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Alternatives to the Exponential Spline in Tension

By Steven Pruess

Abstract.   A general setting is given for smooth interpolating splines depending on a

parameter such that as this parameter approaches infinity the spline converges to the

piecewise linear interpolant.   The theory includes the standard exponential spline in

tension, a rational spline, and several cubic splines.   An algorithm is given for one of

the cubics; the parameter for this example controls the spacing of new knots which

are introduced.

1.   Introduction.   Cline [1] has written algorithms for the spline in tension which

are useful in constructing convex and monotone approximations.  The derivation and

properties of this spline are given by Schweikert [13], Späth [15] , [16], Hill [7] and

Pruess [12].  Dube [3] has described local bases for such splines with varying continu-

ity restrictions.   With the exception of [16]  these papers are concerned with the

exponential (hyperbolic) spline in tension as given in Example 1 at the end of this

section.   In applications where the spline is to be evaluated many times, it is desirable

to have an algorithm which avoids the three hyperbolic function evaluations each time

the value of the spline is needed.  Also, there are some numerical difficulties with the

hyperbolic representation for small tension parameters; an alternate form is needed for

this case [12].  Rational functions as suggested by Späth [16] provide one alternative,

but recently de Boor [2] and Nielson [10] have exhibited cubic splines having similar

properties to the spline in tension.   In this paper a general setting is given which en-

compasses the above examples.  This allows the results of [12] on the qualitative be-

havior of the exponential splines to be extended to this new class; in fact, the results

can be sharpened since the assumption of quasi-uniform tension parameters is not

needed here.  An algorithm for one of the cubic splines is given which includes a dis-

cussion as to how the tension parameters can be automatically chosen.  No theorem

on convergence as the maximum mesh width goes to zero has been given, since this

is usually not of interest for such splines.  However, if one is desired, its proof would

follow the pattern of that for Theorem 1 in [12].

Another approach to constructing monotone or convex approximations is through

Bézier curves.  Some representative papers are by Forrest [5 ], Gordon and Riesenfeld

[6] and Wielinga [17].  More recent examples are found in Passow and Roulier [11]

and McAllister, Passow and Roulier [8].  McAllister and Roulier [18] have also used

these ideas to generate a C1 -quadratic spline with knots chosen automatically to match

convexity or monotonicity.   Finally, Nielson's i>-splines [9] can also be used for para-

metric representations of a curve.
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1274 STEVEN PRUESS

For the data (x¡, f¡), 1 < /' < N with Xj < x2 < • • • < x^ we seek an inter -

polatory function s(x) in C2 [xx, xN].  The class of splines considered here can be

represented in terms of either first derivative or second derivative values at knots.  In

the first case, in [x¡, x¡+ x ]

*(*) ={//+! -fi-hA }Gii*i+x -x)/hi)

(1.1)
-{fi+i-fi- VÍ+1 }GHx - xtfhi) + X,.(x),

for the second,

(1.2) s(x) = h) {s'l+ xF((x - x,.)//!,.) + s'!F((x¡+, - x)//i,.)} + X,.(x).

Here, h, = xi+, - x¡, s¡ = s'(x¡), s" = s"(x,), X,-(x) = fi+x(x - x,.)//,,. + f¡(xi+, - x)/h¡.

For the notation to be consistent, F, G G C2[0, 1], G(0) = G(l) = G'(0) = 0,

G'(l) = 1 and A(0) = F(l) = A"(0) = 0, F"(l) = 1.   In most cases G and F axe inter-

val dependent and should have an i subscript (for simplicity, this subscript is omitted

when no confusion is possible).   I have always preferred representation (1.2) so the

results of this paper are derived from it; however, one could equally well use (1.1) and

prove analogous theorems.

