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As uncertainty is the inherent character of sensing data, the processing and optimization techniques for Probabilistic Skyline (PS)
in wireless sensor networks (WSNs) are investigated. It can be proved that PS is not decomposable a�er analyzing its properties, so
in-network aggregation techniques cannot be used directly to improve the performance. In this paper, an e	cient algorithm, called
Distributed Processing of Probabilistic Skyline (DPPS) query in WSNs, is proposed. �e algorithm divides the sensing data into
candidate data (CD), irrelevant data (ID), and relevant data (RD).�e ID in each sensor node can be 
ltered directly to reduce data
transmissions cost, since, only according to both CD and RD, PS result can be correctly obtained on the base station. Experimental
results show that the proposed algorithm can e�ectively reduce data transmissions by 
ltering the unnecessary data and greatly
prolong the lifetime of WSNs.

1. Introduction

Recently, it is found that wireless sensor networks (WSNs)
have a more and more important impact on the ways
to collect and use information from the physical world.
With the rapid development of microelectronics technology,
communication technology, and the embedded technology,
WSNs have become a common concern to industry and
academia because of their great commercial prospects and its
value of academic research [1–3]. For example, we can prevent
forest 
res by monitoring the temperature and humidity in
real time. In�uenced by manifold factors such as hardware
devices, sensor technology, communication quality, and the
surrounding environment, sensing data collected by sensor
nodes are o�en with inaccurate or low con
dence. �at is to
say, the temperature and humidity data acquired by sensor
nodes are not accurate. As uncertainty is an inherent property
of sensing data, to some extent, sensing data are uncertain
data essentially.

As one of the most important means, multiobjective
decision, skyline query [4–8] processing technologies have

brought a large number of excellent researches, both inWSNs
[9–16] and for uncertain data [17–26]. Considering a wireless
sensor network that consists of a large amount of sensor
nodes deployed in a geographical region, sensing data are
collected by these distributed sensor nodes. Accordingly,
there could be multiple sensor nodes deployed in certain
zones to promote the precision of uncertain data. As a result,
many queries in WSNs that rarely need transmitting every
piece of sensing data in the local sensor nodes have been well
studied to reduce the communication cost and to speed up
the computation [9–16], for instance, sliding window skylines
in sensor network [11, 12], continuous skyline monitoring
in WSNs [10], probabilistic query of uncertain data streams
[18, 19], dynamic (or relative) skylines [25], and distributed
uncertain skyline query [26]. Nevertheless, most of these
researches are studied under a centralized system setting.

In this paper, an e	cient algorithm, called Distributed
Processing of Probabilistic Skyline (DPPS) query in WSNs,
is proposed. It explores the problem of PS query processing
in distributed WSNs, in which there exist alternative tuples.
�e basic idea is to perform data pruning and aggregation
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at sensor node such that only the data required for 
nal
processing are transferred to the base station. By comparing
the data communication cost of DPPS and Centralized
Algorithm (CA) to examine the e�ectiveness of the DPPS,
we also perform sensitivity tests to observe the behavior of
examined DPPS under various parameter settings.�e result
validates our ideas and shows the superiority of our proposal.

In summary, the contributions of this paper are as follows:

(i) �eproperties of PS have been analyzed, andweprove
theoretically that PS query is not decomposable.

(ii) An e	cient algorithm, called Distributed Processing
of Probabilistic Skyline (DPPS) query in WSNs, is
proposed, which reduces the in-network amount of
data transmission by 
ltering the irrelevant data on
the sensor nodes.

(iii) Last but not least, the experimental results show that
DPPS has advantages of data transmission in WSNs
over CA.

�e rest of this paper is organized as follows. �e related
work is introduced brie�y in Section 2. Section 3 introduces
the important notions and theorems. In Section 4, the
DPPS is depicted in detail. And we analyze the performance
evaluation ofDPPS in Section 5. Finally, the conclusion of this
paper is presented in Section 6.

