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Abstract

We establish alternative theorems for quadratic inequality systems. Conse-

quently, we obtain Lagrange multiplier characterizations of global optimality for

classes of non-convex quadratic optimization problems. We present a generaliza-

tion of Dine’s theorem to a system of two homogeneous quadratic functions with a

regular cone. The class of regular cones are cones K for which (K∪−K) is a sub-

space. As a consequence, we establish a generalization of the powerful S-lemma,

which paves the way to obtain a complete characterization of global optimality

for a general quadratic optimization model problem involving also a system of

equality constraints in addition to a single quadratic inequality constraint. We

then present an alternative theorem for a system of three non-homogeneous in-

equalities by way of establishing the convexity of the joint-range of three homoge-

neous quadratic functions using a regular cone. This yields Lagrange multiplier

characterizations of global optimality for classes of trust-region type problems

with two inequality constraints. Finally, we establish an alternative theorem

for systems involving an arbitrary finite number of quadratic inequalities involv-

ing Z-matrices, which are matrices with non-positive off diagonal elements, and

present necessary and sufficient conditions for global optimality for classes of

non-convex inequality constrained quadratic optimization problems.
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1 Introduction

Mathematical problems involving quadratic inequalities arise naturally in many areas

of optimization, control and engineering. For instance, they often appear in the form of

trust region problems or quadratic programming problems in mathematical program-

ming [23, 17, 18, 33]. Such problems also emerge in stability analysis of control systems

in engineering [4]. Moreover, solvability problems of quadratic inequalities arise in the

form of alternative theorems in continuous optimization [25].

Alternative theorems for arbitrary finite systems of linear or convex inequalities

have played key roles in the development of optimality conditions for continuous op-

timization problems [6, 16]. Although these theorems are generally not valid for an

arbitrary finite system of quadratic inequalities, recent research has established alterna-

tive theorems for quadratic systems involving two or three inequalities [9, 26, 33]. For

instance, an alternative theorem of Gordan form for a strict inequality system of two

homogeneous quadratic functions has been given in [33], where it was used in conver-

gence analysis of trust-region algorithms. The S-lemma, which is a version of Farkas’

lemma [15] for an inequality system of two non-homogeneous quadratic functions, has

been given in [4, 25]. For an excellent recent survey of S-lemma and its applications,

see [25]. These theorems mainly rely on the convexity of joint-range of homogeneous

quadratic functions [3] even though the functions may be non-convex. The well known

such joint-range convexity theorems are probably Dine’s theorem [12, 25] and Brick-

man’s theorem [7, 26, 20].

This paper makes the following three key contributions by exploiting hidden con-

vexity of certain quadratic systems. (i) We generalize Dine’s theorem to a system of

two homogeneous quadratic functions with a regular cone. The class of regular cones

are cones K for which (K ∪ −K) is a subspace, and it includes convex cones such as

half-spaces and rays. As a consequence, we obtain a generalization of Gordan’s theorem

for two non-homogeneous quadratic functions, extending the corresponding theorem of

[9] for two homogeneous quadratic functions. We also establish a generalization of S-

lemma, which paves the way to obtain a complete characterization of global optimality

for a general quadratic optimization model problem involving now a system of equality

constraints in addition to a single quadratic inequality constraint. (ii) We present a

Gordan type alternative theorem for a system of three non-homogeneous inequalities by

way of generalizing Polyak’s result on the convexity of the joint-range of three homoge-

neous quadratic functions [26] using a regular cone. This yields traditional (combined

first and second-order) Lagrange multiplier characterizations of global optimality for

classes of trust-region type problems with two inequality constraints. (iii) We also

establish an alternative theorem for systems involving an arbitrary finite number of

quadratic inequalities involving Z-matrices, which are matrices with non-positive off

diagonal elements, and present necessary and sufficient conditions for global optimality

for a class of non-convex inequality constrained quadratic optimization problems.

The outline of the paper is as follows. Section 2 presents basic results on the
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joint-range convexity of quadratic functions and its implication to quadratic inequality

systems. Section 3 develops alternative theorems for systems of two inequalities and

obtains a complete characterization of global optimality for a quadratic optimization

model problem with a single inequality as well as a system of equality constraints. Sec-

tion 4 establishes alternative theorems for systems of three quadratic inequalities and

obtains global optimality conditions for classes of trust-region type quadratic optimiza-

tion problems. Finally, Section 5 provides a theorem of the alternative of Gordan form

for a system of finitely many quadratic inequalities involving Z-matrices and presents

global optimality conditions for quadratic optimization problems with finitely many

quadratic inequality constraints.

2 Preliminaries on Quadratic Functions

In this section, we fix the notation and recall some basic facts on quadratic functions

that will be used throughout this paper. The real line is denoted by R and the n-

dimensional Euclidean space is denoted by R
n. Let C ⊆ R

n. The dimension of C is

denoted by dim(C). The set of all non-negative vectors of R
n is denoted by R

n
+, and

the interior of R
n
+ is denoted by intRn

+. The space of all (n × n) symmetric matrices

is denoted by Sn. The (n × n) identity matrix is denoted by In. The notation A � B

means that the matrix A − B is positive semidefinite. Moreover, the notation A ≻ B

means the matrix A − B is positive definite. The positive semidefinite cone is defined

by Sn
+ := {M ∈ Sn : M � 0}. Let A, B ∈ Sn. Denote the (trace) inner product of A

and B is defined by A · B = Tr[AB] =
∑n

i=1

∑n

j=1 aijbji where aij is the (i, j) element

of A and bji is the (j, i) element of B. A useful fact about the trace inner product is

A · (xxT ) = xT Ax for all x ∈ R
n and A ∈ Sn. The set K ⊂ R

n is a cone if λK ⊂ K,

for each λ ≥ 0. Clearly, subspaces, half-spaces, the set of all non-negative numbers,

R
n
+, and rays, {td : t ≥ 0, d ∈ R

n} are examples of cones.

Definition 2.1. The set K ⊂ R
n is a regular cone if K ∪ (−K) is a subspace of R

n.

Note that subspaces, half-spaces, rays are, in fact, regular cones. More generally, the

first order cone [1], K = S + R+d, where S is a subspace and d ∈ R
n, is a regular

cone. Moreover, a regular cone is not necessarily convex. For instance, the cones

{(x1, x2) ∈ R
2 : x1 ≤ 0} ∪ R

2
+ and {(x1, x2, x3) ∈ R

3 : x1x2x3 ≤ 0} are examples of

nonconvex regular cones.

The basic and probably the most useful result on the joint-range convexity of ho-

mogeneous quadratic functions is given as follows.

Lemma 2.1. (Dine’s Theorem [12, 25]) Let f, g : R
n → R be defined by f(x) =

1
2
xT Afx and g(x) = 1

2
xT Agx, where Af , Ag ∈ Sn. Then the set {(1

2
xT Afx, 1

2
xT Agx) :

x ∈ R
n} is convex.
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Dine’s theorem is known to fail for more than two homogeneous quadratic functions.

Polyak [26] established the following joint-range convexity result for three homogeneous

quadratic functions under a positive definite condition on the matrices involved.

Lemma 2.2. (Polyak’s Lemma [26, Theorem 2.1]) Let n ≥ 3 and let f, g, h : R
n → R

be defined by f(x) = 1
2
xT Afx, g(x) = 1

2
xT Agx and h(x) = 1

2
xT Ahx, where Af , Ag, Ah ∈

Sn. Suppose that there exist γ1, γ2, γ3 ∈ R such that

γ1Af + γ2Ag + γ3Ah ≻ 0. (2.1)

Then the set {(1
2
xT Afx, 1

2
xT Agx, 1

2
xT Ahx) : x ∈ R

n} is convex.

Using Dine’s Theorem, Yakubovich (cf [25]) obtained the following fundamental

S-lemma which has played a key role in many areas of control and optimization. Note

that the S-lemma is a form of the celebrated Farkas lemma [15] for a system of two

quadratic inequalities.

Lemma 2.3. (S-lemma [25]) Let f, g : R
n → R be defined by f(x) = 1

2
xT Afx+bT

f x+cf

and g(x) = 1
2
xT Agx+bT

g x+cg, where Af , Ag ∈ Sn, bf , bg ∈ R
n, cf , cg ∈ R. Suppose that

there exists x0 ∈ R
n such that g(x0) < 0. Then the following statements are equivalent:

(i) g(x) ≤ 0 ⇒ f(x) ≥ 0 .

