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Abstract 

Background: Macrophages are heterogenous phagocytic cells with an important role in the innate immunity. They 

are, also, significant contributors in the adaptive immune system. Macrophages are the most abundant immune cells 

in the lung during allergic asthma, which is the most common chronic respiratory disease of both adults and children. 

Macrophages activated by Th1 cells are known as M1 macrophages while those activated by IL-4 and IL-13 are called 

alternatively activated macrophages (AAM) or M2 cells. AAM are subdivided into four distinct subtypes (M2a, M2b, 

M2c and M2d), depending on the nature of inducing agent and the expressed markers.

Body: IL-4 is the major effector cytokine in both alternative activation of macrophages and pathogenesis of asthma. 

Thus, the role of M2a macrophages in asthma is a major concern. However, this is controversial. Therefore, further 

studies are required to improve our knowledge about the role of IL-4-induced macrophages in allergic asthma, 

through precisive elucidation of the roles of specific M2a proteins in the pathogenesis of asthma. In the current 

review, we try to illustrate the different functions of M2a macrophages (protective and pathogenic roles) in the patho-

genesis of asthma, including explanation of how different M2a proteins and markers act during the pathogenesis of 

allergic asthma. These include surface markers, enzymes, secreted proteins, chemokines, cytokines, signal transduc-

tion proteins and transcription factors.

Conclusions: AAM is considered a double-edged sword in allergic asthma. Finally, we recommend further studies 

that focus on increased selective expression or suppression of protective and pathogenic M2a markers.
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Background
Macrophages: development, polarization and subsets

Macrophages are the major effector cells of the innate 

immune system that participate in the potent effec-

tor mechanism of the adaptive immune system. Mac-

rophages were initially identified by Elie Metchnikoff 

who demonstrated the action of phagocytes in starfish 

larvae in 1883 [1]. Macrophages development occur dur-

ing both early fetal development and adult life. �ey are 

derived from the yolk sac and fetal liver, generating het-

erogenous long-lived tissue resident macrophages that 

are widely distributed in different tissue and organs with 

diverse functions and subsets. �ese include Kupffer 

cells in the liver, microglial cells in the brain and alveo-

lar macrophages in the lung. In adult life, macrophages 

are derived from bone marrow stem cells in response 

to monocyte colony stimulating factor to form mono-

cytes (the precursor of macrophages), circulating in the 

blood. After initiation of inflammation, they migrate to 

inflammatory tissues and mature into macrophages and 
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perform their function [2]. In this article, we are con-

cerned about alveolar macrophage in human and mice.

Alveolar macrophages reside in the inner surface of 

the lung, accounting for 55% of lung immune cells, and 

can differentiate to major subsets in response to differ-

ent stimuli. Unlike the second type of lung macrophage; 

interstitial macrophages, which reside in the interstitial 

areas of the lung, maintain homeostasis and induce tol-

erance for harmless antigens [3]. Generally, macrophages 

perform distinct functions depending on the type of 

exposed stimuli. IFN-γ, which was formerly called mac-

rophage-activating factor, activates resting macrophages 

to kill ingested microbes by the action of nitric oxide 

(NO), reactive oxygen species and lysosomal enzymes. 

�is activation is called classical macrophage activation 

as it was identified first and describes the classical path-

way of activation by �1 cells. �ey are known as M1 

macrophages (named M1 to mirror �1 nomenclature). 

IFN-γ is mainly secreted by �1 cells; which is activated 

by IL-12 secreted by activated macrophages; reflects the 

synergism between �1 and M1 macrophages. Also, this 

synergism occur through binding of macrophage mol-

ecules CD80/CD86 and CD40 with T cells’ CD28 and 

CD40L, respectively [4]. By contrast, IL-4 and IL-13 

activate resting macrophages to an alternative form of 

macrophages, the so called alternative activated mac-

rophages (AAM) or M2 macrophage (named M2 to 

mirror �2 nomenclature), or anti-inflammatory mac-

rophages. M2 polarization antagonizes M1 polarization; 

since IL-4 suppresses �1 and M1 polarization. M2 cells 

antagonize the effects of M1 cells (mediated through 

IL-10), and promote tissue repair, remodeling and wound 

healing (through TGF-β and other factors) after inflam-

matory injury [4, 5]. �is reflects the important role of 

M2 macrophages as a natural feedback regulator of the 

inflammatory process in the form of termination and 

repair.

Based on in  vitro experiments, AAM are subdivided 

into four distinct subtypes [4, 6–8] (Table  1), namely 

M2a, M2b, M2c and M2d, depending on the nature of 

inducing agent and the expressed markers. Whether all 

subtypes are expressed in  vivo, is still unclear [4, 7, 8]. 

In this review, we focus on human and mice M2a mac-

rophages, which is induced by IL-4 and IL-13, expressing 

high CD206, Arg1, Ym1, FIZZ1 and TGF-β, promot-

ing fibrosis and wound healing, so called wound healing 

macrophage [4, 6–8].