2. Related Work

Here, we review representative work in the areas of (1) skyline
query processing in WSNs and (2) skyline query processing
on uncertain data.

Skyline Query Processing in Sensor Networks. An extensive
number of research works in this area have appeared in
the literature [9–16]. Due to the limited energy budget
available of sensor nodes, the primary issue is how to develop
energy-e	cient techniques to reduce communication and
energy costs in the networks. In literature [9], Wang et
al. analyzed the properties of reverse skyline query and
presented a skyband-based approach to tackle the problem
of reverse skyline query answering e	ciently over WSNs.
Chen et al. [10] addressed the problem of continuous skyline
monitoring in WSNs and presented a hierarchical threshold-
based approach, MINMAX, to minimize the transmission
tra	c. Two papers in the literature [11, 12] investigated the
sliding window skylines in sensor network. �e former put
forward an energy-e	cient algorithm, SWSMA, to continu-
ouslymaintain sliding window skylines over a wireless sensor
network. �e algorithm employs tuple 
lter or grid 
lter
within each sensor to reduce the amount of data to transmit
and save the energy consumption as a consequence, while
the latter proposed a method EES which uses a mapping
function to map the data into a smaller range of integers
and carries out the skyline of the mapped set as the mapped
skyline 
lter (MSF). Chen et al. [13] partitioned the entire
data set into disjoint subsets and returned the skyline points
progressively through examining the subsets one by one.
Also, a global 
lter consisting of some found skyline points

in the processed subsets is used to 
lter out those unlikely
skyline points from the rest of subsets for transmission.
Shen et al. [14] researched location-based skyline queries
in WSNs and raised an energy-e	cient approach of Ring-
Skyline (RS) which divides the monitoring area into several
rings and adopts in-network query processing to reduce
energy consumption. In [15], Xin et al. raised an energy-
e	cient multiskyline evaluation (EMSE) algorithm to eval-
uate multiple skyline queries e�ectively in WSNs. EMSE
utilizes both global and local optimization mechanisms to
eliminate unnecessary data transmission. In literature [16],
a new lter-based method, called SKYFILTER, was brought
up for skyline query processing. �e method provides an
enhanced e	ciency by reduction of the total wireless com-
munication between sensor nodes.

Skyline Query Processing on Uncertain Data. In literature [17],
the bottom-up and top-down algorithms are put forward to
process �-skyline queries; a �-skyline contains all the objects
whose skyline probabilities are at least �. It can 
lter the
unquali
ed objects e	ciently with the help of the grid-based
space division algorithm and weight-counting algorithm.
Literature [18, 19] investigated the PS query of uncertain
data streams. �e former proposed an approach, candidate
list, to compute a PS on a large number of uncertain tuples
within the sliding window, and the later studied the problem
of e	ciently computing the skyline over sliding windows
on uncertain data elements against probability thresholds.
�e all skyline query problem over discrete uncertain data
sets was 
rst researched in [20], in which space splitting
algorithm and dominating counting algorithm were raised.
In [21], Böhm et al. attempted to model the uncertainty
with pdfs (probability density function) and investigated
the skyline query over the pdf modeled uncertain data.
Additionally, in [22], the objects are indexed with the Gauss-
tree in the parameter space to improve the pruning e	ciency,
where the leaf nodes store the objects with expectation and
variance. Ding and Jin [23] 
rst address the distributed
uncertain skyline query problem and the DSUD and e-
DSUD algorithms were raised to process the queries over
tuple-level uncertain data with the processing framework, in
which the uncertain tuples are independent of each other.
For skyline computation in highly distributed environments,
Hose and Vlachou [24] provide a good survey of existing
approaches, where the uncertain skyline queries and the open
research directions are discussed. �e reverse skyline query
over uncertain database retrieves all the uncertain objects
whose dynamic (or relative) skylines [25] contain a user-
speci
ed query object with a probability not less than a user-
speci
ed threshold. In [26], e	cient exact and approximate
algorithms are addressed to tackle this problem that skyline
probability computation over uncertain preferences is ♯�-
complete.