(ii) (∃λ ≥ 0) (∀x ∈ R
n) f(x) + λg(x) ≥ 0.

The following alternative theorem of Yuan [9] for two strict inequalities can be

viewed as a generalization of Gordan’s theorem for linear systems to quadratic sys-

tems. This theorem turned out to be useful in the study of eigenvalue problems and

convergence analysis of trust-region algorithms.

Lemma 2.4. (Yuan’s Alternative Theorem [9, Lemma 2.3]) Let A1, A2 ∈ Sn.

Then, exactly one of the following two statements holds.

(i) (∃x ∈ R
n) 1

2
xT A1x < 0, 1

2
xT A2x < 0.

(ii) (∃(λ1, λ2) ∈ R
2
+\{(0, 0)}) (∀x ∈ R

n) xT (λ1A1 + λ2A2)x ≥ 0.

3 Systems of Two Quadratic Inequalities

In this section we derive theorems of the alternative for inequality systems involving

two quadratic functions and establish a complete characterization of global optimality

of quadratic optimization problems. We obtain these results by generalizing Dine’s

theorem. We begin by examining homogeneous quadratic functions.

3.1 Homogeneous Quadratic Systems

We show that the joint-range of two homogeneous quadratic functions over a regular

cone is convex.
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Theorem 3.1. (Generalized Dine’s Theorem) Let f, g : R
n → R be defined by

f(x) = 1
2
xT Afx and g(x) = 1

2
xT Agx, where Af , Ag ∈ Sn. Let K be a regular cone of

R
n. Then,

{(f(x), g(x)) : x ∈ K} is convex.

Proof. Let Ω = {(f(x), g(x)) : x ∈ K} and let S = K ∪ (−K). Then, by regularity,

S is a subspace of dimension m, where m ≤ n. Also, {(f(x), g(x)) : x ∈ −K} =

{(f(x), g(x)) : x ∈ K} as (f(x), g(x)) = (f(−x), g(−x)). So, Ω = {(1
2
xT Afx, 1

2
xT Agx) :

x ∈ S}. Since the dimension of the subspace S is m, we can find a matrix Q ∈ R
n×m

of full rank such that {Qa : a ∈ R
m} = S. This gives us that

Ω = {(1
2
xT Afx,

1

2
xT Agx) : x ∈ S}

= {(1
2
aT (QT AfQ)a,

1

2
aT (QT AgQ)a) : a ∈ R

m}.

So, from Dine’s theorem, Ω is a convex set in R
2.

The following example shows that Theorem 3.1 is, in general, not true for a homo-

geneous quadratic system with a non-regular convex cone.

Example 3.1. Let K = R
2
+ and let f, g : R

2 → R be defined by f(x) = x2
1 +2x1x2−x2

2

and g(x) = −2x2
1 + 2x1x2 + x2

2. Then, f(x) = 1
2
xT Afx and g(x) = 1

2
xT Agx, where

Af =

(

2 2

2 −2

)

and Ag =

(

−4 2

2 2

)

.

Clearly, K ∪ (−K) = R
2
+ ∪ (−R

2
+) is not a subspace, and so, the convex cone K is

not regular. Next, we show that Ω := {(1
2
xT Afx, 1

2
xT Agx) : x ∈ K} is not convex.

To see this, note that f(1, 0) = 1, g(1, 0) = −2, f(0, 1) = −1 and g(0, 1) = 1. It

follows that a := (1,−2) ∈ Ω and b := (−1, 1) ∈ Ω. However, a+b
2

= (0,−1/2) /∈ Ω.

Otherwise, there exist x1, x2 ≥ 0 such that x2
1 + 2x1x2 − x2

2 = (x1 + x2)
2 − 2x2

2 = 0 and

−2x2
1+2x1x2+x2

2 = −1/2. Then x1 = (
√

2−1)x2 and hence −1/2 = −2x2
1+2x1x2+x2

2 =

[1 + 2(
√

2 − 1) − 2(
√

2 − 1)2]x2
2. Note that 1 + 2(

√
2 − 1) − 2(

√
2 − 1)2 > 0. This is a

contradiction. Thus, Ω is not convex in this example.

As a consequence of Theorem 3.1, we derive a form of Gordan’s theorem of the

alternative for quadratic functions, extending the corresponding result of Yuan [9].

Theorem 3.2. (Generalized Yuan’s Theorem) Let f, g : R
n → R be defined by

f(x) = 1
2
xT Afx and g(x) = 1

2
xT Agx, where Af , Ag ∈ Sn. Let K be a regular cone.

Then exactly one of the following statements holds.

(i) (∃x ∈ K) f(x) < 0, g(x) < 0.

(ii) (∃(λ1, λ2) ∈ R
2
+\{(0, 0)}) (∀x ∈ K) λ1f(x) + λ2g(x) ≥ 0.
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Proof. It suffices to show [Not(i) ⇒ (ii)]. Suppose that (i) does not hold. Then

Ω ∩ (−intR2
+) = ∅,

where Ω := {(1
2
xT Afx, 1

2
xT Agx) : x ∈ K}. Since Ω is a convex set in R

2, it follows

from the convex separation theorem, there exists (λ1, λ2) 6= (0, 0) such that for each

(y1, y2) ∈ −intR2
+ and for each x ∈ K,

λ1y1 + λ2y2 ≤ 0, λ1(
1

2
xT Afx) + λ2(

1

2
xT Agx) ≥ 0.

These inequalities give us (λ1, λ2) ∈ R
2
+\{(0, 0)} and (ii) holds.

Theorem 3.2 was well known in the following particular cases: it was established

by Yuan [9] when K = R
n; whereas the theorem was given in [1, Corollary 3.2] when

K is a first order cone.

Corollary 3.1. (Homogeneous S-lemma) Let K be a regular cone and let f, g :

R
n → R be defined by f(x) = 1

2
xT Afx and g(x) = 1

2
xT Agx, where Af , Ag ∈ Sn.

Suppose that there exists x0 ∈ K such that g(x0) < 0. Then the following statements

are equivalent:

(i) g(x) ≤ 0, x ∈ K ⇒ f(x) ≥ 0 .

(ii) (∃λ ≥ 0) (∀x ∈ K) f(x) + λg(x) ≥ 0.

Proof. It suffices to show [Not(i) ⇒ (ii)]. Suppose that (i) does not hold. Then, the

system g(x) ≤ 0, f(x) < 0, x ∈ K has no solution, which, in turn, gives us that the

system g(x) < 0, f(x) < 0, x ∈ K also has no solution. Now, it follows from Theorem

3.2 that there exists (λ1, λ2) ∈ R
2
+\{(0, 0)} such that for all x ∈ K, λ1f(x)+λ2g(x) ≥ 0.

If λ1 = 0 then λ2g(x) ≥ 0 for all x ∈ K. This contradicts the assumption that there

exists x0 ∈ K such that g(x0) < 0. So, λ1 6= 0 and hence (ii) follows.

As another corollary, we obtain a Motzkin type alternative theorem for a system

involving two homogeneous quadratic strict inequalities and a single linear inequality.

Corollary 3.2. Let a ∈ R
n and let f, g : R

n → R be defined by f(x) = 1
2
xT Afx and

g(x) = 1
2
xT Agx, where Af , Ag ∈ Sn. Then, exactly one the following statements holds.

(i) (∃x ∈ R
n) f(x) < 0, g(x) < 0, aT x ≤ 0.

(ii) (∃(λ1, λ2) ∈ R
2
+\{(0, 0)}, µ ≥ 0) (∀x ∈ R

n) λ1f(x) + λ2g(x) + µaT x ≥ 0.

Proof. It suffices to show [Not(i) ⇒ (ii)]. Suppose that (i) does not hold. If a = 0

then the (ii) holds by applying Theorem 3.2 with K = R
n. Without loss of generality,

we may assume that a 6= 0. Then, there exists x such that aT x = −1 < 0. Let

K = {x ∈ R
n : aT x ≤ 0}. Then K is a regular cone of R

n. So, it follows from Theorem

3.2 that there exists (λ1, λ2) ∈ R
2
+\{(0, 0)} such that for all x ∈ K = {x ∈ R

n :

aT x ≤ 0}, λ1f(x) + λ2g(x) ≥ 0. Thus, [aT x ≤ 0 ⇒ λ1f(x) + λ2g(x) ≥ 0]. Note that

aT x = −1 < 0. Now, by the S-lemma (Corollary 3.1), there exists µ ≥ 0 such that for

all x ∈ R
n λ1f(x) + λ2g(x) + µaT x ≥ 0, i.e., (ii) holds.
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3.2 Non-Homogeneous Systems

We now derive alternative theorems for systems of inequalities involving non-homogeneous

quadratic functions.