Asthma: epidemiology and pathogenesis

Bronchial asthma is the most common chronic respira-

tory disease, with around 334 million people affected 

worldwide, with higher prevalence in developed coun-

tries [9]. �e most common form of asthma is due to 

allergic stimuli, so called allergic or atopic asthma, while 

other minor forms are caused by non-allergic stimuli 

such as air pollution, cold, aspirin and exercise. How-

ever, the pathophysiologic processes of these types are 

almost the same [10]. Allergic asthma is caused by imme-

diate hypersensitivity reaction (type I), which is initi-

ated by antigen exposure, activating specific �2 cells 

that produce IL-4, IL-5 and IL-13. �en, IL-4 stimulates 

B cells to secrete IgE which binds to Fcε receptors on 

mast cells and basophils, leading to their degranulation 

upon re-exposure to the same antigen. �e degranula-

tion process results in the release of preformed biogenic 

amines (histamine), granule enzymes and proteoglycans, 

stimulating bronchoconstriction and increasing vascu-

lar permeability followed by the release of newly syn-

thesized lipid mediators (prostaglandin D2, leukotrienes 

and platelet-activating factor), that stimulate further 

Table 1 M2 subsets of macrophages, inducing stimuli, signi�cant markers and functions

a M2a macrophage is induced by IL-4 and IL-13, expressing high CD206, Arg1, Ym1, FIZZ1 and TGF-β, promoting �brosis and wound healing, so called wound healing 

macrophage. M2b is stimulated by exposure to both immune complex and Toll like receptor (TLR) ligand or IL-1 receptor agonist. M2b is the only subtype that 

secrets proin�ammatory cytokines; IL-1β, IL-6 and TNF-α, however it secrets low IL-12 (So not inducing Th1) and high anti-in�ammatory IL-10, thus, performing some 

immunoregulatory functions. M2c is induced by IL-10, glucocorticoids and TGF-β, expressing high levels of innate receptors CD206, CD163 and the Mer receptor 

tyrosine kinase (MerTK) which enable it to perform e�erocytosis function (phagocytic clearance of dead cells). M2d is induced by combined exposure to TLR with 

adenosine A2A receptor ligands, or by IL-6, expressing high vascular endothelial growth factor (VEGF) and IL-10, enabling it to induce angiogenesis and promote 

tumor growth

M2 subtype Inducing stimuli Signature markers Functions References

M2aa IL-4, IL-13 and M-CSF CD206, Arg1, Ym1, FIZZ1
IL-10, TGF-β

Anti-inflammatory and Wound healing [4, 6–8]

M2b TLR ligands + IL-1R agonist CD206, IL-1 β, IL-6, TNF-α, IL-12Low

IL-10
Immuno-regulation and promoting infections

M2c IL-10, Glucocorticoids, TGF-β CD206, CD163, MerTK
IL-10, TGF- β

Efferocytosis and tissue remodeling

M2d TLR + adenosine A2A R ligands, IL-6 VEGF, IL-10
TGF- β
IL-12Low, TNF-αLow

Angiogenesis, Tumor growth
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bronchoconstriction and vascular permeability with 

chemotaxis of more inflammatory cells, in addition to 

cytokines’ released by mast cells (TNF, IL-1, IL-4, IL-5, 

IL-6, IL-13, CCL3, CCL4) that mediate late phase inflam-

matory reactions [9–11]. Concurrent to mast cells acti-

vation, eosinophils are activated by IL-5, which enhances 

eosinophilic maturation from bone marrow cells, recruit-

ment to inflammatory sites and release of lipid mediators 

like mast cells and basophils. All previous factors lead to 

the characteristics of allergic asthma including airway 

obstruction, airway hyperreactivity (AHR) to specific 

stimuli, chronic infiltration and hypertrophy of bronchial 

smooth muscle cells [10, 11].

Alternatively activated macrophages and allergic asthma

Since the macrophages are the predominant cells in the 

lung during allergic asthma [12, 13], and IL-4 is the key 

cytokine in both alternative activation of macrophages 

and pathogenesis of asthma [14], elucidating the role of 

M2a cells in asthma is a major concern. However, there 

is a controversy about this role. Some studies suggest 

that AAM increases the pathogenesis of asthma through 

promotion of allergic inflammation and AHR. Also, it 

induces airway remodeling through deposition of col-

lagen supported by the correlation between increased 

M2 cells and severity of asthma, and by exacerbations 

induced with adoptive transfer of M2 cells suggesting that 

targeting them might be an efficient option for asthma 

treatment [15–17]. Others think that AAM doesn’t have 

a significant role in the developments of asthma, sup-

ported by a study showing that deletion of macrophage 

IL-4Rα doesn’t affect the pathology of allergic asthma, 

and increased M2 cell percentage in asthma is just an 

association of increased �2 response [18]. �erefore, 

further studies are required for better understanding of 

the role of IL-4-induced AAM (M2a) in allergic asthma, 

and these studies should involve elucidation of the roles 

of specific M2 proteins in the pathogenesis of asthma, 

which was already demanded in 2011 [19]. Since then, 

no study emphasized the roles of M2a markers in allergic 

asthma.

