path

from A to r3 passes from B. However, r3 is considered as an increasing NN for the same

query (i.e., its distance to the query increases) when it travels from B toward A.

We can now describe our approach to find the location of the split points between two

nodes, and their KNNs, using the following example: suppose that in Figure 3, we are

interested to find the three closest restaurants to a query object that is travelling on the
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path (A, B, C, D) (i.e., we should find the KNNs of any point on the path) (A, B, C, D)).

We follow the following steps:

Step 1: The first step is to break the original path (A, B, C, D) to smaller segments where

each segment does not include any point of interest except when a point of interest

is a vertex of the segment (i.e., the segment obeys Properties 1 and 2). For the

given example, the resulting segments will be (A, B), (B, r3), (r3, C ) and (C, D).
Step 2: Once the segments are specified, the KNNs of the nodes of each segment must

be determined. We use VN3 approach to efficiently find the KNNs of the nodes.

In addition, VN3 can efficiently find the shortest path between the query and its

nearest neighbors and hence, can specify if a NN is an increasing or decreasing

NN. To illustrate our technique, we focus on the first segment (i.e., (A, B)). The

other subsequent segments are treated similarly. The three nearest restaurants

to A and B and their distances are {(r1, 3)(r2, 6)(r3, 7)} and {(r3, 2)(r4, 3)(r5, 4)},

respectively. Since the set of KNNs and A and B are different, we can conclude

that (some) split point(s) must exist between A and B. We also conclude that the

KNNs of any point on the candidate list {r1, r2, r3, r4, r5}.

Step 3: From the above candidate list, we can easily generate a sorted list of the nearest

neighbors for the starting point of the segment, A. We also specify whether each

NN is an increasing or decreasing NN using j and , symbols, respectively. for

the given example, the sorted candidate list for A is {j (r1, 3), j (r2, 6), ,(r3, 7),

,(r4, 8), ,(r5, 9)}.

Step 4: We now specify the location of the first split point by:

1. We find the location of the split point for any two subsequent members of the sorted

list, oi and oi+1, where the first and second members have increasing and decreasing

distances to A, respectively. The distance of the split point for oi and oi+1 to A can

be easily found as:
d A;oiþ1ð Þþd A;oið Þ

2
� d A; oið Þ ¼ d A;oiþ1ð Þ�d A;oið Þ

2
. Note that since oi+1 is

lower that oi on the sorted candidate list, d(A, oi+1) is always greater than d(A, oi),

meaning that the location of the split point is always between A and B.

2. Among the set of possible split points found in step 1, we select the one that has

the minimum distance to A as the first split point.

For the given example, the only two subsequent members of the candidate list

that satisfy the condition stated in step 1 are (j r2) and (, r3) with split point

p1 ¼ 6þ7
2
¼ 6:5 and a distance of (6.5j6=)0.5 to A. Note that we ignore other

combinations of any two subsequent members of the sorted list because: a) if two

subsequent members both have increasing (or decreasing) distances to A (e.g., j(r1, 3)

and j(r2, 6), or ,(r3, 7) and ,(r4, 8)), the differences between their distances to

a query object moving from A to B will remain constant, meaning that there cannot

be any split point(s) between them, and b) if the first member has a decreasing

and the second member has an increasing distance to A, when the query object

is traveling from A to B, the distance of the query to the first member will be

decreased further and the distance to the second member will be increased further,

which again means that there can be no split points between the members.
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Step 5: We can easily update the sorted candidate list to reflect their distances to the first

split point p1 by adding/subtracting the distance of A and p1 to/from the

members that have increasing/decreasing distances to A. The sorted candidate

list for p1 will then become {j (r1, 3.5), , (r3, 6.5), j (r2, 6.5), , (r4, 7.5), , (r5,

8.5)}.

Step 6: We now treat p1 as the beginning node of a new segment, ( p1, B), and repeat

steps 4 to 6: we first determine the split points for (j r1, , r3) and (j r2, , r4) pairs

as np1 ¼ 3:5þ6:5
2
¼ 5 and np2 ¼ 6:5þ7:5

2
¼ 7 since these are the only combinations

of the subsequent neighbors that are increasing and decreasing, respectively. We

then find their distances to A as d(np1, p1) = 5 j 3.5 = 1.5 and d(np2, p1) = 7 j

6.5 = 0.5, and finally select np2 as the next split point p2 since it is closer to A

than np1. We continue executing steps 4 to 6 until the new split point has similar

KNNs as B.

