
Alternatives to the k-means algorithm
that find better clusterings

Greg Hamerly
Department of Computer Science and

Engineering
University of California, San Diego

La Jolla, CA 92093

ghamerly@cs.ucsd.edu

Charles Elkan
Department of Computer Science and

Engineering
University of California, San Diego

La Jolla, CA 92093

elkan@cs.ucsd.edu

ABSTRACT

We investigate here the behavior of the standard k-means cluster-
ing algorithm and several alternatives to it: the k-harmonic means
algorithm due to Zhang and colleagues, fuzzy k-means, Gaussian
expectation-maximization, and two new variants of k-harmonic means.
Our aim is to find which aspects of these algorithms contribute to
finding good clusterings, as opposed to converging to a low-quality
local optimum. We describe each algorithm in a unified framework
that introduces separate cluster membership and data weight func-
tions. We then show that the algorithms do behave very differently
from each other on simple low-dimensional synthetic datasets and
image segmentation tasks, and that the k-harmonic means method
is superior. Having a soft membership function is essential for find-
ing high-quality clusterings, but having a non-constant data weight
function is useful also.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Search and Retrieval;
I.5.3 [Computing Methodologies]: Pattern Recognition

General Terms

Clustering quality k-means k-harmonic means unsupervised classi-
fication

1. INTRODUCTION
Data clustering, which is the task of finding natural groupings in

data, is an important task in machine learning and pattern recogni-
tion. Typically in clustering there is no one perfect solution to the
problem, but algorithms seek to minimize a certain mathematical
criterion (which varies between algorithms). Minimizing such cri-
teria is known to be NP-hard for the general problem of partitioning
d-dimensional data into k sets [6]. Algorithms like k-means seek
local rather than the global minimum solutions, but can get stuck
at poor solutions. In these cases we consider that a solution which
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better minimizes the mathematical criterion (for the same number
of centers) to be a better-quality clustering.

We use the term “center-based clustering” to refer to the family
of algorithms such as k-means and Gaussian expectation-maximization,
since they use a number of “centers” to represent and/or partition
the input data. Each center defines a cluster with a central point and
perhaps a covariance matrix. Center-based clustering algorithms
begin with a guess about the solution, and then refine the positions
of centers until reaching a local optimum. These methods can work
well, but they can also converge to a local minimum that is far from
the global minimum, i.e. the clustering that has the highest quality
according to the criterion in use. Converging to bad local optima is
related to sensitivity to initialization, and is a primary problem of
data clustering.

The goal of this work is to understand and extend center-based
clustering algorithms to find good-quality clusterings in spatial data.
Recently, many wrapper methods have been proposed to improve
clustering solutions. A wrapper method is one that transforms the
input or output of the clustering algorithm, and/or uses the algo-
rithm multiple times. One commonly used wrapper method is sim-
ply running the clustering algorithm several times from different
starting points (often called random restart), and taking the best so-
lution. Algorithms such as used in [10] push this technique to its
extreme, at the cost of computation. Another wrapper method is
searching for the best initializations possible; this has been looked
at in [16, 12, 3]. This is fruitful research, as many clustering al-
gorithms are sensitive to their initializations. Other research [15,
17] has been looking at finding the appropriate number of clusters,
and analyzing the difference between the cluster solution and the
dataset. This is useful when the appropriate number of centers is
unknown, or the algorithm is stuck at a sub-optimal solution.

These approaches are beneficial, but they are attempting to fix
the problems of clustering algorithms externally, rather than to im-
prove the clustering algorithms themselves. We are interested in
improving the clustering algorithms directly to make them less sen-
sitive to initializations and give better solutions. Of course, any
clustering algorithm developed could benefit from wrapper meth-
ods.

Recently, Zhang et al. introduced a new clustering algorithm
called k-harmonic means (KHM) that arises from an optimization
criterion based on the harmonic mean [22, 21]. This algorithm
shows promise in finding good clustering solutions quickly, and
outperforms k-means (KM) and Gaussian expectation-maximization
(GEM) in many tests. The KHM algorithm also has a novel feature
that gives more influence to data points that are not well-modeled
by the clustering solution, but is unknown how important this fea-
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Figure 1: The original “hand” image used for segmentation.