In this review, we elucidate the diverse roles of M2a 

cells in the pathogenesis of asthma, through illustration 

of how its significant markers react during development 

of asthma. Some markers are not exclusive for mac-

rophages. However, as mentioned earlier; macrophages 

are the predominant cells in asthma and thus their recep-

tors and cytokines are suggested as higher contributors 

in asthma than other cells. Specifically, some macrophage 

major transcription factors are involved in the polariza-

tion of �2 cells. �erefore, we will focus on the role of 

transcription factors in the induction of M2 polarization 

only, not generally in asthma, to avoid the over-estima-

tion of transcription factors roles in the disease. Accord-

ing to markers’ nature, we divided M2a markers into six 

categories (Table  2), to simplify discussions about their 

roles in allergic asthma.

M2a markers and allergic asthma
C‑type lectin receptors

Mannose receptor C type 1 (MRC1, CD206)

Mannose receptor C type-1 (MRC1, CD206) are pattern 

recognition receptors and member of the C-type lectin 

receptor family expressed by macrophages and dendritic 

cells. MRC1 recognizes some terminal sugars of micro-

organisms such as N-acetyl--glucosamine, -fucose 

and -mannose, that are not expressed by eukaryotic 

cells. �erefore, these terminal sugars are considered 

Table 2 M2a cell markers in human and mice

M2a markers; that are mentioned in this review; are divided into six major categories according to their nature. The host expression of human and mice is included

Category M2a markers Host expression in response to IL‑4 References

Human Mice

C-type lectin receptors MRC1 (CD206) ✓ ✓ [20, 23, 24]

MGL (CD301) ✓ ✓ [6, 7, 26, 29, 30]

Enzymes Arg1 ✓ [34–36]

TG-2 ✓ ✓ [23, 43]

Secreted proteins FIZZ1 (RENTLA) ✓ [23, 50]

Ym1 (CHI3L3) ✓ [23, 36]

Chemokine ligands CCL17, CCL22 ✓ ✓ [4, 5, 63]

Cytokines IL-10 ✓ ✓ [4, 7, 8, 29]

TGF-β1 ✓ ✓ [4, 5, 8]

IL-1RA ✓ ✓ [5, 102–104]

Signal transduction proteins and transcrip-
tion factors

STAT6, KLF4, SOCS1, and IRF4 ✓ ✓ [23, 126, 130, 134]
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pathogen-associated molecular patterns [20, 21]. �is 

recognition process is the first step in the phagocytosis of 

bacteria, fungi, parasites, viruses, and allergens [21, 22]. 

MRC1 is a significant marker in alternative activation of 

macrophages in both human and mice [20, 23, 24]. In 

murine allergic asthma, MRC1 knockout mice display a 

significant reduction in the uptake and clearance of aller-

gens by macrophages, together with exacerbated peri-

bronchial inflammation and goblet cell hyperplasia. In 

addition, eosinophils numbers, levels of IL-4, IL-13 and 

allergen-specific IgE also significantly increase. �ere-

fore, MRC1 has a protective role in allergic asthma which 

is mediated by allergen uptake and clearance (Fig. 1), and 

this function may be mediated through miR-511-3p; an 

intronic miRNA encoded by both mouse and human 

Mrc1/MRC1 genes [25].

Macrophage galactose type C-type lectin receptors (MGL/

CD301)

Macrophage galactose type C-type lectin receptors 

(MGL/CD301) are pattern recognition receptors that rec-

ognize terminal galactose antigens. MGL are expressed 

on human (hMGL) and mice macrophages (mMGL), 

but mice have two types namely 1 and 2 (mMGL1 and 

mMGL2), with 60% homology between hMGL and 

mMGL1 [26–28]. IL-4 upregulates their expression, 

hence it is considered one of the M2a cell markers [6, 7, 

26, 29, 30]. �e role of MGL in allergic asthma is poorly 

understood. However, many potent allergens that induce 

asthma, have galactose terminals such as cockroach [31] 

and cat [32] allergens. �erefore, further studies are 

required to understand the role of MGL receptors in the 

immune response to these allergens.

