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Alternative time-marching schemes for elastodynamic analysis
with the domain boundary element method formulation

J. A. M. Carrer, W. J. Mansur

Abstract This work presents alternative time-marching
schemes for performing elastodynamic analysis by the
Boundary Element Method. The use of the static
fundamental solution and the maintenance of the domain
integral associated to the accelerations characterize the
formulation employed in this work. It is called D-BEM, D
meaning domain. Time response is obtained by employing
step-by-step time-marching procedures similar to those
adopted in the Finite Element Method. Among all in-
tegration procedures, Houbolt scheme became the most
popular used to march in time with D-BEM formulation,
in spite of the presence of a high numerical damping. In
order to improve the integration, this work presents
alternative schemes that can be used to perform elasto-
dynamic analysis by the BEM with a better damping
control. In order to verify the accuracy of the proposed
scheme, three examples are presented and discussed at the
end of this work.

Keywords Time-marching scheme, D-BEM, Static
fundamental solution

1
Introduction
Transient elastodynamic analysis by the BEM is an area of
research that offers a wide range of possibilities for the
solution of the problem. This means that various meth-
odologies are available and a lot of research work can be
done.

Time-domain BEM formulations (TD-BEM), e.g.,
Mansur (1983), Dominguez (1993), Mansur et al. (1998),
provide good representation of causality and time
response jumps and lead to very accurate results. Besides,
the fulfillment of the radiation condition makes them
suitable for infinite domain analysis. Formulations that use
the static fundamental solution can be classified, according
to the maintenance or not of the inertial domain integral
in the BEM equations, as: D-BEM, that keeps the domain
integral (D means domain) in the equations, e.g., Carrer
and Telles (1994) and Hatzigeorgiou and Beskos (2001),

and DR-BEM (DR means Dual Reciprocity), that by means
of suitable interpolation functions substitutes the domain
integral by boundary integrals, e.g., Kontoni and Beskos
(1993) and Partridge et al. (1992). Formulations based on
frequency and Laplace domains are also available, e.g.,
Manolis (1983) and de Lacerda et al. (1996). More recently,
a formulation based on the Operational Quadrature
Method appeared in the literature, e.g., Gaul and Schanz
(1999) and Schanz (2001).

In this article, attention will be devoted to the two-
dimensional D-BEM formulation. It is expected that some
conclusions found here will also be valid for the DR-BEM
formulation. The discussion carried out here is concerned
with the use of alternative time-marching schemes for the
D-BEM formulation. The Houbolt scheme, e.g., Houbolt
(1974), Bathe (1996), and Weaver and Johnston (1983),
until now has been the most popular algorithm for
performing transient analysis by the D- and DR-BEM
formulations. Probably, the damping properties, presented
by the Houbolt scheme in FEM analysis, are benefic in
BEM analysis, justifying the wide range of applications
that use this technique. The search for other schemes,
however, is an important task and some work related to
the use of alternative time-marching solution procedures
is discussed here. Two schemes are proposed in this work:
initially, the BEM version of the Hilbert-a procedure,
Hilbert et al. (1977), is presented; afterwards, according to
the time-marching procedure adopted, one has the
schemes named Houbolt-a and Newmark-a. In order to
demonstrate their efficiency and accuracy, three examples
are presented and discussed at the end of the article.

It is important to notice that the D-BEM (or the
DR-BEM) approach presented here follows a strategy
similar to that of the FEM Galerkin formulation, i.e., a time
independent weighting function (the static Green function
in the case developed here) is employed to establish the
basic weighted residual sentence. Thus the inertial domain
integral remains and step-by-step time marching
algorithms, similar to those employed in the FEM, apply.
Advantages and drawbacks of methods that employ
domain discretization arise in the D-BEM and DR-BEM
approaches: they are quite adequate to consider non-linear
effects, e.g., Carrer and Telles (1994), Hatzigeorgiou and
Beskos (2001), Kontoni and Beskos (1993), etc., but are not
appropriate for infinite domain analyses. On the other
hand, the TD-BEM approach is quite suitable for infinite
domain analyses, as the radiation condition is auto-
matically fulfilled, and is quite robust for linear problems.
The best strategy for those engaged in doing dynamic
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linear and non-linear analyses of infinite domain wave
propagation problems is to have a computer code where
both formulations are available. Such a code should
include routines containing the coupling of TD-BEM and
D-BEM, so that the former can work as an efficient
transmitting boundary for the later: in this way one will
have an efficient and robust code for dynamic linear and
non-linear bounded and unbounded domains.