As opposed to our investigation, these researches either
ignored the uncertainty of sensing data or considered no
particularity of wireless sensor network environment. All of
them failed to solve PS query processing problems e�ectively
in WSNs.
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Table 1: �e meanings of frequently used symbols.

Symbol Meanings

�, �� Uncertain tuple

� Universal set of all the uncertain tuples

� A dimension space with �-dimension

�� Subset of universal set �
	 Set of alternative tuples, we have � = {	1, 	2, . . .}
	� 	 that dominates �

 A set composed of 	�
�, �� Possible worlds

�� Set of possible worlds in �, which is the subset of �

3. Preliminaries

3.1. Problem Statement. In this section, some important
concepts are de
ned; also, some theorems are proved to be
true. �e variable � is the threshold of the Probabilistic
Skyline and the meanings of frequently used symbols are
listed in Table 1.

Consider a WSN that consists of a lot of sensor nodes
deployed in a geographical region. Feature readings (e.g.,
temperature and humidity) are collected from these dis-
tributed sensor nodes. Multiple sensors are deployed at
certain zones in order to improvemonitoring quality. Figure 1
shows a wireless sensor network (with a two-tier hierarchical
topology) that monitors forest temperature and humidity in
di�erent zones (denoted as di�erent color). In this network,
sensor nodes are grouped into clusters, where cluster heads
are responsible for local processing and for reporting aggre-
gated results to the base station. As shown, �2 and �6 denote
the cluster heads for clusters A and B, correspondingly.

A table is shown in Figure 1, representing a snapshot
of temperature and humidity records collected from the
sensor network. As shown, each tuple records both possi-
ble temperature and humidity corresponding to a location.
�e con
dence value associated with a tuple indicates the
existence probability of those particular temperature and
humidity. For example, there are two data tuples generated
for Location A. �e temperature and humidity in these two
tuples are both valid (i.e., with measured con
dences).

De	nition 1 (possible world semantics [23]). We use � to
denote a �-dimensional space and � to denote the universal
set of all uncertain tuples in the �-dimensional space�. Each
tuple has a probability �(��) (0 ≤ �(��) ≤ 1) to occur, and
V�� (1 ≤  ≤ �) denotes the th dimension value. �e tuples
that cannot exist at the same time are alternatives. A possible
world � is instantiated by taking a set of tuples from the
alternative relation.

For example, uncertain tuples �1 and �2 in Figure 1 are
alternatives. �e various dimensions numerical values of �1
and �2 indicate the relevant information of the region A. Due
to the property of alternative tuples, both of them may occur
but cannot occur simultaneously.

�e aggregate con
dence of 	 is the sumof the con
dence
values of all its alternative tuples; that is, �(	) = ∑�∈� �(�).

Table 2: An example of possible worlds.

Possible world � Probability Pr(�)
�1 = {⌀} (1 − 0.9) ∗ (1 − 1) = 0
�2 = {�1, �3} 0.5 ∗ 0.1 = 0.05
�3 = {�1, �4} 0.5 ∗ 0.4 = 0.20
�4 = {�1, �5} 0.5 ∗ 0.1 = 0.05
�5 = {�1, �6} 0.5 ∗ 0.2 = 0.1
�6 = {�1, �7} 0.5 ∗ 0.2 = 0.1
�7 = {�2, �3} 0.4 ∗ 0.1 = 0.04
�8 = {�2, �4} 0.4 ∗ 0.4 = 0.16
�9 = {�2, �5} 0.4 ∗ 0.1 = 0.04
�10 = {�2, �6} 0.4 ∗ 0.2 = 0.08
�11 = {�2, �7} 0.4 ∗ 0.2 = 0.08
�12 = {�3} (1 − 0.5 − 0.4) ∗ 0.1 = 0.01
�13 = {�4} (1 − 0.5 − 0.4) ∗ 0.4 = 0.04
�14 = {�5} (1 − 0.5 − 0.4) ∗ 0.1 = 0.01
�15 = {�6} (1 − 0.5 − 0.4) ∗ 0.2 = 0.02
�16 = {�7} (1 − 0.5 − 0.4) ∗ 0.2 = 0.02