Fig. 1 Protective and pathogenic proteins of human and murine M2a macrophages in allergic asthma. The protective proteins are the same in 

human and mice, representing in MRC1 that mediate allergen clearance, and IL-1RA that suppresses eosinophilic inflammation, Th2 activation and 

AHR, which induced by IL-1. The pathogenic proteins of human and mice are shared in three markers, TGM2 that induces eosinophilic inflammation, 

CCL17 and CCL22 that induces Th2 mediated allergic inflammation, and TGF β1 that induce airway remodeling. Murine M2a macrophages have 

another three unique pathogenic proteins, Arg1 that stimulate bronchoconstriction and airway remodeling, FIZZ1 that induces airway remodeling 

and finally CHI3L3 that also induces Airway remodeling and eosinophilic inflammation
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Enzymes

Arginase-1 (Arg1)

Arginase-1 (Arg1) is an enzyme that eliminates nitro-

gen by the hydrolysis of -arginine into -ornithine and 

urea, and is expressed in liver cells (human and mice) 

[33]. Murine macrophages’ Arg1 is considered one of 

the best described signature markers of AAM, unlike 

human macrophage that do not express Arg1 in response 

to �2 cytokines [34–36]. -arginine has two possible 

metabolic pathways. �e first is catalyzed by inducible 

nitric oxide synthetase (iNOS) to NO and -citrulline, 

which are characteristic of classical activation of mac-

rophages. NO has a bronchodilator effect on airway 

smooth muscle cells [34]. �e second pathway is cata-

lyzed by Arg1 to -ornithine as mentioned above. �e 

balance between iNOS and Arg1 is required to maintain 

the normal muscle tone, and this explains a possible role 

of elevated Arg1 expression during asthma and how it 

stimulates bronchoconstriction [34, 37]. �us, blocking 

of arginase pathway has been developed as a therapeutic 

target to direct -arginine to iNOS pathway for the syn-

thesis of the more bronchodilator NO [38]. Moreover, 

-ornithine; the product of Arg1 pathway; is converted 

by ornithine decarboxylase to putrescine, which is con-

verted by spermidine synthase and spermine synthase to 

spermidine and spermine, respectively [37]. In allergic 

asthma, the levels of -ornithine derived polyamines are 

elevated. �ey increase the AHR to allergen, while AHR 

decreases with the treatment by inhibitors of polyamines’ 

synthesis [37]. Also, polyamines stimulate the contrac-

tion of smooth muscle cells through its effect on intracel-

lular calcium [39]. In addition, -ornithine is converted 

by ornithine aminotransferase to proline [40], a precur-

sor of collagen. �erefore, elevated proline induces col-

lagen depositions leading to airway remodeling [37, 41]. 

All these factors indicate the pathogenic roles of Arg1 in 

murine allergic asthma.

Transglutaminase 2 (TGM2)

Transglutaminase 2 (TGM2) induces structural modifica-

tion of proteins by catalyzing the binding of low molecu-

lar weight primary amines. TGM2 is, also, involved in cell 

adhesion, migration and extra-cellular matrix regulation. 

TGM2 is synthesized in the cytoplasm of macrophages, 

then transported to the cell surface to bind heparan pro-

teoglycans [42]. TGM2 is considered a new marker of IL-

4-induced macrophages in both human and mice [23, 43]. 

In asthma, TGM2 potentiates the enzymatic activity of 

secreted phospholipase A2 (PLA2) group X (sPLA2-X), 

which in turn regulates the production of inflammatory 

cysteinyl leukotrienes (CysLT; eicosanoids) by mast cells 

and eosinophils [44, 45]. A member of cysteinyl leukot-

rienes; CysLT E4 induces the recruitment of eosinophils 

and basophils to the inflammatory sites, increases airway 

hyperresponsiveness and vascular permeability [46, 47]. 

In TGM2 knockout mice; the airway inflammation and 

hyperresponsiveness are attenuated, eosinophilic recruit-

ment is reduced, and �-2 differentiation and its main 

cytokines (IL-4 and IL-13) are suppressed together with 

the allergen-specific Ig-E. Also, the expression of IL-33 

is decreased. In addition, the same findings are observed 

in allergic asthma of normal mice when treated with the 

TGM2 inhibitor (Cysteamine) [48]. �ese studies high-

light the significance of TGM2 as a pathogenic factor in 

allergic asthma.

Secreted proteins

Found in in�ammatory zone 1 (FIZZ1)

Found in inflammatory zone-1 (FIZZ1) is a cysteine 

rich secreted protein known as resistin-like molecules 

(RELMs) and resistin-like alpha (RETNLA) discovered 

in 2000 [49]. FIZZ1 has no human homolog and is con-

sidered one of the signature markers of alternative activa-

tion of murine macrophages [23, 50]. FIZZ1 expression 

is upregulated during murine allergic asthma [49], and 

stimulates myofibroblasts hyperplasia in lung. Myofibro-

blasts are the major producers of Collagen Type I and 

α-smooth muscle actin (α-SMA). Myofibroblasts hyper-

plasia leads to collagen deposition in bronchial walls, 

therefore, inducing narrowing of airway passages and 

limitation of air movements. �is phenomenon is called 

airway remodeling (Fig. 1) in asthma [51]. FIZZ1 knock-

out mice display a significant reduction in pulmonary 

fibrosis when treated with bleomycin (fibrosis-inducing 

agent). Conversely, FIZZ1 overexpression using a viral 

vector, exacerbates pulmonary fibrosis, thus confirming 

the profibrogenic role of FIZZ1 [52].