Theorem 3.3. (Nonhomogenous Yuan’s Theorem) Let f, g : R
n → R be defined

by f(x) = 1
2
xT Afx + bT

f x + cf and g(x) = 1
2
xT Agx + bT

g x + cg, where Af , Ag ∈ Sn,

bf , bg ∈ R
n, cf , cg ∈ R. Let a0 ∈ R

n and let S0 be a subspace of R
n. Then exactly one

of the following statements holds:

(i) (∃x ∈ a0 + S0) f(x) < 0, g(x) < 0.

(ii) (∃(λ1, λ2) ∈ R
2
+\{(0, 0)}) (∀x ∈ a0 + S0) λ1f(x) + λ2g(x) ≥ 0.

Proof. It suffices to show [Not(i) ⇒ (ii)]. Suppose that (i) does not hold. Then, the

following system has no solution: f1(x) < 0, g1(x) < 0, x ∈ S0, where

f1(x) = f(x + a0) =
1

2
xT Afx + (bf + Afa0)

T x + (cf +
1

2
aT

0 Afa0 + bT
f a0)

and

g1(x) = g(x + a0) =
1

2
xT Agx + (bg + Aga0)

T x + (cg +
1

2
aT

0 Aga0 + bT
g a0).

Note that f1(x) = 1
2
xT Āfx + b̄T

f x + c̄f and g(x) = 1
2
xT Āgx + b̄T

g x + c̄g where Āf = Af ,

b̄f = bf + Afa0, c̄f = cf + 1
2
aT

0 Afa0 + bT
f a0, Āg = Ag, b̄g = bg + Aga0 and c̄g =

cg + 1
2
aT

0 Aga0 + bT
g a0. Define two homogeneous functions f̃1, g̃1 : R

n+1 → R by

f̃1(x, t) =
1

2
xT Āfx + b̄T

f xt + c̄f t
2 and g̃1(x, t) =

1

2
xT Āgx + b̄T

g xt + c̄gt
2.

Then, the system f̃1(x, t) < 0, g̃1(x, t) < 0, (x, t) ∈ S0×R+ has no solution. Otherwise,

there exists (x0, t0) ∈ S0×R+ such that f̃1(x0, t0) < 0 and g̃1(x0, t0) < 0. If t0 6= 0, then

f(x0

t0
+ a0) = f1(

x0

t0
) = t−2

0 f̃1(x0, t0) < 0 and g(x0

t0
+ a0) = g1(

x0

t0
) = t−2

0 g̃1(x0, t0) < 0.

This contradicts the fact that the system, f(x) < 0, g(x) < 0, x ∈ a0 + S0, has no

solution. If t0 = 0, then 1
2
xT

0 Afx0 = f̃1(x0, t0) < 0 and 1
2
xT

0 Agx0 = g̃(x0, t0) < 0.

This implies that lim
α→+∞

f1(αx0) = −∞ and lim
α→+∞

g1(αx0) = −∞. Thus, there exists

γ > 0 such that f(γx0 + a0) = f1(γx0) < 0 and f(γx0 + a0) = g(γx0) < 0. This is a

contradiction.

As S0 × R+ is a regular convex cone and f̃1, g̃1 are homogeneous functions. it

follows from Theorem 3.2 that there exists (λ1, λ2) ∈ R
2
+\{(0, 0)} such that for all

(x, t) ∈ S0 × R+,

λ1f̃1(x, t) + λ2g̃1(x, t) ≥ 0. (3.2)

Thus, by setting t = 1 in (3.2), we see that for each x ∈ S0 λ1f̃1(x, 1) + λ2g̃1(x, 1) =

λ1f1(x + a0) + λ2f2(x + a0) ≥ 0. Therefore, (ii) holds.

The following example illustrates that theorem 3.3 may fail for the system (i) even

with a first order cone R+a0 + S0, replacing the set a0 + S0.
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Example 3.2. Let f, g : R → R be defined by f(x) = x − x2 and g(x) = x2 − 1. Let

a0 = 1 and S0 = {0}. Consider the following two statements:

(i’) (∃x ∈ R+a0 + S0) f(x) < 0, g(x) < 0.

(ii’) (∃(λ1, λ2) ∈ R
2
+\{(0, 0)}) (∀x ∈ R+a0 + S0). λ1f(x) + λ2g(x) ≥ 0.

Observe that R+a0 + S0 = [0, +∞) and that x − x2 ≥ 0 for all x ∈ [0, 1]. So, the

following system has no solution: f(x) < 0, g(x) < 0, x ∈ R+a0 + S0. Thus (i’) fails.

But we see that (ii’) also does not hold. Otherwise, there exists (λ1, λ2) ∈ R
2
+\{(0, 0)}

such that λ1f(x)+λ2g(x) ≥ 0, for all x ≥ 0. In particular, 0 ≤ λ1f(0)+λ2g(0) = −λ2.

Thus, λ2 = 0 and λ1 > 0 and so, f(x) ≥ 0, for all x ≥ 0 which is impossible.

We now derive a generalization of S-lemma which allows us to characterize global

optimality of a quadratic optimization model problem with a single quadratic constraint

and a system of linear equality constraints.

Corollary 3.3. (Generalized S-lemma) Let S0 be a subspace and let a0 ∈ R
n. Let

f, g : R
n → R be defined by f(x) = 1

2
xT Afx + bT

f x + cf and g(x) = 1
2
xT Agx + bT

g x + cg,

where Af , Ag ∈ Sn, bf , bg ∈ R
n, cf , cg ∈ R. Suppose that there exists x0 ∈ a0 + S0 such

that g(x0) < 0. Then the following statements are equivalent:

(i) g(x) ≤ 0, x ∈ a0 + S0 ⇒ f(x) ≥ 0 .

(ii) (∃λ ≥ 0) (∀x ∈ a0 + S0) f(x) + λg(x) ≥ 0.

Proof. As [(Ii) ⇒ (i)] holds always, we only show [(i) ⇒ (ii)]. Suppose that (i) holds.

Then, the system g(x) ≤ 0, f(x) < 0, x ∈ a0 + S0 has no solution, which, in turn,

gives us that the system g(x) < 0, f(x) < 0, x ∈ a0 + S0 also has no solution. Now,

it follows from Theorem 3.3 that there exists (λ1, λ2) ∈ R
2
+\{(0, 0)} such that for all

x ∈ a0 + S0

λ1f(x) + λ2g(x) ≥ 0. (3.3)

If λ1 = 0 then λ2g(x) ≥ 0 for all x ∈ a0 + S0. By assumption, there exists x0 ∈ a0 + S0

such that g(x0) < 0. This forces λ2 = 0 which contradicts the fact that (λ1, λ2) 6= (0, 0).

Hence, λ1 6= 0 and (ii) follows by dividing (3.3) by λ1.

3.3 Necessary and Sufficient Global Optimality Conditions

Consider the following quadratic optimization problem.

(QP ) min
1

2
xT Afx + bT

f x + cf

s.t.
1

2
xT Agx + bT

g x + cg ≤ 0, Hx = b,

where f(x) = 1
2
xT Afx + bT

f x + cf and g(x) = 1
2
xT Agx + bT

g x + cg, where Af , Ag ∈ Sn,

H ∈ R
m×n, bf , bg ∈ R

n, cf , cg,∈ R and b ∈ R
m. We assume that a global minimizer of

(QP) exists.

We now derive a complete characterization of global optimality for (QP) under the

Slater condition, extending the corresponding results for (QP) without the equality

constraints [22, 29].
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Corollary 3.4. For (QP), suppose that there exists x0 such that Hx0 = b and g(x0) <

0. Then a feasible point x is a global minimizer of (QP) if and only if there exist λ ≥ 0

and µ ∈ R
m such that ∇(f + λg)(x) + HT µ = 0, λg(x) = 0 and dT (Af + λAg)d ≥ 0

whenever Hd = 0.