Some possible choices for F are:

(1) Fj(z) = (sinh PjhjZ/sinh pihi - z)/(p2hf), the exponential spline in tension

iPi > 0),
(2) F(z) = {z3/[l + p(l - z)] - z}/(2p2 + 6p + 6) a rational spline of Späth

[16],(p>0),
(3) F(z) = [H(l - z) + (1 + p2)H(z)] I[2(1 + p2)2 - 2] with

H(z)=\zi-z2 +|[pz-(p-l)]3+,

a cubic spline of Nielson [10] (p > 1), and

(4) F(z) = {[pz - (p - l)]\- z}/(6p2), a cubic spline of the author (p > 1).

As usual g+ := maxfjr, 0).  The reason for the complexity of Nielson's example is that

it is derived for representation (1.1) in which case

G(z) = 11z3 - z2 + I [pz - (P - 1)] l}/p.

De Boor [2] also has a piecewise cubic described in terms similar to (1.1). His example

has an extra parameter to control "roundness" of the graph; also, it has tension param-

eters associated with data points rather than intervals so it does not fit into the

scheme described herein.  Späth [16], too, considers more general types of splines in

tension but with no proofs of their behavior.

2.   Asymptotic Properties.   In order that the class of splines given by (1.2) have

desirable mathematical and computational properties, various restrictions are imposed

on the function F(x):

(R-l) FEC2[0, 1],
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ALTERNATIVES TO THE EXPONENTIAL SPLINE IN TENSION 1275

(R-2) F(0) = F"(0) = F(l) = 0, F"(l) = 1,

(R-3) F">0in [0,1],

(R-4) F depends on a parameter p in [a, °°), a some fixed constant, in such a

way that

(a) for p = a F(z) = (z3 - z)/6,

(b) in any closed subinterval of (0, 1) F"(z) = o(l/p) uniformly as p —► °°,

(c) — F'(0)/F'(1) is a nonincreasing function of p.

(R-5)  There exist positive constants Cx and C2, independent of p, but possibly

dependent on {x;.}, such that for p > a

(a)  0 < F'(l) < Cjp,

(h)  0<-F'(0)/[F'(l)]2<C2,

(c)  for p sufficiently large Cj/(2p) <F'(1).

The necessity of the first two restrictions is discussed in the introduction.  The

third is desirable to get the proper convexity.  (R4(a)) provides a useful starting point

for constructing tension spline approximations, viz., the standard cubic interpolatory

spline.  The more technical restrictions are not claimed to be necessary for the results

of this paper to hold; however, they are sufficiently general to be satisfied by most of

the examples listed in the introduction and the literature (cf. Section 3).  In practice,

it is useful to have a different value of p for each interval; thus F depends on i. It is

then assumed that each F, satisfies the above restrictions with a independent of i

Note that (R-4(b)) indicates that s approaches the broken line interpolant as the

parameters grow.  Unfortunately, because of the continuity imposed on s"(x), the

values {s'¡} also grow, so proofs of asymptotic behavior are not immediate.

Formula (1.2) and the first two restrictions insure that s interpolates the data

and s, s" G C[xx, xN].  To get s' S C[xx, xN] set

(2.1) d^h^Kl),   e/ = -/i,.F;(0),   &, = (*, + *,_!) 'bi-v*f*t+i\f.

where square brackets indicate the usual divided difference operator.  Then, s'(xj~) =

s'(xf ), 1 < i < N, implies

(2.2) e¡_xs'¡_ x + (dt_ x + d¡)s'¡ + e/i+ x=br

To produce a square linear system in the unknown {s¡ } two end conditions are im-

posed on s(x).   Some typical choices at x = xx (conditions at xN are analogous) are:

(a) s'(xx) = f(xx), (b) s"(*j) = 0, (c) s"(xx) = f"(xx), (d) s"(xx) = P"(xx),

where P is the cubic which interpolates / over x x, x2, x3, x4.  These end conditions

result in equations with structure similar to (2.2), e.g., at x = xx (a) says dxs"x + exs"2

= bx, (b)—(d) result in a reduced system of order N - 2 whose first equation is

(dx + d2)s2 + e2s"3 = b2. The formulas for b vary with the type of end condition

used.