Chitinase 3-like 3 (CHI3L3, Ym1)

Chitinase 3-like 3 (CHI3L3); also called Ym1; is a 

secreted protein that lacks enzymatic activity of chitinase 

(hence it is name) that hydrolyzes the glycosidic bond 

in chitin; a polysaccharide component of fungal walls of 

and helminths. Despite lacking the enzymatic activity 

that can protect against pathogens, CHI3L3 can bind to 

chitin with high affinity and may recognize a pathogen-

associated molecular pattern, although this role remains 

unclear [53]. CHI3L3 is expressed only in mouse with 

no human ortholog, and is considered one of the signa-

ture markers of murine AAM [23, 36]. In murine allergic 

asthma, CHI3L3 is highly expressed, correlated to levels 

of IL-4 and IL-13 [54], binds to carbohydrates e.g. hepa-

rin/heparan sulfate proteoglycan; which are major con-

tributors of pulmonary fibrosis (by stimulating TGF-β 

signaling in fibroblasts) [55]. �is suggests a possible role 

of CHI3L3 in airway remodeling of allergic lung [56]. 
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Moreover, CHI3L3 recruits eosinophils to the inflam-

matory sites, and is considered as eosinophil chemotac-

tic factor [57, 58]. Furthermore, this recruitment may be 

mediated through binding with heparan sulfate proteo-

glycan [59] suggesting the inflammatory and profibrotic 

roles of CHI3L3 in murine allergic asthma.

Chemokines

CCL17 and CCL22

CCL17; also known as �ymus and activation-regulated 

chemokine (TARC) [60]; and CCL22; also known as 

macrophage-derived chemokine (MDC) [61]; are known 

ligands of CCR4, which is highly expressed by �2 cells 

[5, 62]. Both CCL17 and CCL22 are considered human 

and murine M2a markers [4, 5, 63]. �ey chemoattract 

�2 cells [64]. �eir expression is upregulated in allergic 

asthma together with CCR4 expression to recruit more 

�2 cells after allergen exposure [64, 65]. Also, CCL17 

and CCL22 induce naïve T cell differentiation into �2 

cells [66, 67], indicating the pathogenic role of CCL17 

and CCL22 in allergic asthma (Fig. 1). In addition, CCR4 

blockade decreases AHR, eosinophilia, �2 cytokines 

and their recruitment [64, 68] representing an effec-

tive target for asthma treatment. However, the block-

ade doesn’t completely abolish �2 recruitment. CCR8 

is thought to induces the recruitment [65]. However, in 

CCR8 deficient mice, �2 cytokines and eosinophilia are 

not affected [69], suggesting the superiority of CCR4 in 

�2 recruitment.

Cytokines

IL-10

IL-10 is a potent immunosuppressive cytokine that 

is predominantly secreted by macrophages. It is, 

also, secreted by Th2, T regulatory cells (Treg), T 

cytotoxic, regulatory B lymphocytes, dendritic cells 

(DC), monocytes and mast cells. Its activity is medi-

ated through IL-10 receptors, which belongs to type 

II cytokine receptors that also include IFN recep-

tors. IL-10 suppresses macrophage MHCII, CD80 and 

CD86 expression. Thus, M1 features including anti-

gen presentation, and secretion of proinflammatory 

cytokines (IL-12, IL-1β and TNF-α) are suppressed, 

which in turn inhibits Th1 activation. Also, IL-10 is 

the first known protein to inhibit IFN-γ, and is consid-

ered a negative feedback regulator of macrophages [70, 

71]. In addition, IL-10 is one of the significant markers 

of M2a cells in human and mice [4, 7, 8, 29]. In aller-

gic asthma, IL-10 level is elevated in serum [72], but 

decreases in bronchoalveolar lavage (BAL), which may 

reflect the binding of IL-10 to its receptors [73]. This 

suggestion is supported by increased IL-10 mRNA in 

BAL cells of asthmatic patients [74]. IL-10 is thought 

to suppress Th2 cytokines [75–77]. This suppression 

is mediated through induction of granzyme B that 

causes Th2 cell death [77] and also through inhibition 

of allergic antigen presenting functions and migration 

of DC to local lymph nodes [78]. IL-10, also, decreases 

eosinophilia [75–82] by suppressing their survival 

[79] or by reducing IFN-γ production; which amelio-

rates eosinophilic recruitment [75], and by suppressing 

Th2 cytokines. In addition, the high levels of IL-10 in 

serum of asthmatic patients are associated with lower 

risk of asthmatic exacerbations [83]. Interestingly, ster-

oids exert some of their anti-inflammatory activity 

through stimulation of IL-10 secretion [73, 84]. Also, 

allergen-specific immunotherapy inhibits AHR and 

airway inflammation through IL-10 and Treg cells [85]. 

