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Altruistically motivated transfers under uncertainty
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How do families behave dynamically? We provide a framework for studying eco-

nomic problems in which family behavior is essential. Our key innovation is the

inclusion of imperfectly altruistic agents in an otherwise standard consumption–

savings problem with exogenous income risk. This gives rise to altruistic trans-

fers and strategic behavior in the consumption–savings decision. We study the

Markov-perfect equilibrium that arises from the limit of equilibria in a sequence

of finite games. The equilibrium’s transfer patterns are empirically plausible. Fur-

thermore, agents overconsume relative to the social optimum. In contrast to two-

period models, both the richer and the poorer players overconsume long before

transfers actually occur. The poorer agent also faces incentives to engage in ex-

cessive risk-taking because losses from a gamble are absorbed by both while gains

are enjoyed alone.

K. Altruism, inter vivos transfers, consumption–savings decision, differ-

ential games.

JEL . C73, D1, D64, E21.

1. I

How do agents within a family behave dynamically? How do they make consumption

and savings decisions when they know that they can count on transfers from other fam-

ily members or that they will provide transfers to others themselves? How do expec-

tations about these transfers affect risk-taking behavior? Answering these questions is

clearly important per se. Furthermore, for policy analysis, the response of families has

to be taken into account in many areas.

This paper studies how agents within a family interact dynamically. We aim to pro-

vide a step toward the objective of developing a theory that can be used in quantitative
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macroeconomics. Our framework stays as close as possible to the Bewley model, which

is the baseline framework used in the macroeconomic literature to model heteroge-

neous agents and the implications of uninsured idiosyncratic risk. The main difference

is that we study families consisting of two members who are imperfectly altruistic to-

ward each other, commitment being absent. This setting gives rise to altruistic transfers

and strategic behavior in the consumption–savings decision. When altruism is perfect

or absent, our model collapses to a standard Bewley economy.

We formulate the dynamic game in a continuous-time setting and characterize the

Markov-perfect equilibrium that arises from the limit of equilibria in a sequence of finite

games (an equilibrium selection criterion previously used by Klein, Krusell, and Ríos-

Rull (2008), among others). Continuous time enormously simplifies the characterization

of equilibria by making consumption and savings decisions independent of the con-

temporaneous choices of the other player. In our continuous-time game, agents’ best

response functions over an infinitesimal amount of time are constant. Nonetheless, the

strategy of the other player affects savings and transfers since it affects the continuation

value of the game and, hence, the current value of savings.

Our analysis sheds light on strategic interactions between altruistic agents. There

is a crucial difference between strategic transfers in our no-commitment setting and

transfers in a commitment setting, as previously studied by Altig and Davis (1988, 1992,

1993), for example. Under commitment, the timing of transfers is indeterminate, while

our setting delivers clear predictions in this respect. We find that strategic transfers only

flow when one of the agents is facing a binding borrowing constraint. This strategic de-

lay of transfers is explained by the fact that the equilibrium features overconsumption

relative to the social optimum.1 The poor agent behaves recklessly by overconsuming,

counting on the benevolence of the richer agent. To minimize the incentives for over-

consumption, the donor only makes transfers when the receiving agent is constrained.

Anticipating the reckless behavior of the poor agent, the rich agent also has incentives

to overconsume relative to the first-best. The equilibrium thus features overconsump-

tion by both agents who engage in a race to the bottom. This inefficiency resembles the

tragedy of the commons: the assets of the rich agents are a common resource that is be-

ing depleted by both agents. We call this result the dynamic Samaritan’s dilemma. This

extends what Lindbeck and Weibull (1988), Bernheim and Stark (1988), and Bruce and

Waldman (1990) refer to as the Samaritan’s dilemma: in a two-period model, the donor

delays transfers to the second period and the recipient’s first-period savings are ineffi-

ciently low. Tracing the effects further back in time, we show that both agents’ savings

decisions are distorted (not only those of the recipient) and that these distortions occur

long before transfers actually flow.

Furthermore, when introducing a portfolio choice into our setting, we find that the

poorer agent may engage in excessive risk-taking. This occurs because some of the

downside risk is borne by the future donor while upside risk is enjoyed alone. The exces-

sive risk-taking mirrors a result by Laitner (1988), who finds that risk-averse imperfectly

1The result that transfers only flow to constrained recipients confirms a conjecture previously made

by papers such as Fuster, Imrohoroglu, and Imrohoroglu (2007), Laitner (2001), McGarry (1999), and

Nishiyama (2002). In our paper, this is an endogenous outcome.
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altruistic family members effectively become risk-loving and make use of fair lotteries

when given this option. While in his framework, generations overlap for only one pe-

riod, our generations overlap for many periods. Our framework is thus better suited to

study risk-taking behavior quantitatively; examples for such behavior are risky career

choices, purchasing insufficient insurance, or risky portfolio choices.

The model’s predictions on transfers are in line with empirical findings. In the model,

as in the data, transfers flow from wealth- and income-rich agents to poor recipients.

The size of transfers is increasing in the donor’s wealth and labor income, and decreas-

ing in the recipient’s labor income (see McGarry and Schoeni (1995, 1997) and Berry

(2008)). Donors in the model only give transfers to borrowing-constrained recipients so

as to keep recipients’ consumption spending in check. Indeed, Cox (1990) and Cox and

Jappelli (1990) find that transfers flow primarily to liquidity-constrained individuals. Fi-

nally, agents in our model have a strong strategic incentive to delay transfers so as to

maintain control over the allocation. This is consistent with the fact that a large share

of intergenerational transfers flows in the form of bequests, although this is discouraged

by estate taxes in most countries.