Proof. Let x be a global minimizer of (QP) and let S0 = {x : Hx = 0}. Then

[g(x) ≤ 0, x ∈ x + S0 ⇒ f(x) − f(x) ≥ 0]. So, by the generalized S-lemma (Corollary

3.3), there exists λ ≥ 0 such that for each x ∈ x + S0

f(x) + λg(x) ≥ f(x). (3.4)

This implies that λg(x) = 0 and so x is a global minimizer of f + λg over Hx = b.

Now, by the necessary optimality conditions at x, there exists µ ∈ R
m such that

∇(f + λg)(x) + HT µ = 0 and dT (Af + λAg)
T d ≥ 0 whenever Hd = 0.

Conversely, suppose that there exist λ ≥ 0 and µ ∈ R
m such that ∇(f + λg)(x) +

HT µ = 0, λg(x) = 0 and, for each d ∈ R
n with Hd = 0, dT (Af + λAg)d ≥ 0. Then for

each feasible x of (QP),

(f + λg)(x) − (f + λg)(x)

= ∇(f + λg)(x)T (x − x) +
1

2
(x − x)T (Af + λAg)(x − x) ≥ 0,

as ∇(f + λg)(x)T (x − x) = −µT H(x − x) = 0 and H(x − x) = 0. This gives us that

for each feasible x of (QP),

f(x) + λg(x) ≥ f(x) + λg(x) = f(x),

which, in turn, yields f(x) ≥ f(x) − λg(x) ≥ f(x). Hence, f(x) is a global minimizer

of (QP).

Below, we present an example verfying Corollary 3.4 where the Hessian of the

corresponding Lagrangian function is not positive semi-definite.

Example 3.3. Consider the following quadratic optimization problem:

(E1) min
1

2
xT Afx + bT

f x + cf

s.t.
1

2
xT Agx + bT

g x + cg ≤ 0, Hx = b,

where n = 2, m = 1, bf = bg = (0, 0)T , cf = 0, cg = 1, b = 1,

Af =

(

0 −2

−2 −2

)

, Ag =

(

−2 0

0 0

)

and H = (1, 1).

This problem can be equivalently rewritten as

min
(x1,x2)∈R2

−x2
2 − 2x1x2

s.t. 1 − x2
1 ≤ 0

x1 + x2 = 1.
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It can be verify that global minimizers of (E1) are x = (1, 0) and z = (−1, 2). Let

µ = 2, λ = 1 and f(x) = 1
2
xT Afx + bT

f x + cf and g(x) = 1
2
xT Agx + bT

g x + cg. Then

Af + λAg =

(

−2 −2

−2 −2

)

,

and so, for any d = (d1, d2) ∈ R
2 satisfying d1 + d2 = 0, one has

dT (Af + λAg)d = 0.

Moreover, since g(x) = 0 and

∇(f + λg)(x) + HT µ = (Af + λAg)x + HT µ = (0, 0)T ,

the global optimiality condition is satisfied at x. Similarly, one can also verify that

g(z) = 0 and

∇(f + λg)(z) + HT µ = (Af + λAg)z + HT µ = (0, 0)T .

Thus, global optimiality condition is also satisfied at z and our Corollary 3.4 is ver-

ified. Finally, we note that the matrix Af + λAg is not positive semidefinte since its

eigenvalues are −4 and 0.

4 Systems of Three Quadratic Inequalities

In this section we derive theorems of the alternative for systems involving three quadratic

inequalities and obtain global optimality conditions for trust-region type problems. We

obtain these results by generalizing Polyak’s Lemma (Lemma 2.2).

4.1 Homogeneous Systems

Using the similar line of arguments as in the proof of Theorem 3.1, we derive the

following generalization of Polyak’s Lemma.

Theorem 4.1. (Generalized Polyak’s Lemma) Let f, g, h : R
n → R be defined

by f(x) = 1
2
xT Afx, g(x) = 1

2
xT Agx and h(x) = 1

2
xT Ahx, where Af , Ag, Ah ∈ Sn. Let

K ⊆ R
n be a regular cone with dim(K∪−K) ≥ 3. Suppose that there exist γ1, γ2, γ3 ∈ R

such that γ1Af +γ2Ag +γ3Ah ≻ 0. Then the set {(1
2
xT Afx, 1

2
xT Agx, 1

2
xT Ahx) : x ∈ K}

is convex.

Proof. Let S := K ∪ (−K). Then S is a subspace of dimension m, where 3 ≤ m ≤ n.

Let

Ω = {(1
2
xT Afx,

1

2
xT Agx,

1

2
xT Ahx) : x ∈ K}.
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Using the same line of arguments as in the proof of Theorem 3.1, we can show that

Ω = {(1
2
xT Afx, 1

2
xT Agx, 1

2
xT Ahx) : x ∈ S}. So, we can find a matrix Q ∈ R

n×m of full

rank such that {Qa : a ∈ R
m} = S. This gives us that

Ω = {(1
2
xT Afx,

1

2
xT Agx,

1

2
xT Ahx) : x ∈ S}

= {(1
2
aT (QT AfQ)a,

1

2
aT (QT AgQ)a,

1

2
aT (QT AhQ)a) : a ∈ R

m}.

Since there exist γ1, γ2, γ3 such that γ1Af + γ2Ag + γ3Ah ≻ 0, for each v ∈ R
m\{0},

Qv 6= 0 and so,

vT (γ1Q
T AfQ + γ2Q

T AgQ + γ3Q
T AhQ)v = (Qv)T (γ1Af + γ2Ag + γ3Ah)(Qv) > 0.

That is, γ1Q
T AfQ + γ2Q

T AgQ + γ3Q
T AhQ ≻ 0. As m ≥ 3, it follows by Polyak’s

lemma that Ω is a convex set in R
3.

As a consequence of Theorem 4.1, we derive a form of Gordan’s theorem of the

alternative for three quadratic functions involving a regular cone K, extending the

corresponding result of Polyak [26] where K = R
n.

Theorem 4.2. Let f, g, h : R
n → R be defined by f(x) = 1

2
xT Afx + cf , g(x) =

1
2
xT Agx + cg, h(x) = 1

2
xT Ahx + ch, where Af , Ag, Ah ∈ Sn and cf , cg, ch ∈ R. Let

K ⊆ R
n be a regular cone with dim(K∪−K) ≥ 3. Suppose that there exist γ1, γ2, γ3 ∈ R

such that γ1Af + γ2Ag + γ3Ah ≻ 0. Then, exactly one of the following two statements

holds.

(i) (∃x ∈ K) f(x) < 0, g(x) < 0, h(x) < 0.

(ii) (∃(λ1, λ2, λ3) ∈ R
3
+\{(0, 0, 0)}) (∀x ∈ K)

λ1f(x) + λ2g(x) + λ3h(x) ≥ 0. (4.1)

Proof. It suffices to show [Not(i) ⇒ (ii)]. Suppose that the following system has no

solution: f(x) < 0, g(x) < 0, h(x) < 0, x ∈ K. Define Ω := {(f(x), g(x), h(x)) : x ∈
K} = {(1

2
xT Afx, 1

2
xT Agx, 1

2
xT Ahx) : x ∈ K}+{(cf , cg, ch)}. Then, by Theorem 4.1, Ω

is a convex set and Ω ∩ (−intR3
+) = ∅. Now, by the convex separation theorem, there

exists (λ1, λ2, λ3) 6= (0, 0, 0) such that for all (y1, y2, y3) ∈ −intR3
+ and for all x ∈ K

λ1y1 + λ2y2 + λ3y3 ≤ 0, λ1f(x) + λ2g(x) + λ3h(x) ≥ 0.

Thus, (λ1, λ2, λ3) ∈ R
3
+\{(0, 0, 0)} and (4.1) holds.

In passing, note that it was shown in [9], without condition (2.1), that if cf = cg =

ch = 0, K = R
n and if the system f(x) < 0, g(x) < 0, h(x) < 0, x ∈ K, has no

solution, then there exist λ1, λ2, λ3 ≥ 0 such that λ1Af + λ2Ag + λ3Ah has at most

one negative eigenvalue. However, by imposing condition (2.1), we have obtained, in
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Theorem 4.2, a stronger conclusion that λ1Af + λ2Ag + λ3Ah is positive semidefinite

whenever the system has no solution with K = R
n.