IL-10 suppresses total IgE [77, 80], although it doesn’t 

affect allergen-specific IgE [80, 81], despite suppress-

ing IL-4 (the main inducer of IgE), which indicates 

that IL-4 might be less important in the late phase of 

the IgE production [80]. Surprisingly, IL-10 knockout 

mice have no or weak AHR in response to allergen [82, 

86], which is supported by reconstitution of AHR upon 

increased expression of IL-10 [86]. This reaction might 

be a result of exaggerated inflammatory response to 

different exogenous stimuli in the absence of IL-10 

[80]. Furthermore, IL-10 treatment induces AHR to 

allergen together with suppression of eosinophilia, 

which are paradoxical responses, due to the role of 

eosinophil in induction of AHR. However, this role is a 

controversial. Interestingly, this AHR might be a result 

of suppression of IFN-γ, which stimulates smooth 

muscle relaxation through β adrenergic receptors, or 

because IL-10 stimulates monocyte chemoattractant 

protein-1, which in turn induces histamine release 

from mast cells and basophils, leading to increased 

bronchial contractile activities [76]. In contrast to 

these finding, intratracheal administration of IL-10 

ameliorates allergic AHR [81]. So, the precisive rela-

tionship between IL-10 and AHR together with IL-10 

direct action on smooth muscle cells and indirect 

action through stimulation of other mediators, needs 

further studies. Another surprising finding about IL-10 

role in allergic asthma, is the induction of airway fibro-

sis through IL-13/STAT6 pathway or increased TGF-β 

production, with mucus hypersecretion [87]. Finally, 

IL-10 has pleiotropic functions in critical features of 

asthma (ameliorate airway inflammation, induce AHR 

and remodeling), coupled with different regulators of 

its expression and actions, which raise the controversy, 

and make the interpretation account for additional 

challenges. Therefore, further studies of the roles of 

IL-10 in asthma are required, taking in consideration, 
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the impact and cross talk of other regulators, for better 

understanding of IL-10 roles in allergic asthma.

TGF-β1

TGF-β1 is member of TGF-β family that was first identi-

fied as a tumor growth factor in vivo. �is family includes 

three proteins; TGF-β1, TGF-β2 and TGF-β3. TGF-β1 is 

produced mainly by immune cells such as macrophages, 

Treg, eosinophils and many other cell types. TGF-β1 

receptor is formed of two different proteins (TGF-βRI 

and TGF-βRII). �eir binding stimulates phosphoryla-

tion of SMAD2 and SMAD3 transcription factors, which 

translocate to the nucleus and bind to the promotor of 

target genes [88, 89]. TGF-β1 inhibits M1 polarization 

[90], and is considered a marker of M2a cells in both 

human and mice [4, 5, 8]. Also, it controls the differen-

tiation of Treg and �17 cells [88, 89], stimulates IgA 

secretion by B cells, and promotes collagen synthesis and 

angiogenesis, which contribute to both tissue repair and 

fibrotic diseases [88]. TGF-β1 ensures normal branching 

and cellular differentiation of the lung during embryonic 

development [89].

In allergic asthma, TGF-β1 airway expression is 

increased [91–93] and correlates with the severity of 

asthma [93]. �e actual impact of TGF-β1 on �2 cells 

and eosinophils in allergic asthma is not well established. 

Some studies revealed that TGF-β1 neutralizing antibody 

diminished �2 response together with eosinophilic infil-

tration [94], while others didn’t detect any correlation 

between TGF-β1 and �2-mediated eosinophilic inflam-

mation [91]. However, the main action of TGF-β1 is the 

induction of fibrosis and airway remodeling. TGF-β1 is 

considered one of the potent inducers of epithelial–mes-

enchymal transition (EMT), which promote myofibro-

blasts derived from bronchial epithelial cells, mediated 

through phosphorylated SMAD3 signaling pathway [95, 

96]. Myofibroblasts express α-SMA, which mediate the 

contractile activity of fibroblastic cells, in addition to 

their production of collagen types I, III, IV and V [97]. 

Moreover, TGF-β1 increases contractility, migration 

and proliferation of airway smooth muscle cells [95, 98]. 

�erefore, it is not surprising that TGF-β1 correlates with 

the airway narrowing and limitation of air movements in 

asthmatic patients [91]. �us, the potent contributions 

of TGF-β1 in airway remodeling and pulmonary fibrosis, 

make it an effective target to attenuate these effects by 

either specific microRNA [96] or specific inhibitors [99].

Interleukin-1 receptor antagonist (IL-1RA)

Interleukin-1 receptor antagonist (IL-1RA) is an anti-

inflammatory cytokine and a member of the IL-1 

cytokine family. It has 30% structural homology with 

IL-1β and 19% with IL-1α. IL-1RA binds to the same 

receptors (type I and type II IL-1R), but without activat-

ing any signal transductions (biologically inactive). �us, 

it inhibits IL-1 actions. IL-1RA is the first detected natu-

ral cytokine inhibitor [100, 101]. �ere are two structural 

forms of IL-1RA; secretory and intracellular; both are 

produced by macrophages, while all other cells produce 

only one form except fibroblasts that produce both [101].