The image size is 80x64 pixels and is full color.

ture is. Our work is a first answer to this question.
In this paper, we present a unified framework for looking at

center-based clustering algorithms, and then derive two new algo-
rithms that are based on properties of KM and KHM. The algo-
rithms are compared analytically and empirically.

2. IMAGE SEGMENTATION
We motivate the need for good-quality clustering algorithms with

an image segmentation example. Image segmentation is the task of
grouping the pixels of an image according to color, texture, and
location. Clustering is an important part of image segmentation.
There are two parts to image segmentation. First, we define a set of
useful features on image pixels (such as position, color, and texture)
that are used as an input to a clustering algorithm. Second, we feed
the data into a clustering algorithm, and cluster it to produce the
segmentation.

We use the image “hand” (see Figure 1) from computer vision lit-
erature [4]. Rather than using complicated features such as texture
or color histograms, we simply convert the image to a dataset with
5 dimensions. The first two dimensions are the pixel coordinates
(x,y), and the last three dimensions are the color values (l,u,v)
in LUV color space. LUV is a standard in computer graphics for
representing a perceptually-uniform colors. Other image attributes
may be more appropriate (e.g. texture similarity or color histogram
windows around each pixel), but we are interested in the clustering
algorithm, and not the inputs to the algorithm. Other image seg-
mentation methods [4, 19] also use similarity metrics for spatial (x
and y), color, and texture information.

We normalize each dimension to zero-mean and unit variance,
and then cluster the data using two algorithms (KM and KHM), two
different initializations (Forgy and Random Partition, described later
in the paper), and k = 5 clusters. We found that KHM was able to
find best-quality clusterings compared with KM, according to the
KM quality metric. Table 1 shows the KM quality metric for both
KM and KHM (lower is better). Also, KHM found the same seg-
mentation for both types of initializations, while KM behaved very
differently depending on the initialization.

Figure 2 shows the outputs for the image segmentation task, with
k = 5 clusters. Each segment in the output image is colored by the
average color within the segment. Please see a full-color version
of this paper for the correct view. The segmentation by KM does
poorly because it splits the hand into two segments with Forgy ini-
tialization, and it has a poor segmentation of the index finger with
Random Partition initialization. However, KHM does a better job
of clearly segmenting the hand away from the background and has
a visually consistent segmentation across initializations. Thus we
see that the better-quality clustering (according to the KM quality
metric) has given a better-quality image segmentation (upon visual

Forgy Random partition

Figure 2: Image segmentation results. From top to bottom:

KM, KHM. We chose k = 5 clusters on the data (x,y, l,u,v) of

the original input image “hand”. Each segment is colored by

the average color of the segment. Please see a full-color ver-

sion of this paper for the correct view. Note that KHM has

more clearly segmented the hand from the background, and

its segmentation is the same for both initializations. The KM

segmentation varies depending on its initialization, and its seg-

mentations are poorer. Notice that the hand is split into two

segments by KM with Forgy initialization, and the differences

around the tip of the index finger.

inspection).
Several recent algorithms in image segmentation [19, 13] are

based on eigenvector computations on distance matrices. These
“spectral” algorithms still use k-means as a post-processing step to
find the actual segmentation, usually in a lower-dimensional space
than the original input. Thus there is a great need to have good-
quality clustering algorithms like k-means. Additionally, these spec-
tral algorithms are expensive to use, costing O(n3) time to use,
where n is the number of input data points. Another class of clus-
tering algorihtms, agglomerative clustering algorithms, cost O(n2)
time to compare the distances between all pairs of points. For large
images, or real-time video segmentation, speed is essential. We are
interested in linear-time O(n) clustering algorithms, which is what
we consider in this paper.

Table 1: Quality of solutions for image segmentation. Numbers

are for the k-means quality metric; lower values are better. The

KHM algorithm found better-quality clusterings than KM, and

found the same clustering regardless of initialization.