We now present two examples where the first one shows the condition “dim(K ∪
−K) ≥ 3” cannot be dropped and the second one shows that the condition (2.1) cannot

be dropped.

Example 4.1. Consider K = R
2. Let f, g, h ∈ R

2 → R be defined by f(x1, x2) =

x2
1 − x2

2, g(x1, x2) = −x2
1 − x1x2 and h(x1, x2) = −x2

1 + x1x2. Then,

Af =

(

2 0

0 −2

)

, Ag =

(

−2 −1

−1 0

)

and Ah =

(

−2 1

1 0

)

.

Now,

−Af − 2Ag − 2Ah =

(

6 0

0 2

)

≻ 0.

Clearly, the system f(x) < 0, g(x) < 0 and h(x) < 0 has no solution. We show that

(ii) of Theorem 4.2 fails. To see this, we proceed by contradiction and suppose that

there exists (λ1, λ2, λ3) ∈ R
3
+\{(0, 0, 0)} such that for all x = (x1, x2) ∈ R

2

λ1f(x) + λ2g(x) + λ3h(x) = (λ1 − λ2 − λ3)x
2
1 + (λ3 − λ2)x1x2 − λ1x

2
2 ≥ 0.

If λ1 = 0, then λ2 = λ3 = 0 which is impossible. On the other hand, if λ1 6= 0, then by

fixing x1 and letting x2 → +∞, we see that λ1f(x) + λ2g(x) + λ3h(x) → −∞. This is

a contradiction.

Example 4.2. Let n = 3, K = R
3 and let f(x1, x2, x3) = 2x1x2 + x2

1 − 2x2
2 + 2x2

3,

g(x1, x2, x3) = −2x2
1 + 2x2

2 and h(x1, x2, x3) = −2x1x2. Then,

Af =





2 2 0

2 −4 0

0 0 4



 , Ag =





−4 0 0

0 4 0

0 0 0



 and Ah =





0 −2 0

−2 0 0

0 0 0



 .

and, for each γ1, γ2, γ3 ∈ R,

γ1Af + γ2Ag + γ3Ah =





2γ1 − 4γ2 2γ1 − 2γ3 0

2γ1 − 2γ3 −4γ1 + 4γ2 0

0 0 4γ1



 .

Thus, positive definiteness of the matrix γ1Af + γ2Ag + γ3Ah implies that γ1 > 0,

γ1 > 2γ2 and γ1 < γ2 which is impossible. Hence, there do not exist γ1, γ2, γ3 ∈ R such

that γ1Af +γ2Ag +γ3Ah ≻ 0. Note that the system f(x) < 0, g(x) < 0, h(x) < 0 has no

solution. Otherwise, there exist x1, x2, x3 ∈ R such that −2x1x2 < 0, −2x2
1 + 2x2

2 < 0

and 2x1x2 + x2
1 − 2x2

2 + 2x2
3 < 0. This implies that either 0 < x2 < x1 or 0 > x2 > x1

holds. It follows that 2x2(x1−x2) > 0. Thus, 2x1x2+x2
1−2x2

2+2x2
3 = 2x2(x1−x2)+x2

1+

2x2
3 > 0 which is impossible. Finally, we show that (ii) of Theorem 4.2 fails. To see this,
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we proceed by contradiction and suppose that there exists (λ1, λ2, λ3) ∈ R
3
+\{(0, 0, 0)}

such that for each x = (x1, x2, x3) ∈ R
3,

λ1f(x)+λ2g(x)+λ3h(x) = (λ1−2λ2)x
2
1 +2(−λ1 +λ2)x

2
2 +2(λ1−λ3)x1x2 +2λ1x

2
3 ≥ 0.

Thus, we must have λ1 = λ2 = λ3 = 0 which is impossible.

As a corollary of Theorem 4.2, we obtain a Motzkin type alternative theorem for

three homogeneous quadratic strict inequalities and a single linear inequality.

Corollary 4.1. Let a ∈ R
n and n ≥ 3. Let f, g, h : R

n → R be defined by f(x) =
1
2
xT Afx + cf , g(x) = 1

2
xT Agx + cg, h(x) = 1

2
xT Ahx + ch. Suppose that there exist

γ1, γ2, γ3 ∈ R such that γ1Af + γ2Ag + γ3Ah ≻ 0. Then, exactly one of the following

two statements holds.

(i) (∃x ∈ R
n) f(x) < 0, g(x) < 0, h(x) < 0, aT x ≤ 0.

(ii) (∃(λ1, λ2, λ3) ∈ R
+
3 \{(0, 0, 0)}, µ ≥ 0) (∀x ∈ R

n)

λ1f(x) + λ2g(x) + λ3h(x) + µaT x ≥ 0.

Proof. It suffices to show [Not(i) ⇒ (ii)]. Suppose that (i) does not hold. If a = 0,

then the conclusion follows by applying Theorem 4.2 with K = R
n. Without loss of

generality, we may assume that a 6= 0. Thus, there exists x ∈ R
n such that aT x =

−1. Let K = {x ∈ R
n : aT x ≤ 0}. Then, K is a regular convex cone of R

n with

dim(K ∪ (−K)) = dim(Rn) ≥ 3. Since (i) fails, it follows from Theorem 4.2 that there

exists (λ1, λ2, λ3) ∈ R
2
+\{(0, 0, 0)} such that for all x ∈ K = {x ∈ R

n : aT x ≤ 0}

λ1f(x) + λ2g(x) + λ3h(x) ≥ 0.

Thus, [aT x ≤ 0 ⇒ λ1f(x) + λ2g(x) + λ3h(x) ≥ 0]. Note that aT x = −1 < 0. It follows

from the S-lemma that there exists µ ≥ 0 such that for each x ∈ R
n λ1f(x) +λ2g(x) +

λ3h(x) + µaT x ≥ 0.

Optimality Conditions for Homogeneous Programming Problems

Consider the following homogeneous optimization problem

(HOP ) min
1

2
xT Afx s.t.

1

2
xT Agx ≤ 1,

1

2
xT Ahx ≤ 1,

where f, g, h : R
n → R (n ≥ 3) are defined by f(x) = 1

2
xT Afx, g(x) = 1

2
xT Agx − 1

and h(x) = 1
2
xT Ahx − 1. Model problems of the form (HOP) arise in telecommunica-

tions and robust control (cf. [21, 28]). We now derive necessary and sufficient global

optimality condition for problems (HOP) satisfying γ1Af + γ2Ag + γ3Ah ≻ 0.

Corollary 4.2. For (HOP), suppose that there exist γ1, γ2, γ3 ∈ R such that γ1Af +

γ2Ag + γ3Ah ≻ 0. Then, a feasible point x is a global minimizer of (HOP) if and only

if there exist λ1 ≥ 0, λ2 ≥ 0 such that ∇(f + λ1g + λ2h)(x) = 0, λ1g(x) = λ2h(x) = 0

and Af + λ1Ag + λ2Ah � 0.
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Proof. Suppose that x is a global minimizer of (HOP). Define f̃(x) = f(x) − f(x).

Then the following system f̃(x) < 0, g(x) < 0 and h(x) < 0 has no solution. Now, it

follows from Theorem 4.2 (replacing (f, g, h) by (f̃ , g, h)) that there exists (µ1, µ2, µ3) ∈
R

3
+\{(0, 0, 0)} such that for all x ∈ R

n µ1f̃(x) + µ2g(x) + µ3h(x) = µ1(f(x) − f(x)) +

µ2g(x) + µ3h(x) ≥ 0. In particular,

µ2g(x) = µ3h(x) = 0. (4.2)

So, µ1f + µ2g + µ3h attains its minimum at x over R
n. We now show that µ1 > 0.

Otherwise, µ2g(x) + µ3h(x) ≥ 0 for all x ∈ R
n. As g(0) < 0 and h(0) < 0, it follows

that µ2 = µ3 = 0. This contradicts the fact that (µ1, µ2, µ3) 6= (0, 0, 0). Hence

f(x) + λ1g(x) + λ2h(x) ≥ f(x),

where λ1 = µ2/µ1 and λ2 = µ3/µ1. This implies that λ1g(x) = λ2h(x) = 0. Therefore, x

is a global minimizer of f+λ1g+λ2h over R
n. This gives us that ∇(f+λ1g+λ2h)(x) = 0

and ∇2(f + λ1g + λ2h)(x) = Af + λ1Ag + λ2Ah � 0.