IL-1RA is one of M2a cell markers in both human and 

mice [5, 102–104]. In allergic asthma, IL-1 stimulates 

eosinophilic inflammation through induction of their 

recruitment by VCAM-1 expression [105, 106]. Also, it 

increases Ig-E dependent eosinophilic activation [107]. 

IL-1 activates �2 cells with production of higher IL-4 

(stimulates more Ig-E), IL-5 (induces eosinophilia) and 

IL-13, which also exacerbate AHR [108]; Fig.  1. �is 

activation is mediated through IL-1 induction of OX40 

(CD134) expression on T cells [109]. Moreover, IL-1 

stimulates the secretion of platelet-derived growth fac-

tor which induces fibroblast proliferation and subse-

quent collagen synthesis, resulting in airway remodeling 

[110]. Indeed, all these actions of IL-1 are inhibited by 

IL-1RA, through its ability to bind to IL-1R and competi-

tively inhibits the binding of IL-1. �is inhibition is con-

firmed in IL-1RA knockout asthmatic mice, where �2 

cell activation and AHR are increased significantly com-

pared with wild type [108]. In addition, the high levels of 

IL-1RA in asthmatic patients are associated with lower 

risk of asthmatic exacerbations [83]. Interestingly, glu-

cocorticoids exert some of its action through inhibition 

of IL-1 secretion together with upregulation of IL-1RA 

expression [111, 112], which indicates the protective role 

of IL-1RA in asthma and its efficiency as a candidate for 

asthma treatment [113]. However, the use of recombinant 

IL-1RA as a therapy is limited with its short half-life and 

the fact that IL-1 is 100–1000 times more potent than 

IL-1RA, indicating the need for higher doses of IL-1RA 

to inhibit IL-1 actions, which may be accompanied with 

undesirable side effects [114, 115]. To overcome these 

limitations, the use of recombinant Adeno-virus express-

ing human IL-1RA is applied, through single intranasal 

administration in asthmatic mice, which proved its effi-

ciency in ameliorating AHR and eosinophilic infiltration 

[116].

Macrophage signal transduction proteins and transcription 

factors

We prefer to discuss the role of macrophage signal trans-

duction proteins and transcription factors in allergic 

asthma through general potentiation of M2 cell charac-

teristics. Since major transcription factors are, also, con-

trolling �2 cell polarization as STAT6 [117, 118], IRF4 

[119, 120] and SOCS1 [121], we are concerned in this 

section with their role in macrophage polarization only, 
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not generally in allergic asthma. Eventually, the transcrip-

tion factors will contribute to the previously mentioned 

roles of other markers in asthma.

STAT6

STAT6 is a macrophage transcription factor and member 

of the STAT family that includes seven members (STAT1 

to 4, 5a, 5b and STAT6). �is family; together with non-

receptor tyrosine kinase called JAK family; comprise 

the signal transduction pathway for type I and type II 

cytokine receptors [122, 123]. Binding of IL-4 or IL-13 

to their receptors on macrophages activates JAK, which 

in turn phosphorylates the tyrosine residue on of IL-4Rα 

or IL-13Rα. �is phosphorylation leads to recruitment of 

monomeric STAT6, which binds through its Src homol-

ogy 2 (SH2) to phosphorylated tyrosine. �erefore, 

STAT6 and JAK are close to each other, the latter phos-

phorylates STAT6. �e phosphorylated SH2 domain of 

monomeric STAT6 can bind to adjacent SH2 domain of 

another STAT6, forming a dimeric STAT6 that migrates 

to the nucleus, binds to specific promoters, inducing M2 

genes transcription in human and mice [23, 122, 124]. 

Moreover, STAT6 activates Krüppel-like factor 4 (KLF4) 

that performs a crucial role in M2 cell polarization as dis-

cussed below.

Krüppel-like factor 4 (KLF4)

Krüppel-like factor 4 (KLF4); also called gut-enriched 

Krüppel-like factor or GKLF; is a DNA-binding tran-

scription factor that contains conserved zinc fingers. 

It regulates various cellular processes such as differen-

tiation, growth and proliferation. KLF4 was extensively 

studied particularly after 2006, since it was one of four 

factors required for pluripotent stem cells induction 

[125]. KLF4 is upregulated in macrophages in response 

to IL-4 in both human and mice [23, 126]. KLF4 and 

STAT6 activate each other, then activated KLF4 induces 

RNase and deubiquitinase activities of monocyte che-

moattractant protein induced protein (MCPIP), which 

stimulates reactive oxygen species production. �e latter 

causes endoplasmic reticulum (ER) stress and autophagy 

required for M2 cell polarization and upregulation of 

its markers. In addition, activated KLF4 stimulates the 

multifaceted factor peroxisome proliferator-activated 

receptor γ (PPARγ) that regulates fatty acids metabolism 

inducing aerobic respiration, which is necessary for M2 

cell differentiation [127]. Moreover, MCPIP inhibits M1 

polarization through inhibition of NF-κB pathway [127, 

128].