Forgy Random Partition

KM 10398 10244

KHM 10137 10137

3. CENTER-BASED CLUSTERING
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The algorithms k-means, Gaussian expectation-maximization, fuzzy
k-means, and k-harmonic means are in the family of center-based
clustering algorithms. They each have their own objective function,
which defines how good a clustering solution is. The goal of each
algorithm is to minimize its objective function. Since these objec-
tive functions cannot be minimized directly, we use iterative update
algorithms which converge on local minima.

3.1 General iterative clustering
We can formulate a general model for the family of clustering

algorithms that use iterative optimization, following [8], and use
this framework to make comparisons between algorithms. Define a
d-dimensional set of n data points X = {x1, . . . ,xn} as the data to be
clustered. Define a d-dimensional set of k centers C = {c1, . . . ,ck}
as the clustering solution that an iterative algorithm refines.

A membership function m(c j|xi) defines the proportion of data
point xi that belongs to center c j with constraints m(c j|xi) ≥ 0 and

∑k
j=1 m(c j|xi) = 1. Some algorithms use a hard membership func-

tion, meaning m(c j|xi)∈ {0,1}, while others use a soft membership
function, meaning 0 ≤ m(c j|xi) ≤ 1. Kearns and colleagues have
analyzed the differences between hard and soft membership from
an information-theoretic standpoint [9]. One of the reasons that k-
means can converge to poor solutions is due to its hard membership
function. However, the hard membership function makes possible
many computational optimizations that do not affect accuracy of
the algorithm, such as using kd-trees [14].

A weight function w(xi) defines how much influence data point
xi has in recomputing the center parameters in the next iteration,
with constraint w(xi) > 0. A dynamic, or changing, weight function
was introduced in [21]. Giving variable influence to data in cluster-
ing has analogies to boosting in supervised learning [7]. Each ap-
proach gives more weight to data points that are not “well-covered”
by the current solution. Unlike boosting, this approach does not
create an ensemble of solutions.

Now we can define a general model of iterative, center-based
clustering. The steps are:

1. Initialize the algorithm with guessed centers C.

2. For each data point xi, compute its membership m(c j|xi) in
each center c j and its weight w(xi).

3. For each center c j , recompute its location from all data points
xi according to their memberships and weights:

c j =
∑n

i=1 m(c j|xi)w(xi)xi

∑n
i=1 m(c j|xi)w(xi)

(1)

4. Repeat steps 2 and 3 until convergence.

Now we can compare algorithms based on their membership and
weight functions. An alternative initialization procedure is to guess
an initial partition, and then start the algorithm from step 3. The
computational complexity of each algorithm in this paper is O(nkd)
for each update iteration (Equation 1). The algorithms vary by con-
stant factors but have the same order complexity.

3.2 K-means
The k-means algorithm (KM) [11] partitions data into k sets. The

solution is then a set of k centers, each of which is located at the
centroid of the data for which it is the closest center. For the mem-
bership function, each data point belongs to its nearest center, form-
ing a Voronoi partition of the data. The objective function that the

KM algorithm optimizes is

KM(X ,C) =
n

∑
i=1

min
j∈{1...k}

||xi −c j||2 (2)

This objective function gives an algorithm which minimizes the
within-cluster variance (the squared distance between each center
and its assigned data points).

The membership and weight functions for KM are:

mKM(cl |xi) =

{

1 ; if l = argmin j ||xi −c j||2
0 ; otherwise

(3)

wKM(xi) = 1 (4)

KM has a hard membership function, and a constant weight func-
tion that gives all data points equal importance. KM is easy to
understand and implement, making it a popular algorithm for clus-
tering.