For instance, corresponding to location A, 	A = {�1, �2}; that
is, �1 and �2 are alternative tuple instances (or simply called
alternatives) of 	A. Consider �(	A) = 0.3 + 0.4 = 0.7. In the
same way, we can get that 	B = {�3, �4, �5, �6, �7} and �(	B) =
0.1 + 0.4 + 0.1 + 0.2 + 0.2 = 1. �e probability of all possible
worlds in � is shown in Table 2.

De	nition 2 (skyline). Given a set � of uncertain tuples in
the �-dimensional space�, a skyline query retrieves tuples in
� that are not dominated by any other tuple. For two tuples
�� and �� in �, tuple �� dominates �� (denoted as �� ≺ ��) if
it is not worse than �� in all dimensions (∀� ∈ [1, �], V�� ≥
V��) and better than �� at least in one (∃� ∈ [1, �], V�� > V��).
�e probability that �� dominates �� is ��’s existing probability
denoted as �(�� ≺ ��) = �(��).

De	nition 3 (skyline probability). Given a set � of uncertain
tuples in the �-dimensional space �, the set of possible
worlds based on set � is denoted in the form of �� =
{�1, �2, . . . , �	}. We assume that there exit uncertain tuple
� and possible world subset ��
� = {�
1 , . . . , �
�} ⊆ ��, if �
and �� satisfy that

(1) for any possible world � ∈ ��
� , the uncertain tuple
� belongs to the skyline of �; that is, � ∈ Skyline(�);

(2) for any possible world � ∈ ��-��
� , the uncertain
tuple � does not belong to the skyline of �; that is,
� ∉ Skyline(�).

�en, we conclude that the skyline probability of an
uncertain tuple � is the sum of all the possible worlds’
existential probability which are in the subset ��
� ; that is
to say, �sky(�) = ∑�∈��� Pr(�). For example, �sky(�2) =
Pr(�7) + pr(�10) = 0.04 + 0.08 = 0.12.

Assume that there exist an uncertain tuple � and an
alternative tuples set 	� = {�
1, �
2, . . .} in the universal set
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Figure 1: An example of wireless sensor network.

� = {	1, 	2, . . . , 	�}. If there exists �
� ∈ 	� that dominates �, we
can say 	� dominates � (	� ≺ �). �en, the probability that 	�
dominates � can be calculated as �(	� ≺ �) = ∑���∈��,���≺� �(�
�).
We use 
 to denote the set that is composed of all 	� in �;
that is, 
 = {	�1, 	�2, . . . , 	�	} ⊆ �. Consequently, the skyline
probability of uncertain tuple � is the product of the existent
probability �(�) of � and the nonexistent probability ∏�(1 −
�(	�� )) of 	�� ∈ 
; that is, �sky(�) = �(�) × ∏�(1 − �(	�� )).

De	nition 4 (Probabilistic Skyline). Given a set � of uncer-
tain tuples in the �-dimensional space � and a threshold
value �, then the Probabilistic Skyline of � contains all the
uncertain tuples in�whose skyline probability is bigger than
�, denoted as PS(�) = {� | �sky(�) > �}.

3.2. Property Analysis

�eorem 5. Probabilistic Skyline query is not a decomposable
operator.