The resulting system, written as As" = ft, is symmetric and tridiagonal. That A

is also strictly diagonally dominant follows from a lemma which is also needed in de-

veloping the asymptotic behavior of s(x).  The proof follows directly from (2.1) and
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1276 STEVEN PRUESS

(R-4), (R-5).   The constants in the next two lemmas are nonzero and may depend

on {x,.}.

Lemma 1.   For each i there exists constants independent of {p¡} such that for

p¡>a

(2.3) 0 < d¡ < constant/p,.,      0 < e¡ < constant/p?,

(2.4) e¡ <Vidt,

(2.5) e¡/df < constant,

(2.6) for Pf sufficiently large d¡ > constant/p¡.

Theorem 1.  The symmetric tridiagonal matrix A is strictly diagonally dominant;

hence, Gauss elimination without pivoting can be used to stably solve As" = b.

Proof.   From (2.3) the entries of A axe all positive; from (2.4) d¡_1 + d¡ - e,_x

- e¡ > e¡_ j + e¡ > 0 as desired.

To deduce the asymptotic behavior of s(x) for large tension parameters it is first

necessary to study the behavior of {s'¡ }.  This can be established by simple matrix

arguments.

Lemma 2.   There exists a constant A independent of {p.} such that

max Is," - bi/(di_x + d,)| < A • max|A.|.
' /     '

Proof.   Setö = diagA,B = I-D~XA; then s" -D~xb =A'lDBD-ib is an

identity.   Thus, with the usual matrix and vector infinity norms \\s" — D~lb\\ <

WA-^W ■ \\BD~l\\ ■ \\b\\.  From (2.4) ||/ - D'^AW < 1/2, which implies \\A~lD\\ <

2.  A typical row of BD~l is (... ,0, e,_xK(It_, + d¡)2, 0, e¡/(d¡ + d¡+1)2,0, . . .)

so HAD-1!! < 2 max ejdf < constant by (2.5).

This lemma has an immediate consequence of some importance.   Since

1/(^,-1 + d¡) behaves asymptotically (for p¡_x and p. large) like min(pi_x, p¡) from

(2.3) and (2.6), it follows that for a sequence of choices of {p,}:

(1) if for some i both p¡_x and p¿ —■* °°, then s'¡' ~ bj(di_x + d¡) which means

x¡.' grows Uke min(p(._ j, p¡);

(2) if for some /' either p¡_x or p¡ is uniformly bounded over the sequence, then

so is s¡.

The behavior of s(x) in the interior of [x(.,x/+1] is now established.

Lemma 3.   As p —> °° (a) F' = 0(l/p2) uniformly in any closed subinterval of

(0, 1), (b)  F = 0(1 fp2) uniformly in [0, 1].

Proof.   First note that (R-5(a)), (R-5(b)) imply that -F(0) < C2C2/p2.  Since

F" > 0 in [0, 1 ], F(z) > F(0) + zF'(O) = zF'(O) so |F(z)| = - F(z) < - zF'(0) <

C2C2/p2.  For (a) consider the interval [0, a] with 0 < a < 1.  For any x such that

F'(x) < 0, F' nondecreasing from (R-3)) implies 0 < - F'(x) < - F'(0) < C2C2/p2.
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If a is large enough that F'(a) > 0, then F(0) = F(l) = 0 implies F' has zero mean on

[0, 1 ], or - Jj F'(t) dt = ¡¿F'(t) dt.   But then

(1 - a)F'(a) < f' F'(t) dt = - f* F'(t) dt < - F'(0)a < aC2C2/p2.
J a J 0

Thus, F'(a) < aC2C2/(p2(l - a)), so again F' nondecreasing gives the correct bound

for F'(x) when F'(x) > 0, x < a.

The following theorem is an analog of a result in [12] concerning exponential

splines.   Here X(x) is the broken line interpolant for the data over [Xj, xN].

Theorem 2.  Given a sequence of tension splines for which pi —► °° for some i.

Then, (a) in any closed subinterval of(x¡, xf+1), s" —> 0, s' —► X' uniformly, and

(b) s —► X uniformly in [x¡, xi+ x ].