3.3 Gaussian expectation-maximization
The Gaussian expectation-maximization (GEM) algorithm for

clustering uses a linear combination of d-dimensional Gaussian
distributions as the centers. It minimizes the objective function

GEM(X ,C) = −
n

∑
i=1

log

(

k

∑
j=1

p(xi|c j)p(c j)

)

(5)

where p(xi|c j) is the probability of xi given that it is generated by
the Gaussian distribution with center c j, and p(c j) is the prior prob-
ability of center c j . We use a logarithm to make the math easier
(while not changing the solution), and we negate the value so that
we can minimize the quantity (as we do with the other algorithms
we investigate). See [2, pages 59–73] for more about this algo-
rithm. The membership and weight functions of GEM are

mGEM(c j|xi) =
p(xi|c j)p(c j)

p(xi)
(6)

wGEM(xi) = 1 (7)

Bayes’ rule is used to compute the soft membership, and mGEM is a
probability since the factors in Equation 6 are probabilities. GEM
has a constant weight function that gives all data points equally
importance, like KM. Note that wGEM(xi) is not the same as p(xi).

3.4 Fuzzy k-means
The fuzzy k-means algorithm (FKM; also called fuzzy c-means)

[1] is an adaptation of the KM algorithm that uses a soft mem-
bership function. Unlike KM which assigns each data point to its
closest center, the FKM algorithm allows a data point to belong
partly to all centers, like GEM.

FKM(X ,C) =
n

∑
i=1

k

∑
j=1

ur
i j||xi −c j||2 (8)

The parameter ui j denotes the proportion of data point xi that is

assigned to center c j , and is under the constraints ∑k
j=1 ui j = 1 for

all i and ui j ≥ 0. The parameter r has the constraint r ≥ 1. A larger
value for r makes the method “more fuzzy.”

Bezdek and others give separate update functions for ui j and c j .
The ui j update equation depends only on C and X , so we incorpo-
rate its update function into the update for c j. Then we can repre-
sent FKM in the form of the general iterative update of Equation 1.
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The membership and weight functions for FKM are:

mFKM(c j|xi) =
||xi −c j||−2/(r−1)

∑k
j=1 ||xi −c j||−2/(r−1)

(9)

wFKM(xi) = 1 (10)

FKM has a soft membership function, and a constant weight func-
tion. As r tends toward 1 from above, the algorithm behaves more
like standard k-means, and the centers share the data points less.

3.5 K-harmonic means
The k-harmonic means algorithm (KHM) is a method similar to

KM that arises from a different objective function [21]. The KHM
objective function uses the harmonic mean of the distance from
each data point to all centers.

KHM(X ,C) =
n

∑
i=1

k

∑k
j=1

1
||xi−c j ||p

(11)

Here p is an input parameter, and typically p ≥ 2. The harmonic
mean gives a good (low) score for each data point when that data
point is close to any one center. This is a property of the harmonic
mean; it is similar to the minimum function used by KM, but it is a
smooth differentiable function.

The membership and weight functions for KHM are:

mKHM(c j|xi) =
||xi −c j||−p−2

∑k
j=1 ||xi −c j||−p−2

(12)

wKHM(xi) =
∑k

j=1 ||xi −c j||−p−2

(

∑k
j=1 ||xi −c j||−p

)2
(13)

Note that KHM has a soft membership function, and also a vary-
ing weight function. This weight function gives higher weight to
points that are far away from every center, which aids the centers
in spreading to cover the data.

The implementation of KHM needs to deal with the case where
xi = c j . In this case we follow Zhang using max(||xi − c j||,ε) and
use a small positive value of ε. We also apply this technique for
FKM and the algorithms discussed in Section 3. We have not en-
countered any numerical problems in any of our tests.

4. NEW CLUSTERING ALGORITHMS
We are interested in the properties of the new algorithm KHM.

It has a soft membership function and a varying weight function,
which makes it unique among the algorithms we have encountered.
KHM has been shown to be less sensitive to initialization on syn-
thetic data [21].

Here we analyze two aspects of KHM (the membership and the
weight functions) and define two new algorithms we call Hybrid
1 and Hybrid 2. They are named for the fact that they are hybrid
algorithms that combine features of KM and KHM. The purpose for
creating these algorithms is to find out what effects the membership
and weight functions of KHM have by themselves.

4.1 Hybrid 1: hard membership,
varying weights

Hybrid 1 (H1) uses the hard membership function of KM. Ev-
ery point belongs only to its closest center. However, H1 uses the
KHM weight function, which gives more weight to points that are
far from every center. We expect that this algorithm should con-
verge more quickly than KM due to the weights, but will still have

problems related to the hard membership function. As far as we
know, adding weights in this manner to KM is a new idea.