Table 1 shows the results of repeating the above steps for the segment (A, B): the

KNNs of any point on (A, p1) interval is equal to the KNNs of A (and p1), for any point

on (p1, p2) segment is equal to KNNs of p1 (and p2), and so on. Note that the distance

from a query object, which is between two split points, to its KNNs can be similarly

computed. Subsequently, the results for other segments of the path can be similarly

found.

This approach, although provides a precise result set, is conservative and may lead to

unnecessary execution of KNN queries. For example, suppose that we are interested in

the first NN of any point on the traveling path from S to D in Figure 4. Clearly, there are

only three split points on this path. However, if we utilize IE approach to address this

query, the 1-NN query must be issued for all the intersections of the path, resulting in

unnecessary KNN computations. We address this issue with our second approach.

4.2.2. Upper Bound Algorithm: UBA. While IE performs KNN queries for every

node (e.g., intersection) on the path, the UBA approach only performs the computation

of KNN queries for a subset of the nodes of the path and hence, provides a better

performance by reducing the number of KNN computations. The intuition for UBA is

similar to what is discussed in Song and Roussopoulos [14]: when a query object is moved

only slightly, it is very likely that its KNNs remain the same. Song and Roussopoulos [14]

Table 1. Split points for segment (A, B) of Figure 3.

Split point Distance to A Candidate set

p1 0.5 j (r1, 3.5), , (r3, 6.5), j (r2, 6.5), , (r4, 7.5), , (r5, 8.5)

p2 1.0 j (r1, 4), , (r3, 6), , (r4, 7), j (r2, 7), , (r5, 8)

p3 1.5 j (r1, 4.5), , (r3, 5.5), , (r4, 6.5), , (r5, 7.5), j (r2, 7.5)

p4 2.0 , (r3, 5), j (r1, 5), , (r4, 6), , (r5, 7), j (r2, 8)

p5 2.5 , (r3, 4.5), , (r4, 5.5), j (r1, 5.5), , (r5, 6.5), j (r2, 8.5)

p6 3 , (r3, 4), , (r4, 5), , (r5, 6), j (r1, 6), j (r2, 9)
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define a threshold value as d = min (d (oi +1 , q) j d (oj, q)) where q is the query object and

oi + 1 2 (K + 1) NNs (q). The defined d is the minimum difference between the distances of

any two subsequent KNNs of q. It can be shown that if the movement of q is less than �
2
,

the KNNs of q will remain the same. This approach is designed for Euclidean spaces but

we apply it to spatial network databases. In addition, we propose a less conservative bound,

d0, which further improves the performance of our approach.

We first discuss the extension of the approach described in Song and Roussopoulos

[14] to SNDB using the example in Figure 3. Let us assume that a query object q is

traveling from D toward C and we are interested in finding the three closest restaurants to

q. The above approach suggests to first find the four closest restaurants to D, {(r8, 1), (r6,

9), (r3, 10), (r7, 11)}. The value of d is then computed (d = 1), and finally it is concluded

that while the distance of q and D is less than or equal to �
2
¼

� �
0:5, the 3NNs of q are the

same as the 3NNs of D. The next (3 + 1)NN query must then be issued at the point where

the distance of q and D becomes 0.5.

As we discussed in Section 4.2.1, depending on the traveling path of a query object q,

its KNNs can be divided to two increasing and decreasing groups. We showed that if two

subsequent members of the candidate list are both increasing or decreasing, or if the first

one is decreasing and the second one is increasing, they cannot generate any split points

on the path. This property is in fact the basis of our UBA algorithm.

We define the new threshold value as d 0 = min (d (oi + 1, q) j d (oi, q)) where q is the

query object, oi+1 2 (K + 1)NNs (q), and oi and oi + 1 have increasing and decreasing

distances to q, respectively. The reason for this is similar to the discussion presented in

the step 4 of Section 4.2.1. Our defined d 0 specifies the minimum difference between the

distances of only the NNs that can generate a split point on the traveling path. If the

movement of q is less than �0

2
, the KNNs of q will remain the same. Otherwise, a new

(K + 1)NN query must only be issued at the point that is immediately before the point

that has a distance of �0

2
to the initial location of q. For example, in Figure 3, if the

traveling path is (D, C, B, A) and the point specified by some d 0 is between C and B or

between D and C, a new (K + 1)NN query must be issued at point C and then the split

points between C and D are specified similar to IE. In this case, UBA will perform

similar to IE and hence, has no advantage over IE. However, if the point specified by

some d 0 is between B and A, then a new (K + 1)NN query must be issued at point B

which means UBA eliminates the overhead of computing KNN for C. Note that d 0 is

always greater than or equal to d 0 and hence, provides a better bound for our method.