Conversely, suppose that there exists (λ1, λ2) ∈ R
2
+\{(0, 0)} such that ∇(f + λ1g +

λ2h)(x) = 0, λ1g(x) = λ2h(x) = 0 and Af + λ1Ag + λ2Ah � 0. Let the function

L : R
n → R be defined by L(x) = f(x) + λ1g(x) + λ2h(x). Then L(·) is a convex

function on R
n as ∇2L(x) = Af + λ1Ag + λ2Ah � 0 for all x ∈ R

n. Now, it follows

from ∇L(x) = ∇(f + λ1g + λ2h)(x) = 0 that x is a global minimizer of L. Therefore,

one has for each x ∈ R
n,

f(x) + λ1g(x) + λ2h(x) = L(x) ≥ L(x) = f(x) + λ1g(x̄) + λ2h(x̄) = f(x).

Therefore, f(x) ≤ f(x) for all x such that g(x) ≤ 0 and h(x) ≤ 0, i.e., x is a global

minimizer of (HOP).

It is worthy noting that Corollary 4.2 was established in [26] under the following

slightly stronger condition: there exist γ1, γ2 ∈ R such that γ1Ag + γ2Ah ≻ 0.

4.2 Non-Homogeneous Systems

Let f, g, h : R
n → R be defined by f(x) = 1

2
xT Afx+bT

f x+cf , g(x) = 1
2
xT Agx+bT

g x+cg

and h(x) = 1
2
xT Ahx + bT

h x + ch, where Af , Ag, Ah ∈ Sn, bf , bg, bh ∈ R
n, cf , cg, ch ∈ R.

We define Hf , Hg, Hh by

Hf =

(

Af bf

bT
f 2cf

)

, Hg =

(

Ag bg

bT
g 2cg

)

and Hh =

(

Ah bh

bT
h 2ch

)

. (4.3)

We derive a nonconvex Gordan-type alternative theorem for three nonhomogeneous

quadratic functions by way of homogenization.
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Theorem 4.3. Let n ≥ 3 and let f, g, h and Hf , Hg, Hh be defined as above. Suppose

that there exist γ1, γ2, γ3 ∈ R such that

γ1Hf + γ2Hg + γ3Hh ≻ 0. (4.4)

Then exactly one of the following statements holds:

(i) (∃x ∈ R
n) f(x) < 0, g(x) < 0, h(x) < 0.

(ii) (∃(λ1, λ2, λ3) ∈ R
3
+\{(0, 0, 0)}) (∀x ∈ R

n)

λ1f(x) + λ2g(x) + λ3h(x) ≥ 0. (4.5)

Proof. It suffices to show [Not(i) ⇒ (ii)]. Suppose that (i) does not hold. Then the

system f(x) < 0, g(x) < 0, h(x) < 0 has no solution. Define three homogeneous

functions f̃ , g̃, h̃ : R
n+1 → R by

f̃(x, t) =
1

2
xT Afx + bT

f xt + cf t
2, g̃(x, t) =

1

2
xT Agx + bT

g xt + cgt
2

and

h̃(x, t) =
1

2
xT Ahx + bT

h xt + cht
2.

Then, f̃(x, t) = 1
2
(x, t)T Hf (x, t), g̃(x, t) = 1

2
(x, t)T Hg(x, t) and h̃(x, t) = 1

2
(x, t)T Hh(x, t).

Moreover, the system f̃(x, t) < 0 g̃(x, t) < 0 and h̃(x, t) < 0 has no solution. Oth-

erwise, there exists (x0, t0) such that f̃(x0, t0) < 0, g̃(x0, t0) < 0 and h̃(x0, t0) <

0. If t0 6= 0, then f(x0/t0) = t−2
0 f̃(x0, t0) < 0, g(x0/t0) = t−2

0 g̃(x0, t0) < 0 and

h(x0/t0) = t−2
0 h̃(x0, t0) < 0. This contradicts to the fact that the system (f(x) < 0,

g(x) < 0, h(x) < 0) has no solution. If t0 = 0, then 1
2
xT

0 Afx0 = f̃(x0, t0) < 0,
1
2
xT

0 Agx0 = g̃(x0, t0) < 0 and 1
2
xT

0 Ahx0 = h̃(x0, t0) < 0. This implies that

lim
α→+∞

f(αx0) = −∞, lim
α→+∞

g(αx0) = −∞ and lim
α→+∞

h(αx0) = −∞.

Thus, there exists α0 > 0 such that f(α0x0) < 0, g(α0x0) < 0 and h(α0x0) < 0. This

is a contradiction. So, it follows from Theorem 4.2 (replacing (f, g, K) by (f̃ , g̃, Rn+1))

that there exists (λ1, λ2, λ3) ∈ R
3
+\{(0, 0, 0)} such that for all (x, t) ∈ R

n+1

λ1f̃(x, t) + λ2g̃(x, t) + λ3h̃(x, t) ≥ 0. (4.6)

Thus, by setting t = 1 in (4.6), we see that (ii) holds.

4.3 Optimality Conditions for Trust Region type Problems

Consider the following trust region type problems

(TR) min f(x) s.t. g(x) ≤ 0, h(x) ≤ 0
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where f, g, h : R
n → R (n ≥ 3) are defined by f(x) = 1

2
xT Afx + bT

f x + cf , g(x) =
1
2
xT Agx + bT

g x + cg and h(x) = 1
2
xT Ahx + bT

h x + ch. The problem (TR) is said to be

regular whenever there exist γ1, γ2 ∈ R such that

γ1Hg + γ2Hh ≻ 0, (4.7)

where Hg, Hh are defined as in (4.3). Let us now derive necessary, and sufficient global

optimality conditions for regular (TR) problems. Such conditions for possibly non-

regular problems are given in Section 5.2.

Theorem 4.4. Suppose that problem (TR) is regular and that x is a global minimizer.

Then, the following Fritz-John type necessary condition holds, that is, there exists

(µ, λ1, λ2) ∈ R
3
+\{(0, 0, 0)} such that ∇(µf + λ1g + λ2h)(x) = 0, λ1g(x) = λ2h(x) = 0

and

µAf + λ1Ag + λ2Ah � 0.

Moreover, if the Slater condition holds, i.e., there exists x0 ∈ R
n such that g(x0) < 0

and h(x0) < 0, then a feasible point x is a global minimizer if and only if there exist

λ1, λ2 ≥ 0 such that ∇(f + λ1g + λ2h)(x) = 0, λ1g(x) = λ2h(x) = 0 and

Af + λ1Ag + λ2Ah � 0.

Proof. Suppose that x is a global minimizer of (TR). Then the following system f(x)−
f(x) < 0, g(x) < 0 and h(x) < 0 has no solution. Since (TR) is regular, (4.4) holds

with γ1 = 0 and so, from Theorem 4.3, there exists (µ1, µ2, µ3) ∈ R
3
+\{(0, 0, 0)} such

that for all x ∈ R
n µ1(f(x) − f(x)) + µ2g(x) + µ3h(x) ≥ 0. In particular,

µ2g(x) = µ3h(x) = 0. (4.8)

So, µ1f + µ2g + µ3h attains its minimum at x over R
n. Thus the Fritz-John type

necessary condition holds with µ = µ1 and λi = µi, i = 1, 2.

Suppose further that the Slater condition holds. Then µ1 > 0. Otherwise, µ2g(x)+

µ3h(x) ≥ 0 for all x ∈ R
n. Note that g(x0) < 0 and h(x0) < 0. It follows that

µ2 = µ3 = 0. This contradicts the fact that (µ1, µ2, µ3) 6= (0, 0, 0). Hence

f(x) + λ1g(x) + λ2h(x) ≥ f(x),

where λ1 = µ2/µ1 and λ2 = µ3/µ1. This implies that λ1g(x) = λ2h(x) = 0. Therefore, x

is a global minimizer of f+λ1g+λ2h over R
n. This gives us that ∇(f+λ1g+λ2h)(x) = 0

and

∇2(f + λ1g + λ2h)(x) = Af + λ1Ag + λ2Ah � 0.