The definitions of the membership and weight functions for H1
are:

mH1(cl |xi) =

{

1 ; if l = argmin j ||xi −c j||2
0 ; otherwise

(14)

wH1(xi) =
∑k

j=1 ||xi −c j ||−p−2

(

∑k
j=1 ||xi −c j||−p

)2
(15)

4.2 Hybrid 2: soft membership,
constant weights

Hybrid 2 (H2) uses the soft membership function of KHM, and
the constant weight function of KM. The definitions of the mem-
bership and weight functions for H2 are:

mH2(c j|xi) =
||xi −c j||−p−2

∑k
j=1 ||xi −c j||−p−2

(16)

wH2(xi) = 1 (17)

Note that H2 resembles FKM. In fact, for certain values of r and p

they are mathematically equivalent. It is interesting to note, then,
that the membership function of KHM (from which we get H2)
and FKM are also very similar. We investigate H2 and FKM as
separate entities to keep clear the fact that we are investigating the
membership and weight functions of KHM separately.

5. EXPERIMENTAL SETUP
We perform two sets of experiments to demonstrate the proper-

ties of the algorithms described in Sections 3 and 4. We want to an-
swer several questions: how do different initializations affect each
algorithm, what is the influence of soft versus hard membership,
and what is the benefit of using varying versus constant weights.

Though each algorithm minimizes a different objective function,
we measure the quality of each clustering solution by the square-
root of the k-means objective function in Equation 2. It is a reason-
able metric by which to judge cluster quality, and by using a single
metric we can compare different algorithms. We use the square
root because the squared distance term can exaggerate the sever-
ity of poor solutions. We considered running KM on the output of
each algorithm, so that the KM objective function could be better
minimized. We found that this did not help significantly, so we do
not do this here.

Our experiments use two datasets already used in recent empir-
ical work on clustering algorithms [23, 14], and a photograph of a
hand from [4]. The algorithms we test are KM, KHM, FKM, H1,
H2, and GEM. The code for each of these algorithms is our own
(written in Matlab), except for GEM (FastMix code provided by
[18]). We need to supply the the KHM, H1, and H2 with the pa-
rameter p, and FKM with r. We set p = 3.5 for all tests, as that was
the best value found by Zhang. We set r = 1.3, as that is the best
value we found based on our preliminary tests.

The two initializations we use are the Forgy and Random Parti-
tion methods [16]. The Forgy method chooses k data points from
the dataset at random and uses them as the initial centers. The Ran-
dom Partition method assigns each data point to a random center,
then computes the initial location of each center as the centroid of
its assigned points. The Forgy method tends to spread centers out
in the data, while the Random Partition method tends to place the
centers in a small area near the middle of the dataset. Random
Partition was found to be a preferable initialization method for its
simplicity and quality in [16, 12]. For GEM, we also initialize
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Figure 3: Experiment 1: Forgy (left) and Random Parti-

tion (right) initializations for the BIRCH dataset. Centers are

shown in the dark color, data points in the light color. This

dataset has a grid of 10x10 natural clusters.

p(c j) = 1/k and initialize the covariance to be 0.2I, where I is the
identity matrix.

Before clustering, all datasets used in both experiments are shifted
and re-scaled to give each dimension zero mean and unit variance.
This is the standard z-score transformation. This can be a good idea
before using algorithms based on distance metrics, as it gives the
same influence to each dimension.

5.1 Experiment 1: BIRCH
The purpose of our first experiment is to illustrate the conver-

gence properties of the different algorithms, and to show the need
to improve clustering algorithms. We use a randomly generated
synthetic dataset we call BIRCH, as defined by [23]. This dataset
has k = 100 true clusters arranged in a 10x10 grid in d = 2 dimen-
sions. Each cluster generates 100 data points from its own Gaus-
sian distribution, for a total of n = 10,000 data points. The distance
between two adjacent cluster means is 4

√
2 with cluster radius of√

2 (meaning the variance in each dimension is 1). We run each
algorithm twice, once with the Forgy initialization, and once with
the Random Partition initialization. Figure 3 shows the two initial-
izations. We use the same randomly chosen initializations for all
algorithms. Our results are similar for other random initializations.