Proof.   In [x,.,x/+1]  for0</<2,

D'(s - X) = hf-l{s';+i(D'F)((x - x,)lht) + (- iys':(D'F)((xi+x -x)/ht)},

so from (2.6), Lemmas 2 and 3, 3 A such that

\D'(s - X)| <ti->{\bi+l\l(dt +di+x) + !*,!/(*,_, +di)+K} ■ 0(l/p2)

uniformly on closed subintervals of (x,-, x(+ j) for / = 1,2, and on all of [x(., x¡+ x]

when j = 0.  The right-hand side is 0(1 lp¡) as p. —> °° by (2.6).

It follows that in any closed subinterval of (x¡, x¡+ x) s' has the same sign as X'

for p. sufficiently large which is important for monotonicity.  In order to match con-

vexity or monotonicity of the data in all of [x¡, xi+x], p¡_x and p/+ x must also be

allowed to change.  Since b¡ is a positive multiple of the second divided difference of

/over x¡_x, Xj, xi+x, the data is concave upward (downward) when b¡ is positive

(negative).  The following theorem states that the tension splines (1.2) satisfying

(R-l)-(R-5) do have the proper asymptotic behavior to match convexity or monoton-

icity in the data.

Theorem 3. Ifb¡, b¡+1 are positive, then for p,_,, p¡, pi+x sufficiently large

s"(x) is positive in [x¡, xi+ x]. If X' is positive in [x¡, xi+,], then for p¡_x, p¡, p¡+ x

sufficiently large s'(x) is positive in [x¡, x¡+ x ]. The same statements hold with posi-

tive replaced by negative.

Proof.   Lemma 2 implies that for pi_x, p¡, pi+x sufficiently large s¡ and s'¡+1

have the same signs as b¡ and b¡+ x, respectively. The first conclusion then follows

from (R-3).  For the second part, Theorem 2 implies that for p¡_x, p¡, pi+, suffi-

ciently large x' has the same sign as X' in [x¡_l,x¡+2] except perhaps in small neigh-

borhoods of the knots.  Set X^ = [x,, x,+ x]f, the slope of X' in the /th interval, then

from (1.2) and (2.1), x'(x/) = - s'j+xe, - s'/d, + X! and x'(xr) = s'¡d,__x + s-_x +

X'-_j.  Thus, from continuity of x'(x)

(2.7)     id,_x + d,)s'(x,) = d,_xX¡ + d,\',_x + d,eHxs",_x - d,_xe,s'!+x.
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But, for / = i OX j = i + I

\d,e,_xs", -d,_xe,s",+ x\/(d,_x + d,) < xnax{\s'¡_x\, \s'¡+x\] ■ xnax{e,_x, e,}

= 0(l/xnin(pi_x,pi, pi+J)

by (2.3) and comment (1) following Lemma 2. Hence, as p,_v P{, Pi+1 —* °°, for

j = i ox i + 1, s'(x,) ~ (dijXj + d,X',_x)l(d,_x + dj), which is a weighted average

of quantities with the same sign as X'.

3.   Examples.   In this section the examples listed in the introduction are

examined to see if they satisfy (R-l)—(R-5).  Most of the work for the exponential

spline is found in [12].  Note that this spline reduces to the usual cubic interpolatory

spline only in the limit as p —> 0; the special formulas needed for small p are a

nuisance in any implementation.  For Späth's example of a rational spline, -F'(0) =

l/(2p2 + 6p + 6) and F'(l) = (p + 3)/(2p2 + 6p +6) so (R-5) can be shown to

hold with Cx = 1/2, C2 = 2.  For (R-3),

F"(z) = {(p + 1)3/[1 + p(l - z)]3 - 1 }/[p(2p2 + 6p + 6)]

is nonnegative; also, if 0 < z < 1 - 6, 0 < S < 1, p(2p2 + 6p + 6)F"(z) <

(p + l)3/(p3S3) so F"(z) < l/(p3S3).  The remaining restrictions are easily verified.