Proof of �eorem 5. We 
rst let ��.� > ��.� represent the fact
that ��.� is better than ��.� and let ��.� > ��.� represent the
fact that ��.� is better than ��.�. �en, we assume that the
set � = {�1, �2, �3, �4, �5} of uncertain tuples is depicted in
Figure 2(a), and the threshold value � is 0.3. We can know
that �sky(�1) = 0.09, �sky(�2) = 0.3, �sky(�3) = 0.12, �sky(�4) =
0.072, and �sky(�5) = 0.4 by De
nition 2. Also, we have
the result PS(�) = {�5} according to De
nition 3. Now, let
� = �1 ∪ �2, �1 = {�1, �2, �5}, illustrated in Figure 2(b),
and �2 = {�3, �4}, shown in Figure 2(c). Similarly, it can
be proved that PS(�1) = {�5} and PS(�2) = {�4}. Only by
PS(�1) ∪ PS(�2) = {�4, �5} demonstrated in Figure 2(d), in
whatever way, we cannot obtain the result that PS(�) = {�5};
that is to say, PS ̸= �(PS(�1) ∪ PS(�2)). �us, PS query is not
a decomposable operator.

We can know that PS query is not a decomposable opera-
tor by�eorem5; thus, we cannot improve the e	ciency of PS

queries in WSNs by using in-network computing technology
[11, 15] directly.

Next, we will further analyze the properties of the PS
query.

�eorem 6. Given a set � of uncertain tuples in the �-
dimensional space �, a tuple � ∈ �� and a threshold value �.
�� = {	1, 	2, . . . , 	�} are the subset of � which contains tuples
collected on the  th cluster, and one uses 
� ⊆ 
 to denote the
set that is composed of 	�� ⊆ ��. �us, � does not belong to the
skyline of � when it satis	es the conditions as follows:

� (�) × ∏
��

(1 − � (	��)) < �. (1)

Proof of �eorem 6. �is theorem can be proved by De
ni-
tions 2 and 3 directly.

�eorem 7. Given a set � of uncertain tuples in the �-
dimensional space �, a tuple � ∈ ��, and a threshold value
�, then, � should be excluded when it satis	es the conditions as
follows:

∏�� (1 − � (	��))
1 − � (	��)

< � (&'* -/� 	�� ⊆ 
�) . (2)

Proof of �eorem 7. Since ∏��(1 − �(	��))/(1 − �(	��)) < �,
1 − �(	��) ≤ 1, and �(�) ≤ 1, then it can be deduced that

�sky(�) = �(�) × ∏��(1 − �(	�new� )) < �. �us, � ∉ PS(��) and
� ∉ PS(�).

Only the skyline probability of the tuples dominated by
� will be a�ected if we delete �. Suppose �new dominated
by � is a tuple in another sensor node which will possibly
be interleaved with tuples in �� at the base station, and let
�sky(�new) indicate the skyline probability of �new. �ere are
two possible cases to consider.

Case 1. �new itself forms a new 	new because the tuples that
dominate � must dominate �new as well. �us, it can be
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Figure 2: Example of PS query is not decomposable.

deduced that �sky(�new) = �(�new) × ∏�(1 − �(	��)) < � and
�new will not be judged as the skyline tuple by mistake.

Case 2. �new is a member of an existed 	 that does exist in
�� named 	new. Due to the mutual exclusiveness of tuple
members in 	, �new may appear in a possible world if and only
if no other members of 	new coexist in this possible world.
By formula (2), it can be proved that �sky(�new) = �(�new) ×
∏�(1 − �(	�new� )) < �. Also, �new will not be judged as the
skyline tuple by mistake.

�eorem 6 pointed out the tuples in the subset �� that
must not belong to the skyline of � clearly; that is, it pointed
out the tuples that may be the skyline tuples of �. �eorem 7
evidenced that we can delete the tuples in �� which will not
a�ect the calculation of the skyline of �. Not all the tuples
which do not belong to �� can be deleted. �e tuples that do

not satisfy the conditions above will a�ect the calculation of
skyline probability of other tuples, so we should hold them.