Conversely, suppose that there exists (λ1, λ2) ∈ R
2
+\{(0, 0)} such that ∇(f + λ1g +

λ2h)(x) = 0, λ1g(x) = λ2h(x) = 0 and Af + λ1Ag + λ2Ah � 0. Consider the function

L : R
n → R defined by L(x) = f(x) + λ1g(x) + λ2h(x). Since ∇2L(x) = Af + λ1Ag +

λ2Ah � 0 for all x ∈ R
n, L(·) is a convex function on R

n. It follows from ∇L(x) =
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∇(f +λ1g +λ2h)(x) = 0 that x is a global minimizer of L. Therefore, one has for each

x ∈ R
n,

f(x) + λ1g(x) + λ2h(x) = L(x) ≥ L(x) = f(x) + λ1g(x̄) + λ2h(x̄) = f(x).

Therefore, f(x) ≤ f(x) for all x such that g(x) ≤ 0 and h(x) ≤ 0, i.e., x is a global

minimizer of (TR).

We note that the following positive independent condition on ∇g(x) and ∇h(x) at

a feasible point x,

[α∇g(x) + β∇h(x) = 0, αg(x) = βh(x) = 0, α ≥ 0, β ≥ 0] ⇒ [α = β = 0], (4.9)

implies that the Slater condition holds. To see this, let x be a feasible point satisfying

(4.9). Suppose that the Slater condition fails. Then, by Theorem 3.3, there exists

(λ1, λ2) ∈ R
2
+\{(0, 0)} such that for all x ∈ R

n λ1g(x) + λ2h(x) ≥ 0. Note that

g(x) ≤ 0 and h(x) ≤ 0. It follows that x is a global minimizer of λ1f + λ2g over R
n.

Thus, one has λ1∇g(x) + λ2∇h(x) = 0, λ1g(x) = λ2h(x) = 0. This together with (4.9)

yields that λ1 = λ2 = 0 which is impossible. We also note that the condition (4.9)

includes several interesting cases which were studied in [24]. (For example, (1) ∇g(x)

and ∇h(x) are linear independent; (2) ∇g(x) = t∇h(x) with t > 0 and ∇h(x) 6= 0;

(3) g(x) = 0, ∇g(x) 6= 0 and h(x) < 0). In [24], without assuming (4.7), it was shown

that at a global minimizer, there exist λ1, λ2 ≥ 0 such that ∇(f + λ1g + λ2h)(x) = 0,

λ1g(x) = λ2h(x) = 0 and Af +λ1Ag +λ2Ah has at most one negative eigenvalue in the

above 3 cases. Our optimality condition is stronger than the ones in [24] for regular

trust region type problems (TR).

Consider the following trust-region problem, considered in [30, 32]:

(TR1) min xT Afx + 2bT
f x + cf s.t. α ≤ xT Agx ≤ β,

where Af , Ag ∈ Sn, bf ∈ R
n, cf , α, β ∈ R (n ≥ 3), Ag ≻ 0 and 0 < α < β. Let

f(x) = xT Afx + 2bT
f x + cf , g(x) = −xT Agx + α and h(x) = xT Agx − β. Let x be

a feasible point of (TR1). Then x is a global minimizer of (TR1) if and only if there

exist λ1 ≥ 0, λ2 ≥ 0 such that ∇(f + λ1g + λ2h)(x) = 0, λ1g(x) = λ2h(x) = 0 and

Af − λ1Ag + λ2Ag � 0.

To see this, let γ1, γ2 < 0 be such that α
β

< γ2

γ1

< 1. Since Ag ≻ 0, it follows that

γ1Hg + γ2Hh =

(

2(−γ1 + γ2)Ag 0

0 2(γ1α − γ2β)

)

≻ 0.

This gives us that the problem (TR1) is regular and so, the optimality condition follows

from Theorem 4.4.
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5 Systems of Finitely Many Quadratic Inequalities

In this section, we present an alternative theorem for a system of finitely many quadratic

inequalities, and obtain necessary and sufficient global optimality conditions for a class

of quadratic programming problem involving Z-matrices.

Recall that a matrix A = (Aij)1≤i,j≤n ∈ Sn is called a Z-matrix if Aij ≤ 0 for all

i 6= j (Sn is the set consisting of all real n×n symmetric matrix). From the definition,

any diagonal matrix is a Z-matrix. The Z-matrix arises naturally in solving Dirichlet

problem numerically, and play an important role in the theory of linear complementary

problem (cf. [5, 13, 14]). Let fi : R
n → R be defined by fi(x) = 1

2
xT Aix + bT

i x + ci,

i = 1, . . . ,m, where Ai ∈ Sn, bi ∈ R
n, ci ∈ R. We define Hi by

Hi =

(

Ai bi

bT
i 2ci

)

. (5.1)

Define a set Ω0 by

Ω0 := {(1
2
aT H1a, . . . , ,

1

2
aT Hma) : a ∈ R

n+1} + intRm
+ .

In the following, we give a sufficient condition for the convexity of Ω0 in terms of

Z-matrices.

Theorem 5.1. Let Hi be Z-matrices i = 1, . . . ,m. Then Ω0 is a convex set.

Proof. Since xT Hix = Hi · (xxT ) i = 1, . . . ,m, it can be verified that

Ω0 : = {(1
2
xT H1x, . . . ,

1

2
xT Hmx) : x ∈ R

n+1} + intRm
+

= {(1
2
H1 · X, . . . ,

1

2
Hm · X) : X = xxT , x ∈ R

n+1} + intRm
+

⊆ {(1
2
H1 · X, . . . ,

1

2
Hm · X) : X ∈ Sn+1

+ } + intRm
+ .

Note that {(1
2
H1·X, . . . , 1

2
Hm·X) : X ∈ Sn+1

+ } is convex (and hence {(1
2
H1·X, . . . , 1

2
Hm·

X) : X ∈ Sn+1
+ } + intRm

+ is also convex). To conclude the proof, it suffices to show

that, if each Hi is a Z-matrix, then

{(1
2
H1 · X, . . . ,

1

2
Hm · X) : X ∈ Sn+1

+ } + intRm
+

⊆ {(1
2
H1 · X, . . . ,

1

2
Hm · X) : X = xxT , x ∈ R

n+1} + intRm
+ .

To see this, take (z1, . . . , zm) ∈ {(1
2
H1 ·X, . . . , 1

2
Hm ·X) : X ∈ Sn+1

+ }+intRm
+ . Then,

there exists a X0 ∈ Sn+1
+ such that Hk · X0 < 2zk, k = 1, . . . ,m. We now show that

there exists a vector u0 such that for each k = 1, . . . ,m

Hk · X0 ≥ uT
0 Hku0 = Hk · (u0u

T
0 ).
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To see this, we use xij to denote the element of X0 which lies at the ith row and jth

column. Since X0 ∈ Sn+1
+ , one has xii ≥ 0 (i = 1, . . . , n + 1) and

xjjxii − x2
ji ≥ 0 i, j ∈ {1, . . . , n + 1}. (5.2)

Now, define u0 = (
√

x11, . . . ,
√

xn+1n+1). Then, the (j, i) element of u0u
T
0 is

√
xjjxii,

and hence for all k = 1, . . . ,m, one has

uT
0 Hku0 − Hk · X0 = Hk · (u0u

T
0 ) − Hk · X0 = Hk · (u0u

T
0 − X0)

=
n+1
∑

i=1

n+1
∑

j=1

ak
ij(
√

xjjxii − xji)

=
n+1
∑

i,j=1,i 6=j

ak
ij(
√

xjjxii − xji)

≤ 0

where ak
ij is the (i, j) element of Hk and the last inequality follows from ak

ij ≤ 0 for

all i 6= j (since Hk is a Z-matrix) and (5.2). Hence, Hk · (u0u
T
0 ) < 2zk. Therefore,

(z1, . . . , zm) ∈ {(1
2
H1 · X, . . . , 1

2
Hm · X) : X = xxT , x ∈ R

n} + intRm
+ .

In the following we establish a Gordan type alternative theorem for systems of

arbitrary finite number of quadratic inequalities involving Z-matrices.

Theorem 5.2. Let fi be defined by fi(x) = 1
2
xT Aix + bT

i x + ci, i = 1, . . . ,m. Suppose

that Hi, i = 1, . . . ,m are all Z-matrices. Then, exactly one of the following two

statements holds.