We now discuss the same example using our UBA approach. The four nearest neigh-

bors of D are {j (r8, 1), , (r6, 9), , (r3, 10), , (r7, 11)}. Note that in addition to specifying

the KNNs of an object, the VN3 approach can also be used to specify the direction (i.e.,

increasing or decreasing) of the neighbors. This can be achieved by determining the

immediate connected node, n, to the object that is on the shortest path from the object to

its K-th neighbor, rk. Consequently, rk is decreasing if n is on the traveling path. Within

our approach, we only examine j r8 and , r6 to compute d 0 since they are the only

subsequent members of the list that satisfy our condition (i.e., are increasing and

decreasing, respectively). The value of d 0 for this example will then become 9j1 = 8,

which means that when q starts moving from D toward C, as long as its distance to
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D is less than or equal to 8
2
¼

� �
4, the 3NNs of q will remain similar to the 3NNs of

D. This means that once the (3 + 1)NNs of D are determined, there is no need to

compute (3 + 1)NNs of any other point on the (D Y C ) path. Moreover, as we discussed

in Section 4.1, the first nearest neighbor of a moving point remains the same as long as

the point stays in the same NVP. Hence, we can further improve the performance of

UBA by ignoring the comparison of the first and second nearest neighbors (if it is

necessary) and only check any changes in the first nearest neighbor by locating the

intersection of the path with the NVPs of the network. Consequently, the new value of

i in our formula for d 0 varies from 2 to K, which may lead to even a higher bound value

for d 0.
Figure 5 shows the pseudo code of our IE and UBA approaches. As shown in the

figure, the computational complexity of IE and UBA is O(n* [complexity of KNN ]) and

O(n* [complexity of ( K + 1)NN ]), respectively, where n is the number of intersections on

the path. Note that although UBA seems to be more computationally expensive than IE,

our experiments (discussed in Section 5) show that UBA outperforms IE since it yields

to a smaller value for n as compared to IE.

5. Performance evaluation

We conducted several experiments with real world data sets to evaluate and compare the

performance of the proposed approaches for the continuous KNN queries. The data set

Figure 5. Pseudo code of IE and UBA.
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used for the experiments is obtained from NavTeq Inc., used for navigation and GPS

devices installed in cars. The data represents a network of approximately 110,000 links

and 79,800 nodes of the road system in downtown Los Angeles. We performed the

experiments using different sets of points of interest (e.g., restaurants, shopping centers)

with different densities and distributions. Moreover, we examined UBA and IE for dif-

ferent values of K and randomly generated paths with different lengths. The experiments

were performed on an IBM ZPro with dual Pentium III processors, 512 MB of RAM, and

Oracle 9.2 as the database server. We utilized our proposed VN3 approach to perform

KNN queries. We calculated the number of times that the KNN query must be issued by

the IE and UBA methods and the required times to perform these KNN queries. We

present the average results of 100 runs of continuous K nearest neighbor queries for each

combination of the parameters.

Table 2 shows the details of the data set and the results of our experiments when

the length of the traveling path is (approximately) 5 KM and the value of K varies from

1 to 10. As shown in the table, different entities represent points of interest with different

densities (that is the percentage of the number of points of interest over the number of

intersections in the network). For example, Restaurants (with the quantity of 2944) rep-

resent points of interest with a density that is 150 times more than that of the Hospitals

(with the quantity of 46). The table also indicates the query response time (in seconds)

for IE and UBA approaches. Moreover, the numbers inside parenthesis in columns under

UBA specify the number of nodes a (K + 1)NN query is issued at. Note that for the given

data set, the average length of the segments between two adjacent intersections is about

147 meters, meaning that (on average) there are 34 intersections in a 5 KM path and

hence IE approach requires 34 KNN queries to be issued.

Our first observation is that for K = 1 and regardless of the density of the points of

interest, the query response time is almost instantaneous (less than 1 second). This is

because this query is transformed to a simple Intersection (Road, Polygons) query that

can be efficiently performed by utilizing the R-tree index structure. As shown in the

Table 2. Query processing time (in seconds) of IE vs. UBA, traveling Path = 5KM.

Entities Qty (density) K = 1

K = 3 K = 5 K = 10

IE

UBA (No.

of nodes) IE

UBA (No.

of nodes) IE

UBA (No.

of nodes)

Hospital 46 (0.0004) 0.6 153 22.5 (5) 217 82 (13) 476 294 (21)

Shopping

Centers

173 (0.0016) 0.68 85 20 (8) 110 58 (18) 231 149 (22)

Parks 561 (0.0053) 0.7 34 11 (11) 51 16.5 (20) 91.8 62 (23)

Schools 1230 (0.015) 0.92 17 7 (14) 23.8 14.7 (21) 48.5 37 (26)

Auto

Services

2093 (0.0326) 1.0 15.3 6.7 (15) 22.1 14.3 (22) 48 38 (27)

Restaurants 2944 (0.0580) 1.0 13.6 6.0 (15) 19.8 13.4 (23) 47.6 39.2 (28)
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table, this query performs faster for the points of interest with lower densities (e.g.,

Hospitals). This is because the number of network Voronoi polygons for each entity

is equal to the number of points in that entity. This means that the R-tree index struc-

ture generated for the points of interest with lower densities will be smaller and hence,

faster, as compared to the R-tree index generated for the points of interest with higher

densities.