This spline requires at least eight multiplications and three divisions per spline evalu-

ation which is inferior to the two cubics.   Also, the formulas for derivatives are rather

complicated.

The cubic with F(z) ={[pz-(p- 1)]3 - z}/(6p2) has -F'(0) = l/(6p2),

F'(l) = (3p - l)/(6p2) so (R-5) holds with Cx = 1/2, C2 = 3/2.  Since F"(z) =

[pz - (p - 1)] +, (R-2) and (R-3) are valid; moreover,for z G [0, 1 - Ô], |F"(z)| <

(1 - ôp)+ = 0 as p —* °°.   Finally, -F'(0)/F'(1) = l/(3p - 1) is nonincreasing in p.

Nielson's cubic (Example 3) has - F'(0) = l/{2p(p3 + 2)}, F'(l) =

(1 + p2)/{2p(p3 + 2)}, so (R-5) holds with Cx = 1/2, C2 = 2.  Restrictions (R-l),

(R-2) are easily verified, and —F'(0)/F'(1) = 1/(1 + p2) is nonincreasing in p.   How-

ever,

F"(z) = {(2z - 1) + (1 + p2)\pz - (p - 1)]+ + [1 - pz] + }/(2 + p2)

and as p —> °°, F"(z) ~ (2z - l)/(2 + p2) so (R-3) does not hold.  This restriction is

used in the proof of Lemma 3 and for the first result of Theorem 3.  The conclusions

of Lemma 3 can be shown to hold for this case, e.g., in closed subintervals of (0, 1) as

p -> °°, F'(z) ~ - z(l - z)/(p2 + 2) = 0(1 lp2).  Thus, Theorem 2 is still valid for this

example; however, when b¡ and bi+x have the same sign this spline will have extra in-

flection points in [x;, xi+ j] for large p¡_x,p¡, p¡+ x.  Fortunately, since x(x) - X(x)

= 0(l/p) there, these oscillations can be made small enough not to be visible in

graphics applications.

4.  Algorithm.  In this section an algorithm is described for implementing the

fourth example given in the introduction.   An implementation of Nielson's cubic would

proceed similarly except it should be based on the representation (1.1).
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There are three phases to the algorithm:  (1) computation of {s"} for a fixed

choice of {p,-}, (2) choice of {p¡} so that x(x) satisfies monotonicity or convexity

constraints, (3) evaluation of x(x) or its derivatives at some point x.  The first phase

requires solving the positive definite tridiagonal system for  [s"}.    For example

(4) the coefficients needed are d¡ = (3p¡ - l)hj(6p2) and et = h¡/(6p2). To choose the

parameters {p,-} one typically starts with all p¡= 1 ; and then by examining the comput-

ed  {x,"} or first derivative values the parameters are modified, {xj.'} recomputed, etc.

Details are given below.  Once a fixed set of parameters is determined, x(x) could be

evaluated directly based on (1.2).  However, to take full advantage of the fact that

x(x) is a cubic spline, it is better to explicitly calculate the new set of knots given

implicitly by {p¡} and {x¡}, then compute the four coefficients in the standard repre-

sentation of the cubic in each subinterval between knots. These coefficients can be

obtained by expanding out the F terms in (1.2).  Finally, for each x, first find the

knot subinterval in which x lies, e.g., by a binary search, then evaluate the cubic or its

derivatives by Horner's scheme.  As an example of "new knots", if on the interval

[X(, xi+ j] the final p¡ = 3/2, then the new set of knots would include x¡, x¡ +

h¡(p¡ - l)/p¡ = x¡ + hj3, x{ + h¡/p¡ = x¡ + 2h¡/3, x¡+x.  Note that for this cubic

spline (example (4)), whenever p{ > 2 x(x) is strictly linear in [x¡ + hjp^ xi+ x -