Suppressor of Cytokine Signaling 1 (SOCS1)

Suppressor of Cytokine Signaling-1 (SOCS1) is a mem-

ber of SOCS proteins that are responsible for negative 

feedback regulation of JAK–STAT signaling pathways, 

which transduces the signals from type I and II cytokines 

receptors. SOCS1 binds to phosphorylated STATs and 

JAKs, then, the tightly associated E3 ligases ubiquitinate 

the JAKs and STATs targeting them for degradation by 

proteasome [129]. SOCS1 is expressed in both human 

and mice macrophages in response to IL-4 stimulation 

[23, 130]. SOCS1 suppresses IFN-γ induced JAK2/STAT1 

pathway and TLR/NF-κB signaling, which in turn lead to 

inhibition of M1 cell activation [129, 131]. On the other 

hand, micro RNA-155 (miR-155) binds to and degrades 

SOCS1 in M1 polarized macrophages [132, 133]. Moreo-

ver, SOCS1 is a crucial factor for M2 cell polarization, by 

enhancing PI3K activity, which is responsible for M2 cell 

characteristics including suppressed response to IFN-γ/

LPS and high Arg1:iNOS activity ratio [129–131].

Interferon regulatory factor 4 (IRF4)

Interferon regulatory factor 4 (IRF4) is a transcription 

factor that belongs to the IRF family, which includes nine 

members. �is family is involved in macrophage polari-

zation [134]. IRF4 is upregulated in macrophages by IL-4 

in both human and mice [23, 134]. Stimulated IRF4 recip-

rocally activates the histone demethylase Jumonji domain 

containing-3 (Jmjd3). �e latter removes the methyla-

tion of histone H3 Lys4 (H3K4) and histone H3 Lys 27 

(H3K27) that mediate silencing of M2 marker genes. 

�us, this methylation removal induces expression of M2 

marker genes such as Arg1, MRC1, Ym1 and FIZZ1. It, 

also, inhibits the polarization of M1 cells [134].

Some studies suggested that targeting macrophage 

transcription factors might ameliorate murine asthmatic 

inflammation through suppression of M2 cell polariza-

tion, which was performed by using specific inhibitor 

(protostemonine) that inhibits STAT6, KLF4 and IRF4. 

�is reflected the critical role of M2 cells in asthma 

[135]. However, their evidences are not enough to prove 

the efficiency of targeting M2 cells in treatment of—nor 

their role in asthma, because STAT6 is also a crucial 

transcription factor for �2 cell polarization [117, 118]. 

In addition, IRF4 controls �2 polarization [119, 120]. 

�us, the suppressive effect of protostemonine in asthma 

was mediated through inhibition of �2 differentiation 

mainly. So, further studies are required for elucidat-

ing the specific roles of M2 transcription factors in the 

pathogenesis and treatment of asthma.

�e above data show that human and murine M2a 

macrophages can mediate their protective function in 

allergic asthma through MRC1 and IL-1RA proteins. At 

the same time, Human M2a cells could have a patho-

genic role through TGM2, CCL17, CCL22 and TGFβ1. 

However, murine M2a cells pathogenic functions are 

mediated through unique molecules as Arg1, FIZZ1 and 
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CHI3L3 plus the previously mentioned human mediators 

(TGM2, CCL17, CCL22 and TGFβ1). �erefore, we think 

that AAM is a double-edged sword in allergic asthma.

Summary, conclusion and recommendations
�e expressed proteins of IL-4 activated alveolar mac-

rophages perform diverse functions in allergic asthma, 

ranging between protective and pathogenic roles (Fig. 1). 

�is balanced function not necessarily represent the non-

significance of AAM in allergic asthma, but both pro-

tective and pathogenic molecules are important during 

developments of asthma. �erefore, targeting the general 

polarization of M2 cells, whether with more activation 

or inhibition, is not an efficient option for asthma treat-

ment. However, selective induction of the expression 

of one or more of the protective molecules, or selective 

suppression of one or more of the pathogenic molecules, 

using viral vectors or other methods, represents an effec-

tive mechanism for asthma control and treatment. �us, 

we recommend further studies that focus on increas-

ing the selective expression of protective M2a proteins 

such as MRC1 and IL-1RA. Also, we recommend selec-

tive suppression of pathogenic M2a proteins e.g. TGM2, 

CCL17/CCL22, TGF-β1, and murine Arg1, FIZZ1 and 

CHI3L3, for the future developments of effective thera-

pies for allergic asthma.
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