4. DPPS Algorithm

In this section, we propose the notions of candidate data,
irrelevant data, and relevant data according to �eorems
6 and 7. Next, we take the PS query as a test case to
derive candidate data and relevant data meanwhile prune the
irrelevant data. �us, irrelevant data tuples pruned in local
sensor nodes will never appear in the 
nal answer set.

De	nition 8 (candidate data). In the sensing data subset �� ⊆
� on sensor node, the tuples which are candidate data (CD)
of the Probabilistic Skyline query satisfy the conditions:

� (�) × ∏
�

(1 − � (	��)) > �. (3)
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// input: �e message set of child node ;�, the local sensing data ?,
// the threshold value �
// output: �e data set @ which will be submitted to the parent node
For each element A in ;� Do

�BA�C� = �BA�C� + A.C�;
�BA�?� = �BA�?� + A.?�;

end For

�BA�C� = �BA�C� + ?;
For each element � in �BA�C� Do

�BA� = 1;
/ = �.�B��'A /-� /�DEAFB*(�BA�C� + �BA�?�); // get the number / of 	�
�BA�
 = �.�B��'A /-� /�
(�BA�C� + �BA�?�); // and all 	� dominate �
For each 	� in �BA�
 Do

calculate �(	��); // get 	��’s domination probability
end For

If ∏�(1 − �(	��))/(1 − �(	��)) < � �en

�BA�C�.�B�B�B(�); // delete ID from CD set
Else If �(�) × ∏(1 − �(	��)) ≤ � �en

�BA�?�.G��(�); // transmit RD to RD set from CD set
�BA�C�.�B�B�B(�);

end If

end For

For each element � in �BA�?� Do

�BA� = 1;
/ = �.�B��'A /-� /�DEAFB*(�BA�C� + �BA�?�); // get the number / of 	�
�BA�
 = �.�B��'A /-� /�
(�BA�C� + �BA�?�); // and all 	� dominate �
For each 	� in �BA�
 Do

calculate �(	��);
end For

If ∏�(1 − �(	��))/(1 − �(	��)) < � �en

�BA�?�.�B�B�B(�); // delete ID from RD set
end If

end For

return @ = ⟨�BA�?� + �BA�C�⟩;

Algorithm 1: Query processing on sensor node.

De	nition 9 (irrelevant data). In the sensing data subset �� ⊆
� on sensor node, the tuples which are irrelevant data (ID) of
the Probabilistic Skyline query satisfy the conditions:

∏� (1 − � (	��))
1 − � (	��)

< � (for any 	�� ∈ 
) . (4)

De	nition 10 (relevant data). In the sensing data subset �� ⊆
� on sensor node, the tuples which are relevant data (RD) of
the Probabilistic Skyline query satisfy the conditions:

� (�) × ∏ (1 − � (	��)) ≤ � (for any 	�� ∈ 
) ,

∏� (1 − � (	��))
1 − � (	��)

≥ �.
(5)

Algorithm 1 sketches the process of data aggregation, data
classi
cation, and the ID 
ltering on sensor nodes. First, the
algorithm merges all the data tuples sent by child nodes.
In other words, it merges CD into candidate data set and
merges RD into relevant data set (Lines 4–7); second, the
algorithm adds the local data tuple to the candidate data set
(Line 8); and, then, the skyline probability of each tuple in

the candidate data set and relevant data set will be calculated.
Meanwhile, the tuples will be classi
ed according to the
de
nitions to removing ID and signing RD and CD (Lines
9–33); in the end, the partial relevant data set and candidate
data set will be submitted to the parent node (Line 34).

For data classi
cation in a candidate data set, our algo-
rithm works as follows: 
rst, it initializes the cumulative
probability variable (Line 10); second, the value of / is
calculated, where / is the number of 	� that can dominate the
tuple � (Line 11); third, it 
nds out all 	� that dominate � (Line
12), a�er which each 	�’s dominant probability is calculated
(Lines 13–15).�en, the data tuples are classi
ed based on the
de
nitions above. In this procedure, tuples which are ID are
deleted while tuples which are RD are transferred from the
candidate data set to the relevant data set (Lines 16–22).