5.2 Experiment 2: Pelleg and Moore data
The second experiment uses a synthetic dataset based on work

by [14]. Here we run many tests to determine the average-case
behavior of the algorithms. We test datasets of dimensions 2, 4,
and 6 to show that all these algorithms work well in low dimen-
sions. Each dataset has k = 50 true natural clusters which generate
n = 2500 total data points. The true cluster centers are chosen at
random in the unit hypercube, then 2500 data points are generated
by choosing a cluster randomly, and generating a data point accord-
ing to a Gaussian distribution with standard deviation s = d×0.012
and mean at the true cluster center. We generate data that is more
separated (clusters have less overlap) than the work by Pelleg and
Moore (who used s = d×0.025), because this presents a more dif-
ficult task to the clustering algorithms. This is because it is harder
for centers to move freely through the whole dataset due to gaps
between natural clusters.

For each d ∈ {2,4,6} we generate 100 datasets, and two initial-
izations (Random Partition and Forgy) for each dataset. Then we
test each algorithm from both of these initializations. For each al-
gorithm we allow it to run for 100 iterations, which is plenty for the
algorithms to converge.

Table 2: Experiment 1: Quality of solutions for one run on the

BIRCH dataset, using Forgy and Random Partition initializa-

tions. Lower quality scores are better. “Clusters found” is the

number of true clusters (maximum 100) in which the algorithm

placed at least one center.

√
KM quality Clusters found

Forgy RP Forgy RP

GEM 15.530 24.399 77 49

KM 12.771 18.396 83 60

H1 12.159 15.242 86 72

FKM 11.612 10.441 89 93

H2 10.670 9.908 92 95

KHM 10.255 9.999 94 95

6. EXPERIMENTAL RESULTS

6.1 Experiment 1: BIRCH
Running each algorithm on the BIRCH dataset once gives an in-

tuition for how each behaves. Figure 3 shows the two initializations
we use. The results of KM, GEM, and KHM’s runs are shown in
Figure 4 and the cluster qualities for all are shown in Table 2. FKM,
H2, and KHM all found good clusterings for both types of initial-
izations, and they are all soft membership algorithms.

The two hard membership algorithms, KM and H1, have dis-
tinctly different behavior for the two initializations. Starting from
Forgy initialization these two algorithms perform reasonably well,
but starting from the Random Partition these algorithms converge
with many centers remaining in the middle of the dataset, ”trapped”
there by hard assignment. This is because the hard membership
function prevents centers from moving if they do not own enough
points. In Table 2 we show the number of true clusters found, which
is the number of true clusters (out of 100) that received a center by
the algorithm.

Although GEM has a soft membership function, it does poorly
on this dataset due to some centers having variance that is too large
and taking over several clusters. The output of GEM initialized
by Random Partition appears to have more centers concentrated in
the middle of the dataset, where the centers began. This is similar
to the hard membership results. The FastMix implementation we
used for GEM started with 100 centers and removes centers whose
prior became too small. For this reason, it ended with 98 (Forgy)
and 81 (Random Partition) centers depending on the initialization.
FastMix has the ability to search for the number of centers using
density estimation. We tried starting FastMix without a pre-defined
number of centers, and it found 23.

6.2 Experiment 2: Pelleg and Moore data
Our second experiment shows the average performance of the

algorithms compared over many randomly generated data sets in
several dimensions. For each dataset Xd,i where d ∈ {2,4,6} and
1 ≤ i ≤ 100 we compute the optimal KM partition Od,i by running
KM to convergence starting with the centers that generated the data
sets. Then we compute the score of a clustering Cd,i as the ratio

Rd,i =

√

KM(Xd,i,Cd,i)

KM(Xd,i,Od,i)
(18)