Our next observation is that the query response time of UBA is always less than that

of IE. As shown in the table, the number of times a (K + 1)NN query is issued by UBA

method is between 5 and 31, which is less than 34, i.e., the number of times a KNN

query is issued in IE method. This confirms our intuition for the UBA method. Note that

although UBA must find more number of neighbors as compared to IE (i.e., (K+1) as

compared to K), but it always outperforms IE because it performs less number of NN

queries. The table also shows that the advantage of UBA over IE is minimal when the

points of interest are densely distributed in the network. For example, while UBA

requires (K + 1)NN queries to be issued for only 5 times when continuous 3 nearest

hospitals are requested, it performs 15 queries when continuous 3 nearest restaurants are

needed. The reason for this is that when the points of interest are dense (e.g., restaurants),

the difference between the distances of two subsequent NNs of a point is small and

hence, the value of d 0 is relatively close to or smaller than the average length of the seg-

ments. That is, the points determined by the UBA approach on which the next (K+1)NN

queries must be performed, are (usually) located between two adjacent nodes. Hence, the

UBA approach can only eliminate the computation of KNNs for a small number of ad-

jacent nodes. However, for the points of interest that are sparsely distributed in the

network (e.g., hospitals), the value of d 0 is usually much larger than the average length

of the segments. This means that the UBA approach can filter out several adjacent nodes

from the computation of KNNs and hence, significantly outperforms IE. The table also

shows that the performance of UBA becomes close to IE when the value of K increases.

For example, while 8 NN queries are issued by UBA to find continuous 3 nearest Shop-

ping Centers for any point on a 5 KM path, it requires 22 NN queries to find the con-

tinuous 10 nearest Shopping Centers for the same path. This is also because for larger

values of K, more number of subsequent increasing/decreasing neighbors must be ex-

amined. This will lead to a smaller value for d 0, which subsequently leads to executing

KNN query for more number of nodes.

Our next set of experiments evaluate the behavior of the proposed approaches when

the length of the traveling path varies. Figure 6 shows the comparison between per-

formances of UBA and IE for two different entities (i.e., Restaurants and Hospitals)

when K = 3 and the length of the traveling path varies from 5 KM to 10 KM. The figure

shows that the performance of both IE and UBA approaches increases (almost) linearly

when the length of the path increases. As shown in the figure, when the length of the

traveling path increases from 5 KM to 10 KM (i.e., doubles), the number of NN queries

performed by IE also doubles, i.e., 68.5 to 69 NN queries are performed by IE for

Hospitals and Restaurants, respectively. Moreover, the number of NN queries performed

by UBA increases to 11.5 and 31 from 5 and 15 for Hospitals and Restaurants, respec-

tively. This shows that the proposed solutions perform linearly with respect to the length
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of the traveling path. Our experiments for paths with lengths of 1, 2, and 20 KM and

different values of K show the same trend.

6. Conclusion

In this paper, we presented alternative solutions for continuous K nearest neighbor

queries (C-KNN) in spatial network databases. These solutions efficiently find the

location and KNNs of split point(s) on a path. We showed that the continuous 1NN

queries (C-NN) can be simply answered using the properties of our previously proposed

VN3 approach: the split points are the intersection(s) of the path with the network

Voronoi polygons of the network and can be easily located by performing an

Intersection() function on an R-tree index structure.We also proposed two solutions for

the cases where more than one neighbor in a continuous nearest neighbor query is

requested (i.e., K > 1). With our first solution, IE, we showed that the location of the split

points on a path can be determined by first computing the KNNs of all the nodes on the

path, and then examining those adjacent nodes with different KNNs. Our second

solution, UBA, improves the performance of IE by eliminating the computation of KNNs

for the adjacent nodes that cannot have any split points in between. Our experiments also

confirmed that UBA outperforms IE, specially when the points of interest are sparse and

the value of K is small. The experiments also showed that both IE and UBA perform

linearly as to the length of the traveling path increases/decreases.

Figure 6. Comparison of UBA and IE for paths with different lengths when K = 3.
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