�e process of data classi
cation in a relevant data set
is similar to the former. At 
rst, the cumulative probability
variable is initialized (Line 24); second, the value of / is
calculated (Line 25); third, it 
nds out all 	� that dominate
� (Line 26); next, the dominant probability of each 	� will be
worked out (Lines 27–29); 
nally, the algorithmdeletes � from
the relevant data set if it is ID (Lines 30–33).
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// input: �e message set of child node ;�, the threshold value �.
// output: �e data set @ which will be submitted to the parent node
For each element A in ;� Do

�BA�C� = �BA�C� + A.C�;
�BA�?� = �BA�?� + A.?�;

end For

For each element � in �BA�C� Do

�BA� = 1;
/ = �.�B��'A /-� /�DEAFB*(�BA�C� + �BA�?�); // get the number / of 	�
�BA�
 = �.�B��'A /-� /�
(�BA�C� + �BA�?�); // and all 	� dominate �
For each 	� in �BA�
 Do

calculate �(	��);
end For

If ∏�(1 − �(	��))/(1 − �(	��)) ≤ � �en

�BA�C�.�B�B�B(�); // delete ID and RD from CD set
end If

end For

return @ = ⟨�BA�C�⟩;

Algorithm 2: Query processing on base station.

In consideration of the running example in �eorem 5,
we assume that the WSN is a two-tier hierarchical topology
network. Let tuples �1, �2, and �5 in �1 be collected by sensor
nodes  . In the meantime, let �3 and �4 in �2 be collected
by sensor node . According to Algorithm 1, we can 
rstly
calculate the Local Skyline Probability (denoted as �sky�

) of

the tuples and then get the result that �sky�
(�1) = 0.15,

�sky�
(�2) = 0.3, �sky�

(�5) = 0.4, �sky�
(�3) = 0.2, and �sky�

(�4) =
0.64.�us, the data classi
cation on node  is that �1 is ID, �2 is
RD, and �5 is CD. Similarly, �3 is ID and �4 is CD on node . As
a result, tuples �2, �5 onnode  and �4 onnode  are transmitted
to the base station.

�e process of query processing on base station is
described in detail in Algorithm 2. To begin with, the
algorithm merges all the data tuples sent by child nodes;
that is to say, it merges CD into the candidate data set and
merges RD into the relevant data set (Lines 3–6); second, the
skyline probability of each tuple in the candidate data set will
be calculated; then, ID are removed from candidate data set
(Lines 7–17); 
nally, the rest data tuples in candidate data set
are the 
nal result of PS (Line 18).

For removing ID and RD in a candidate data set, it

rst initializes the cumulative probability variable (Line 8);
second, the value of / is calculated (Line 9); third, it 
nds
out all 	� that dominates � (Line 10); then, the dominant
probability of each 	� will be calculated (Lines 11–13); last,
the tuple which is not CD is removed from the candidate set
(Lines 14–17).

For example, on base station, the process of our running
example above works as follows: 
rst, tuples �4 and �5 are
merged in candidate data set; �2 is merged in RD. Second, we
have �sky�

(�4) = 0.24 and �sky�
(�5) = 0.4.�ird, delete �4 from

candidate data set. Finally, we get the last result that �5 is the
skyline result, which illustrates the correctness and feasibility
of our algorithm.

5. Experimental Evaluations

In our experiments, / sensor nodes were generated randomly
in a region with an area of /; thus, the average area of each
node is 1. �e communication radius between two nodes
was set to be 2√2, and the maximum packet transmitted
between two nodes was stipulated to be 48 bytes. All the
experiments were conducted on a computer with Intel Core
i7-3770 CPU 3.40GHz and 8.00GB RAM. We conducted
our evaluation on the standard test data sets of PS query, in
which the probability for each tuple was generated uniformly.
�e performance of the algorithm is mainly studied on
independence data and anticorrelated data.