Table 4 shows the mean and standard deviation of Rd,i for each
algorithm, computed using 100 datasets in 2 dimensions. Table 3
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Figure 5: Experiment 2: Convergence curves starting from Forgy (top) and Random Partition (bottom) initializations on 2-d syn-

thetic data. The x-axis shows the number of iterations, and the y-axis (log scale) shows average clustering quality score, where lower

values are better. Only the final results for GEM are shown. Note that KM and GEM perform worse than every other algorithm.

shows the point-wise comparison of each algorithm for the same
experiment. It is clear from this as well that soft membership al-
gorithms (KHM, FKM, H2) perform better than hard membership
algorithms (KM, H1) in both average performance and variance.
The results for 4 and 6 dimensional datasets are very similar, so we
do not report them here.

Figure 5 shows the speed of convergence of each algorithm for
d = 2 dimensions. The x-axis shows the iteration number, and
the y-axis shows the average k-means quality ratio at that itera-
tion, computed using the 100 datasets. We can see that GEM and
KM are uniformly inferior to every other algorithm, and that the
soft membership algorithms KHM, H2, and FKM move quickly to
find good solutions. Only the final result for GEM is plotted as
we cannot capture clustering progress before the FastMix software
terminates.

FastMix has the ability to add and remove centers to better fit
its data. FastMix adds a center if the model underpredicts the data
and removes a center if its prior probability is too low. We expect
that FastMix’s ability to add centers would be helpful in a dataset in
which clusters are well-separated. For experiment 2, FastMix be-
gan with 50 centers and only removed centers. FastMix converged
with an average of 48.39 centers (Forgy) and 40.13 centers (Ran-
dom Partition) in the 2-dimension test. This shows that GEM is
also sensitive to poor initializations.

Table 4: Experiment 2: The mean and standard deviation of

R2,i, the ratio between the k-means quality and the optimum,

over 100 datasets, in 2 dimensions. Lower values are better.

Results for 4 and 6 dimensions are similar, and have the same

ranking.

Forgy Random Partition
GEM 1.3262 +/- 0.1342 2.3653 +/- 0.4497
KM 1.1909 +/- 0.0953 2.0905 +/- 0.2616
H1 1.1473 +/- 0.0650 1.7644 +/- 0.2403
FKM 1.1281 +/- 0.0637 1.0989 +/- 0.0499
H2 1.1077 +/- 0.0536 1.0788 +/- 0.0416
KHM 1.0705 +/- 0.0310 1.0605 +/- 0.0294

7. CONCLUSIONS
Our experiments clearly show the superiority of the k-harmonic

means algorithm (KHM) for finding clusterings of high quality in
low dimensions. Our algorithms H1 and H2 let us study the effects
of the KHM weight and membership separately. They show that
soft membership is essential for finding good clusterings, as H2
performs nearly as well as KHM, but that varying weights are ben-
eficial with a hard membership function, since H1 performs better
than KM. Varying weights are intuitively similar to the weights ap-
plied to training examples by boosting [7]. It remains to be seen
whether this analogy can be made precise.

Previous work in initialization methods has concluded that the
Random Partition method is good for GEM and for KM, but our
experiments do not confirm this conclusion. The Forgy method of
initialization (choosing random points as initial centers) works best
for GEM, KM, and H1. Overall, our results suggest that the best
algorithms available today are FKM, H2, and KHM, initialized by
the Random Partition method.

Clustering in high dimensions has been an open problem for
many years. However, recent research has shown that it may be
preferable to use dimensionality reduction techniques before clus-
tering, and then use a low-dimensional clustering algorithm such
as k-harmonic means, rather than clustering in the high dimension
directly. In [5] the author shows that using a simple, inexpensive
linear projection preserves much of the properties of data (such as
cluster distances), while making it easier to find the clusters. Thus
there is a need for good-quality, fast clustering algorithms for low-
dimensional data, such as k-harmonic means.
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Forgy Random Partition
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Figure 4: Experiment 1: Convergence on the BIRCH dataset.

From top to bottom: GEM, KM, KHM, FKM, H1, H2. GEM

and KM both converge to very low-quality optima, while KHM

does not. FastMix software generated the plots for GEM, show-

ing the 1-sigma contours.
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