2
D-BEM Formulation and time-marching schemes
Before presenting the BEM formulation, it is important to
mention that the Sommerfeld radiation condition is not
fulfilled by the integral equation obtained using the static
fundamental solution as weighting function and, as a
consequence, infinite and semi-infinite domains cannot be
treated by boundary discretizations only. However, in spite
of this unfavorable aspect, the use of the static fundamental
solution leads to a very simple approach. Besides, this
formulation presents some advantage in elastoplastic
analysis, since the part of the domain where inelastic
variables are expected to occur needs to be discretized, see
for instance Telles (1983), Carrer and Telles (1992), and
Beskos (1995). Domain discretization can be avoided if an
alternative approach, known by dual reciprocity (DR-
BEM), is employed (the reader is referred to Partridge et al.
(1992) for additional details on the DR-BEM).

The starting D-BEM integral equation is written as
follows:

Cik nð Þuk n; tð Þ ¼
Z

C

u�ik n;Xð Þpk X; tð ÞdC Xð Þ

�
Z

C

p�ik n;Xð Þuk X; tð ÞdC Xð Þ

� q
Z

X

u�ik n;Xð Þ€uk X; tð ÞdX Xð Þ ð1Þ

In Eq. (1) G is the boundary and W is the domain of the
problem, X and n are the field and source points, and q is
the constant mass density. The fundamental solution
u�ik n;Xð Þ corresponds to a displacement at the field point X
in k direction associated to a unity load applied at the
source point n in i direction. The same interpretation is
valid for the traction p�ikðn;XÞ

In plane strain problems, one has:

u�ik n;Xð Þ ¼ 1

8pG 1� mð Þ ð3� 4mÞ In 1=rð Þdik þ r;ir;k
� �

ð2Þ

p�ik n;Xð Þ ¼ � 1

4p 1� mð Þr
� or

on
1� 2mð Þdik þ 2r;ir;k

� �

� 1� 2mð Þ r;ink � r;kni

� ��
ð3Þ

where r = r(n, X) is the distance between X and n and dik is
the Kronecker delta. In expression (2) G is the shear
modulus and m is the Poisson coefficient (note that in the
section Numerical Applications reference will be made to
the parameter E = G/2(1+m) (Young modulus)); in

expression (3) n stands for the direction of the outward
normal vector (nk is its component in the k direction).
Additionally:

r ¼ ririð Þ1=2; ri ¼ xi Xð Þ � xi nð Þ; r;i ¼
or

oxi Xð Þ ¼
ri

r

ð4Þ
Plane strain expressions are valid for plane stress if the
Poisson coefficient m is replaced by �m ¼ m= 1þ mð Þ.

The coefficient Cik(n) is obtained by geometric con-
siderations. The reader is referred to Hartmann (1980) for
additional details concerning its direct computation. Note
that for internal points one has Cik(n) = dik.

In the present work, linear elements were employed in
the boundary discretization, and linear triangular cells
were employed in the domain discretization. In order to
solve the problem, the acceleration in Eq. (1) is approxi-
mated by recurrence formulae involving displacements at
different time levels (including the displacement at the
present time). As a consequence, the unknowns to be
determined at a given time instant, say tn+1, are not only the
displacements and the tractions on the boundary, but also
the displacements at the internal points. The application of
the discretized version of Eq. (1) to all boundary nodes and
internal points produces an enlarged system of equations,
schematically written as (see Carrer and Telles (1994)):

hHbb 0

Hdb I

inub
nþ1

ud
nþ1

o
¼
hGbb

Gdb

in
pb

nþ1

o

�
hMbb Mbd

Mdb Mdb

in €ub
nþ1

€ud
nþ1

o
ð5Þ

In Eq. (5) the superscripts b and d correspond to the
boundary and to the domain (internal points), respec-
tively. In the sub-matrices, the first superscript corre-
sponds to the position of the source point and the second
superscript corresponds to the position of the field point.
The identity matrix I is related to the coefficients Cik = dik

of the internal points.
Equation (5) can be written in a more compact way as:

Hunþ1 ¼ Gpnþ1 �M€unþ1 ð6Þ
The time integration scheme proposed in this work

was inspired in the Hilbert-a method, e.g., Weaver and
Jonhston (1987), and Hilber et al. (1977), and starts writing
a D-BEM version of this scheme as follows:

1þ að ÞHunþ1 � aHun ¼ Gpnþ1 �M€unþ1 ð7Þ
Subsequently, the well known algorithms by Houbolt

(1974) and Newmark (1959) are alternatively used in order
to approximate the accelerations. The Houbolt scheme,
Houbolt (1974), adopts the following approximations for
the velocity and acceleration:

_unþ1 ¼
1

6Dt
11unþ1 � 18un þ 9un�1 � 2un�2½ � ð8Þ

€unþ1 ¼
1

Dt2
2unþ1 � 5un þ 4un�1 � un�2½ � ð9Þ
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In the Newmark scheme, Newmark (1959), one has:

_unþ1 ¼
c

bDt
unþ1 � un½ � þ b� cð Þ

b
_un �

c� 2bð Þ
2b

Dt€un

ð10Þ

€unþ1 ¼
1

bDt2
unþ1 � un½ � � 1

bDt
_un �

1� 2bð Þ
2b

€un ð11Þ

The stability and accuracy of the Newmark scheme
depend on the correct choice of the parameters b and c. If
one takes b = 1/6 and c = 1/2, expressions (10) and (11)
correspond to the linear acceleration method. Stability,
however, is not guaranteed; as a matter of fact, only
unreliable results (not presented here) were obtained when
b = 1/6 is adopted. If b = 1/4 and c = 1/2, expressions
(10) and (11) correspond to the average acceleration
method and the scheme is unconditionally stable, Weaver
and Jonhston (1987). These are the values adopted in this
work. Substituting the approximation for the acceleration
given by Eq. (9) in Eq. (7), one has the scheme designated
here as Houbolt-a; analogously, the Newmark-a scheme is
obtained after substituting Eq. (11) in Eq. (7). After per-
forming all algebraic operations, a general expression can
be written as follows (note that vector gn on the right-
hand-side of the system of equations contains the con-
tribution corresponding to the previous instants of time):

�Hunþ1 ¼ �Gpnþ1 þ gn ð12Þ
It is important to point out that an adequate choice of

the time-step plays a fundamental role in the analysis. A
dimensionless variable was adopted in order to provide a
measure of the time-step Dt (see Mansur (1983)). It is
defined here as:

bDt ¼
cdDt

l
ð13Þ

where l is the smallest boundary element length and cd is
the primary wave propagation velocity:

c2
d ¼

2G

q
1� mð Þ

1� 2mð Þ ð14Þ

A correct choice for the value of the parameter bDt is
conditioned by the experience of the researcher. Diversely
from the FEM formulation, where the definition of the
critical time-steps can be done appropriately, e.g., Bathe
(1996) and Weaver and Jonhston (1987), in BEM for-
mulations, as can be observed, for instance, in the works
by Mansur (1983), Partridge et al. (1992), Kontoni and
Beskos (1993) and Hatzigeorgiou and Beskos (2001), there
is no specific studies concerning this matter; for this
reason, the experience plays a fundamental role in the
adoption of the time-step. The simplest and straightfor-
ward recommendation states that values of bDt greater
than unity must be avoided.

As mentioned previously at the Introduction to this
work, the damping properties, presented by the Houbolt
scheme in FEM analyses, are benefic in BEM analyses. The
use of the Newmark scheme, on the other hand, tends to
produce amplification in the numerical results, leading to
unreliable results. The introduction of the a parameter, as
demonstrated in the examples included in this work,
provided a better control of the damping and rendered
possible the analyses with the Newmark scheme. It is
verified that a > 0 increases the damping and that a < 0
reduces the damping. Consequently, Newmark-a and
Houbolt-a schemes must employ, respectively, positive
and negative values of a.

3
Numerical applications

3.1
One-dimensional rod
This example simulates a one-dimensional rod under a
Heaviside-type forcing function; see Fig. 1 for the
boundary conditions and the geometry definition.
Boundary and domain discretizations are depicted in
Fig. 2. In order to simulate the one-dimensional problem,
the Poisson coefficient is taken as null. For the other
material parameters, the following values were adopted:
E = 100. 0 and q = 1.0.

It was verified empirically that negative values of the a
parameter reduce the damping and that positive values

Fig. 1. One dimensional rod: geometry
and loading definition
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tend to increase the damping. As the Houbolt scheme
presents a high numerical damping, it seems that its use
with negative values of a is the most appropriate combi-
nation. However, care should be taken in order to avoid
amplification of the numerical solution. The correctness of
this conclusion can be verified in Figs. 3 and 4 in which
the results obtained with a = )0.05 and corresponding to
the displacement component ux at boundary node A(a,
a/4) and to the traction component px at boundary node
B(0, a/4) are compared with the corresponding analytical
solutions and with the solutions corresponding to a = 0.
In this analysis, it was adopted bDt ¼ 1=3. It can be
observed that the Houbolt-a results related to the
displacement component ux are better than those of the
standard Houbolt (Fig. 3); on the other hand, the Houbolt-