�ree parameters are mainly investigated in our experi-
ments, which are the number of sensor nodes, the dimensions
of sensing data, and the threshold value of the PS query. �e
algorithm adjusted the values of the parameters to minimize
the overall data transmission in the network. �e overall
data transmission is calculated by the communication cost
sent by all the sensor nodes in the network; that is, it is
calculated by the dimensionality of sensing data × numbers ×
hop count. �e communication costs of DPPS and CA were
mainly explored with a number of sensor nodes which range
from 600 to 1000, with the default number equaling 600.�e
dimensions of the sensing data range from 2 to 6 with the
default dimension equaling 2. �e threshold value of the PS
query ranges from 0.1 to 0.3, which is 0.1 by default.

Under the independent and anticorrelation distribution,
the data communication cost of DPPS and CA a�ected by
the change of sensor nodes number is shown in Figure 3. In
this 
gure, we found that a large number of sensor nodes
lead to more communication cost. �e increase speed of
DPPS is slower than CA’s. As the number of sensing data
increases due to the more sensor nodes, the communication
cost of CA increases fast. However, the unnecessary sensing
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Figure 3: �e communication cost in�uenced by nodes’ number.
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Figure 4: �e communication cost in�uenced by data dimensions.

data are 
ltered in DPPS which directly leads to a less
communication cost and amuch slower rate of increasement.
�e communication cost in independent distribution is close
to the one in anticorrelation distribution, which explains that
data distribution has less impact on communication cost. In
other words, the con
dence of sensing data is the primary
factor which a�ects the communication cost.

�e data communication cost of both the algorithms,
under the two kinds of data distribution, a�ected by the
change of sensor data dimensionality is revealed in Figure 4.
Obviously, the bigger the dimensionality is, the more the
communication cost is.�e reason is that, with the increment
of data dimension, the probability of tuples dominated by
others is decreased, which led to an increment in the number
of skyline tuples and the data communication cost. �e
communication cost of DPPS is smaller than CA’s, which
further veri
ed the e�ectiveness of DPPS. In addition, we

can draw a conclusion that it is the con
dence of sensing
data which plays the primary role in communication cost
a�ection.

Under the two di�erent distributions, the data com-
munication cost of DPPS and CA a�ected by the change
of threshold value is shown in Figure 5. In the 
gure, we
can see that a larger threshold value usually leads to less
communication cost. It is intuitive, since the larger the
threshold value is, the smaller the PS query result set will
be. �at actually results in a less communication cost. �e
communication cost of DPPS is always less than CA’s, which
proved the e�ectiveness of DPPS in a very great degree. In
a similar way, the results demonstrated the con
dence is the
primary factor again.

All the results showed that DPPS precedes CA in all
changes of sensor node number, the sensing data dimension,
and the PS threshold value. It can be widely used in sensor
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Figure 5: �e communication cost in�uenced by threshold value.

networks since it can improve e	ciency and reduce the
communication cost signi
cantly.

6. Conclusion

In this paper, we explored deeply the requirements of PS
query algorithm in WSNs and summarized the existing
problems in the WSNs. According to the characteristics of
applications in WSNs, we 
rstly studied the basic properties
of PS query and theoretically proved that the algorithm is
not decomposable. �en, an e	cient algorithm, Distributed
Processing of Probabilistic Skyline (DPPS) query in WSNs,
was put forward. DPPS can classify the sensing data on sensor
nodes and discard the irrelevant data which will not a�ect the
result of the PS query.�ereby, the DPPS can reduce the data
transmission cost signi
cantly in WSNs. Finally, the algo-
rithmwas veri
ed by simulation experiments, and the results
showed that the performance of DPPS comparedwith the CA
is signi
cantly improved in saving the communication cost in
network.
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