(i) (∃x ∈ R
n) fi(x) < 0, i = 1, . . . ,m.

(ii) (∃λ ∈ R
m
+\{0}) (∀x ∈ R

n)
∑m

i=1 λifi(x) ≥ 0.

Proof. It suffices to show [Not(i) ⇒ (ii)]. Suppose that (i) fails. That is, the following

system has no solution: x ∈ R
n, fi(x) < 0, i = 1, . . . ,m. Define m homogeneous

functions f̃i : R
n+1 → R by

f̃i(x, t) =
1

2
(x, t)Hi(x, t)T =

1

2
xT Aix + bT

i xt + cit
2.

Then 0 /∈ Ω0. Otherwise, there exists (x0, t0) such that f̃i(x0, t0) < 0. If t0 6= 0, then

fi(x0/t0) = t−2
0 f̃i(x0, t0) < 0, i = 1, . . . ,m. This contradicts our assumption (i). If

t0 = 0, then 1
2
xT

0 Aix0 = f̃i(x0, t0) < 0, i = 1, . . . ,m. This implies that

lim
α→+∞

fi(αx0) = −∞.

Thus, there exists α0 > 0 such that fi(α0x0) < 0, i = 1, . . . ,m which means assumption

(i) holds. This is a contradiction.

The set Ω0, is convex, and so, by the convex separation theorem, there exists

λ ∈ R
m\{0} such that for all (y1, . . . , , ym) ∈ Ω0,

∑m

i=1 λiyi ≥ 0. This implies that

λ ∈ R
m
+\{0} and for all (x, t) ∈ R

n+1,
∑m

i=1 λi(
1
2
xT Aix + bT

i xt + cit
2) ≥ 0. Thus, by

setting t = 1, we see that (ii) holds.
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In passing, we observe that Theorem 5.2 extends the corresponding result in [4,

Exercise 4.57], where Ai is a diagonal matrix and bi = 0.

5.1 Optimality Conditions for General Quadratic Programs

Consider the following general quadratic optimization problem

(QOP ) min f0(x) s.t. fi(x) ≤ 0, i = 1, . . . ,m,

where each fi : R
n → R is defined by fi(x) = 1

2
xT Aix + bT

i x + ci. Let Hi be defined as

in (5.1), i = 0, 1, . . . ,m.

Corollary 5.1. For (QOP), suppose that each Hi is a Z-matrix, i = 0, . . . ,m. Let x

be a global minimizer. Then, the following Fritz-John type necessary condition holds,

that is, there exists (λ0, . . . , λm) ∈ R
m+1
+ \{0} such that ∇(

∑m

i=0 λifi)(x) = 0, λifi(x) =

0, i = 1, . . . ,m and
∑m

i=0 λiAi � 0. Moreover, if the Slater condition holds, i.e.,

there exists x0 ∈ R
n such that fi(x0) < 0, i = 1, . . . ,m, then, a feasible point x is a

global minimizer if and only if there exists (λ1, . . . , λm) ∈ R
m
+\{0} such that ∇(f0 +

∑m

i=1 λifi)(x) = 0, λifi(x) = 0, i = 1, . . . ,m and A0 +
∑m

i=1 λiAi � 0.

Proof. Suppose that x is a global minimizer of (QOP). Let f̃(x) := f0(x) − f0(x) and

Hf̃ =

(

A0 b0

bT
0 −xT A0x − 2bT

0 x

)

.

Then the following system f̃(x) < 0, fi(x) < 0, i = 1, . . . ,m, has no solution. Note

that Hf̃ is a Z-matrix if and only if H0 is a Z-matrix. Thus, from Theorem 5.2, there

exists (λ0, . . . , λm) ∈ R
m+1
+ \{0} such that for all x ∈ R

n λ0f̃(x) +
∑m

i=1 λifi(x) =

λ0(f(x) − f(x)) +
∑m

i=1 λifi(x) ≥ 0. In particular, one has λifi(x) = 0, i = 1, . . . ,m.

Thus,
∑m

i=0 λifi attains its minimum at x over R
n. Thus the Fritz-John type necessary

condition holds. If the Slater condition holds, then, using similar arguments as the

proof of Theorem 4.4, we see that the sufficient and necessary condition holds.

5.2 Applications to CDT Problems

Finally, we see that Corollary 5.1 can be used to examine possibly non-regular trust-

region type problems. For instance, consider the following CDT problem which plays

an important role in the trust region algorithms for nonlinear programming in [8, 27].

(CDT ) min
1

2
xT Bx + bT x s.t.

1

2
‖AT x + a‖2 ≤ ξ2/2,

1

2
‖x‖2 ≤ ∆2/2,

where A ∈ R
n×m, B ∈ Sn, a ∈ R

m, b ∈ R
n and ∆, ξ ∈ [0, +∞). Let f(x) =

1
2
xT Bx + bT x, g(x) = 1

2
(‖AT x + a‖2 − ξ2), h(x) = 1

2
(‖x‖2 − ∆2). Define

Hf =

(

B b

bT 0

)

, Hg =

(

AAT Aa

(Aa)T ‖a‖2 − ξ2

)

and Hh =

(

In 0

0 −∆2

)

. (5.3)
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Corollary 5.2. For (CDT), suppose that B, AAT are Z-matrices, Aa, b ∈ −R
n
+ and

the Slater condition holds. Then, a feasible point x is a global minimizer if and only

if there exists (λ1, λ2) ∈ R
2
+\{0} such that (B + λ1AAT + λ2In)x + (b + λ1Aa) = 0,

λ1(‖Ax + a‖2 − ξ2) = 0, λ2(‖x‖2 − ∆2) = 0, and B + λ1AAT + λ2In � 0.

Proof. Define fi : R
n → R, i = 1, 2, 3, by f1(x) = f(x), f2(x) = g(x) and f3(x) = h(x).

Since B, AAT are Z-matrices and Aa, b ∈ −R
n
+, Hf , Hg are Z-matrices. Note that Hh

is a diagonal matrix and hence is also a Z-matrix. Thus, the conclusion follows by

Corollary 5.1.

The following example illustrates an application of Corollary 5.2 to a two-dimensional

CDT problem.

Example 5.1. Consider the following CDT problem

min
x∈R2

1

2
xT Bx + bT x s.t.

1

2
‖Ax + a‖2 ≤ ξ2/2,

1

2
‖x‖2 ≤ ∆2/2,

where n = m = 2, a = (0,−6)T , b = (0,−6)T , ∆ = 5, ξ = 5,

B =

(

−2 0

0 2

)

and A =

(

1 0

0 1

)

.

This problem can be equivalently rewritten as

min
x=(x1,x2)∈R2

f(x) s.t. g(x) ≤ 0, h(x) ≤ 0,

where f(x) = −x2
1 +x2

2 − 6x2, g(x) = 1
2
(x2

1 +(x2 − 6)2 − 25) and h(x) = 1
2
(x2

1 +x2
2 − 25)

with global optimizer x = (±4, 3). We can easily verify that

Hf =





−2 0 0

0 2 −6

0 −6 0



 , Hg =





1 0 0

0 1 −6

0 −6 11



 and Hh =





1 0 0

0 1 0

0 0 −25



 .

and, for any µ1, µ2 ∈ R,

µ1Hg + µ2Hh =





µ1 + µ2 0 0

0 µ1 + µ2 −6µ1

0 −6µ1 11µ1 − 25µ2



 .

Note that (µ1 + µ2)(11µ1 − 25µ2) − 36µ2
1 = −25µ2

1 − 25µ2
2 − 14µ1µ2 = −7(µ1 + µ2)

2 −
18(µ2

1 + µ2
2) ≤ 0. Thus it is not a regular (TR) problem. However, it is easy to verify

that B, AAT are Z-matrices, Aa, b ∈ −R
n
+ and the Slater condition holds. Letting

λ1 = λ2 = 1, we see that

B + λ1AAT + λ2In =

(

−2 0

0 2

)

+

(

1 0

0 1

)

+

(

1 0

0 1

)

=

(

0 0

0 4

)

� 0,

g(x) = h(x) = 0 and

(B + λ1AAT + λ2In)x + (b + λ1Aa) = (0, 12)T + (0,−6)T + (0,−6)T = (0, 0)T .

Thus, the global optimality conditions of Corollary 5.2 holds.
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