a produces a more pronounced jump than the standard
Houbolt for the traction component px (Fig. 4). In order to
demonstrate the correctness of the choice of the para-
meters a and bDt, two additional analyses were carried out
for different values of the bDt parameter: the first analysis
employed bDt ¼ 1=6 and, for the second analysis,
bDt ¼ 1=2 was adopted. Due to the difficulty in the
representation of the jumps that occur along the time, only
the results related to the traction component px will be
discussed next (naturally, if the results related to px can be
considered acceptable, the same conclusion will be valid to
the results related to ux). The results depicted in Fig. 5
present a large level of oscillation and can not be con-
sidered acceptable, demonstrating that bDt ¼ 1=6 is not a
good choice. The same conclusion is valid for the use of
bDt ¼ 1=2: the results presented in Fig. 6 are less accurate
that those presented in Fig. 4.

Newmark scheme, on the other hand, tends to become
unstable in the D-BEM formulation, producing unreliable
results (see Fig. 8). For this reason, and bearing in mind
that positive values of the a parameter produce an
increasing of the damping, the combination of the
Newmark scheme with positive values of a (a = 0.10) was
successfully accomplished, as can be verified from Fig. 7
(ux at A(a, a/4)) and Fig. 8 (px at B(0, a/4)). The results
related to ux are in better agreement with the analytical
solution than those furnished by the standard Newmark
scheme, as shown in Fig. 7. Besides, the introduction of
the damping was responsible for the reliable results

Fig. 2. One dimensional rod: boundary and domain discretiza-
tion and selected boundary nodes

Fig. 3. Displacement component ux at
boundary node A(a, a/4): Houbolt-a ana-
lysis with a= )0.05 and bDt ¼ 1=3
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Fig. 4. Traction component px at bound-
ary node B(0, a/4): Houbolt-a analysis
with a = )0.05 and bDt ¼ 1=3

Fig. 5. Traction component px at bound-
ary node B(0, a/4): Houbolt-a analysis
with a = )0.05 and bDt ¼ 1=6
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Fig. 6. Traction component px at bound-
ary node B(0, a/4): Houbolt-a analysis
with a = )0.05 and bDt ¼ 1=2

Fig. 7. Displacement component ux at
boundary node A(a, a/4): Newmark-a
analysis with a = 0.10 and bDt ¼ 2=3
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presented in Fig. 8 and related to px. In this analysis,
bDt ¼ 2=3 was adopted, because greater values of the time-
step tend to produce more damping. The same discussion
concerning the choice of the bDt parameter was carried out
again. Figs. 9 and 10 present the results related to the
traction component px obtained with bDt ¼ 1=3 and
bDt ¼ 1, respectively. Keeping in mind the criterion of a
better representation of the jumps, the results in Fig. 9 are
less accurate than those in Fig. 8, showing that small
values of Dt are not adequate when employing the New-
mark-a scheme. Although from the results in Fig. 10 a
good picture of the analytical response can be inferred,
these results present a more pronounced jump than those
presented in Fig. 8, demonstrating that the best choice is
bDt ¼ 2=3. In Figs. 3 and 7, ust is the horizontal static
displacement; ust = )0.12) and, in Figs. 4, 5, 6 and 8, 9, 10
pst is the static reaction horizontal component.

4
Deep beam simply supported
This plane stress example consists of a simply supported
deep beam, depicted in Fig. 11, submitted to a suddenly
applied uniform load kept constant in time. FEM and BEM
analyses were carried out in order to verify the accuracy of
the results furnished by the latter. FEM analysis employed
linear quadrilateral finite elements and the Newmark in-
tegration scheme with Dt = 0.10. FEM mesh is depicted in
Fig. 12. BEM mesh is the same already depicted in Fig. 2.
Only half of the beam was discretized, and the essential
boundary conditions were taken into account as follows:

the displacements on the left side were restricted in the
vertical direction; on the right side the displacements were
restricted in the horizontal direction. Proceeding this way,
the symmetry of the problem was simulated appropriately.
The material parameters are: E = 100.0, m ¼ 1=3 and
q = 1.5. The results corresponding to the vertical
displacement component uy at boundary node A(0,0),
obtained with bDt ¼ 1=3, are presented in Figs. 13–14. In
this example, the results furnished by the Houbolt scheme
(standard version or with a = )0.05) are quite stable,
presenting a good agreement with the FEM results. The
results furnished by the Newmark-a scheme with a = 0.20,
on the other hand, are remarkably better than those
furnished by the standard Newmark scheme, as can be
seen in Fig. 14; besides, they present a good agreement
with the FEM ones. In Figs. 13–14, ust is the static vertical
displacement, computed according to the classical beam
theory; ust = )0.024.