Mpä-
The theory given in Section 2 suggests ways of choosing the {p¡} for mono-

tonicity or convexity.  For the latter case, x," is forced to have the same sign as b¡.  If

some b{ = 0, Späth [15] suggests splitting the problem at x¡ and using a linear fit for

x G [xf_ j, x/+1].  This can be done by zeroing certain off-diagonal entries in the coef-

ficient matrix A and putting in slope end conditions at xj_ x and x,+ x.  For nonzero

b¡, if some s¡b¡ < 0, then (2.2) suggests how to modify p¡ so that s'j and b¡ have the

same sign:   force \e¡_ls'¡_1 + e¡s"+x\ < \b{\.  Since e, = h,/(6pj), try replacing p, by

sqrt(hi ■ max(|xi'+11, \s"i_x |)/(3 \b¡\)) for / = i — 1 and i.   In order to guarantee con-

vergence, in practice p, is set equal to the maximum of the above quantity and 1.2

times the previous p..  Of course, changing {p¡} will also result in new values for {s" }

so this process must be iterated.  Most examples require three or fewer iterations.

Choosing the parameters to ensure monotonicity is more difficult.  Clearly, if

s'(x¡) has the wrong sign, then p¡_x and p¡ should be increased; (2.7) suggests forcing

\diei_xs'!_x -^..^¡s^K K-_,X; +diX'i_x\.

Substituting in the appropriate expressions for d,, e, we get

P2_xp}>(hi_xhi/36)\(3Pi - l)s'!_x-(3Pi_x - l)s¡'+,!/!</,_lA; +di\'._x\.

In practice p¡_ x and p¡ have been replaced by

sqrt{(Pi_x +p,.) • maxfls^l, |S;+1l)/[4 • ^¡1^ + pi_x\¡_x/hi_x\}}.

If X|_ j = X- = 0 then the data is locally flat so the problem can be decomposed into

the intervals [xj, x¡_x] and [xi+ j, xN] with x(x) constant in [x¡_x, x/+1].
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995.

NO TENSION

WITH TENSION

23.8

Figure 1.  Monotonicity forced

745.

495.

- NO TENSION

- WITH TENSION

22. B

Figure 2.   Convexity matched

Unfortunately, it is possible, though in general unlikely, for x' to change sign

twice in (xf, x/+ x).  This can occur only if s¡s'!+ j < 0; when this inequality holds for

some i, the extremal value of x' in [x¡, x¡+x] should be checked to make sure x' has

the desired sign.   The critical points of x' depend on the size of p¡:   when p¡ > 2 they

occur at the new knots x¡ + hi¡pi and xi+x - hi/pi with extremal value

(4.1) m = \'i + hi(s'!-s'!+x)l(6p2).

When p. < 2 the extremal value is either m or m - (2 — p¡)2h¡ - s¡s'!+x/[2p¡(s'¡+ x - s¡)] ;

the latter comes from the critical point x¡ + h¡[(p¡ - 1) + (p. - 2)s¡/(s"+x - s'¡)]/p¡.

In practice, it has proved sufficient merely to use (4.1) and replace p. by

sqrt\hr(s'¡-s';+x)l(6\¡')\.

As a test of these ideas consider the data {xf} = {1, 5, 10, 15, 20, 21, 22, 22.5,

22.6, 22.7, 22.8, 22.9, 23, 23.1, 23.2, 23.3, 23.4, 23.5, 24, 26, 30}, {y¡} = {373,

415, 438, 459, 491, 503, 523, 543, 550, 557, 565, 575, 590, 620, 860, 915, 944,

958, 986, 1067, 1125} taken from Shampine and Allen [14, p. 40].   Figure 1 shows

the results of the first iteration with no tension, i.e., all p¡= 1, and the second (final)

iteration when monotonicity was forced.  Only the region of rapid change in the data

is graphed.  The only parameters changed were p12 and p13 which were set to 2.21.
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When convexity was matched the graphs in Figure 2 resulted.  Here three iterations

were needed; the final modified parameters were p2= p3 = 2.49, p10 = px x = 2.35,

p12 = Pi3 = 3.13, p15 = p16 = 2.28, and p18 = p19 = 2.92.  Since the physical

quality of interest for this problem is the inflection point, the second graph is pre-

ferred.
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