5
Circular cavity under internal pressure
This example consists of a circular cavity of radius R
subjected to an internal pressure suddenly applied and
kept constant in time, as depicted in Fig. 15. Boundary and
domain discretizations are depicted in Fig. 16 (note that
the symmetry of the problem was automatically con-
sidered by the integration of reflected elements and cells,
see Brebbia et al. (1984)). It is important to notice that the
cell mesh was extended far away from the cavity in order
to avoid the undesirable reflection effects produced by the

Fig. 8. Traction component px at bound-
ary node B(0, a/4): Newmark-a analysis
with a = 0.10 and bDt ¼ 2=3
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Fig. 9. Traction component px at bound-
ary node B(0, a/4): Newmark-a analysis
with a = 0.10 and bDt ¼ 1=3

Fig. 10. Traction component px at
boundary node B(0, a/4): Newmark-a
analysis with a = 0.10 and bDt ¼ 1
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artificial outer boundary (as mentioned before, this is the
main limitation of the D-BEM formulation; for this reason,
in this example the outer boundary is a circle whose radius

is equal to 9.4 times R). In order to simulate the plane
stress analysis carried out by Chow and Koenig (1966),
assumed here as the analytical one (m = 0.3 and
E = 100.0), the following parameters have been adopted in
both BEM plane strain analyses: m = 0.2308 and
E = 94.6769.

Results corresponding to the circumferential and radial
stress components at internal point A(2.02R, 0) are shown,
respectively, in Figs. 17 and 18 for the Houbolt-a scheme
with a = )0.10, and in Figs. 19 and 20 for the Newmark-a
scheme with a = 0.20. In both analyses bDt ¼ 3=4 was
adopted. Note again the benefic influence of the a para-
meter in the analysis carried out with the Newmark
scheme, producing the reliable results in Figs. 19 and 20.
On the other hand, the results furnished by the Houbolt-a

Fig. 11. Deep beam simply supported

Fig. 12. Deep beam: FEM mesh and selected boundary nodes

Fig. 13. Displacement component uy at
boundary node A(0, 0): Houbolt-a analy-
sis with a= )0.05 and bDt ¼ 1=3
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scheme kept the same level of accuracy of the results
furnished by the standard Houbolt scheme.

6
Conclusions
This work is concerned with presenting some improve-
ments, related to the time-marching process, for the
D-BEM formulation. Essentially, the proposed procedures
consist in the association between Newmark and Houbolt

schemes with the Hilbert-a scheme. Better control of the
numerical damping (obtained by taking a < 0 in the
Houbolt scheme) and of the spurious oscillations
(obtained by taking a > 0 in the Newmark scheme) is the

Fig. 14. Displacement component uy at
boundary node A(0, 0): Newmark-a ana-
lysis with a = 0.20 and bDt ¼ 1=3

Fig. 15. Circular cavity: geometry, loading and selected internal
point

Fig. 16. Circular cavity: boundary and domain discretization and
selected internal point
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main advantage of the proposed procedures, named
Houbolt-a and Newmark-a. It is important to mention that
the formulation presented here renders possible the use of

the Newmark scheme in D-BEM (and possibly in DR-
BEM) analyses. This is, in the authors’ opinion, the main
contribution of the present work. Reliable results were

Fig. 17. Stress rr at point A(2.02R, 0):
Houbolt-a analysis with a= )0.10 and
bDt ¼ 3=4

Fig. 18. Stress rh at point A(2.02R, 0):
Houbolt-a analysis with a= )0.10 and
bDt ¼ 3=4
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produced, validating the proposed formulation and sti-
mulating the continuity of this research work, which
means its application to the DR-BEM and to 3-D elasto-

dynamics, as well as to non-linear problems. Another topic
that deserves attention is concerned with the use of time
variable values of the a parameter. Finally, it is important

Fig. 19. Stress rr at point A(2.02R, 0):
Newmark-a analysis with a = 0.20 and
bDt ¼ 3=4

Fig. 20. Stress rh at point A(2.02R, 0):
Newmark -a analysis with a = 0.20 and
bDt ¼ 3=4
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to mention that, according to the authors’ point of view,
some theoretical studies are still required when perform-
ing dynamic analysis with the BEM: these studies are re-
lated with the determination of the time-step length and
with the determination of the a parameter and become
necessary to confirm the empirical values adopted so far.
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