Finally, to facilitate applying our model in a broader context, we show in the Com-

putational Appendix—available in a supplementary file on the journal website, http://

qeconomics.org/supp/353/supplement.pdf—how our solution algorithm can be ex-

tended to more complex environments, such as overlapping-generations settings, finite-

horizon settings, and settings with time- or age-dependent value functions. We also pro-

vide an introduction to the Markov-chain approximation method for continuous-time

problems, which is not used much in the economics literature. A code toolbox that can

be used to replicate all the results presented in the paper and for use in future research is

available in a supplementary file on the journal website, http://qeconomics.org/supp/

353/code_and_data.zip.

Our model is applicable to all areas in which family transfers are an important source

of insurance. Families may provide monetary transfers to a member in hardship (e.g.,

to an unemployed member, to relieve borrowing constraints, remittances, and support

to an elderly), to help a child with financing educational expenses or the purchase of

a home, and in the form of leaving a bequest. Families may also provide nonmonetary

transfers such as in-kind transfers (providing a good instead of cash), time transfers (e.g.,

child care or informal care to the frail elderly), or spatial transfers (e.g., when a young

adult moves back home in times of high youth unemployment or when a frail elder

moves in with her child to avoid institutionalization in a nursing home). If a government

becomes active in such areas (through unemployment insurance, pension and welfare

payments, deficit-financed tax cuts, student loans, home-buyer credit programs, estate

tax, long-term-care policies such as subsidizing informal caregivers or nursing homes,

child-care subsidies, or subsidies for housing), families’ behavioral response has to be

taken into account so as to predict the policy’s outcomes and welfare implications.

The standard workhorse models in macroeconomics are often ill-suited to address

the interplay between family behavior and policy. These models make one of two ex-

treme assumptions about household linkages within the extended family (or dynasty).

http://qeconomics.org/supp/353/supplement.pdf
http://qeconomics.org/supp/353/supplement.pdf
http://qeconomics.org/supp/353/code_and_data.zip
http://qeconomics.org/supp/353/code_and_data.zip
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Infinitely-lived-agent models implicitly assume that altruism within the dynasty is per-

fect. Overlapping-generations (OLG) models, in contrast, assume that agents’ altruism

toward other generations in the extended family is absent.

Modeling a family as an infinitely lived agent has the problem that there is no no-

tion of wealth positions of the different generations. Consequently, there are no predic-

tions on the timing of transfers. Closely related to the infinitely-lived-agent framework

are models in which imperfectly altruistic family members can commit to allocations.2

Again, these models have no predictions on the distribution of wealth and the timing

of transfers. This is because commitment implies that it does not matter which family

member carries along assets. For example, a rich parent in such models is typically in-

different between signing over her entire wealth to her children before dying and the

alternative of leaving it as a bequest. In reality, however, the parent may have strong in-

centives to hold on to her assets so as to stay in control of her situation.

In OLG models, the problem is reversed. These have clear predictions on the

wealth positions of subsequent generations, but no transfers between generations occur

(maybe barring accidental bequests).3

Barczyk (2012) provides an illustration of where our setting stands compared to the

two benchmark models. He considers the transition dynamics of aggregate consump-

tion in response to a deficit-financed tax cut using our framework and compares it to an

OLG and a dynastic economy. Interestingly, the transition dynamics of aggregate con-

sumption with imperfect altruism is not simply a convex combination of the OLG econ-

omy and the dynastic economy. Instead, the response in aggregate consumption often

actually exceeds the one in the OLG economy. Welfare implications are, however, closer

to those from a dynastic economy.

In our model, a family/dynasty consists of two decision makers. These agents can

represent an old household and a young household within a family, but, depending on

the context, we could also think of them as other entities, for example, spouses with

separate bank accounts or countries that give development aid to each other. When we

formally introduce the model in Section 2, we will refer to the two decision makers sim-

ply as “he” and “she,” and leave the interpretation to the reader. Our setting nests both

the infinitely lived agent and the OLG model as special cases.

While we are obviously not the first to study a model with altruism, our major inno-

vation is that we allow for a flexible degree of altruism in a setting where agents over-

lap for many periods. Agents cannot commit to future actions, which makes the model

2In Altig and Davis (1988, 1992, 1993), for example, generations can commit to future transfer payments.

In the so-called collective model, family members can commit to a fully contingent plan for all choice vari-

ables (see Chiappori (1988)).
3Adding a warm-glow motive for giving bequests to subsequent generations does not change the fun-

damental properties of the OLG model when it comes to intergenerational redistribution. With warm glow,

parents care about leaving resources to their children. But they regard bequests as a good, that is, they derive

utility from the size of the bequest regardless of how much their children need this bequest. This implies

that parents’ bequests do not react to policies that make their children worse off, which is incompatible

with altruistic preferences à la Becker.
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suited for studying environments where it is reasonable to believe that contracts are too

costly or impossible to enforce.4

Our innovation is important and challenging. Laitner (1988) and Fuster, Imro-

horoglu, and Imrohoroglu (2007), for example, explicitly call for an exploration of a mul-

tiperiod model with imperfectly altruistic agents and no-commitment so as to study

theoretically and quantitatively more realistic environments. Some recent applied pa-

pers that are concerned with family transfers also have made recommendations in this

direction. Mazzocco (2007) studies a version of the collective model in which the com-

mitment assumption is relaxed and finds support for this model in the data. Our model

can be seen as a different, noncooperative approach to relaxing the commitment as-

sumption. From an empirical perspective, McGarry (2006) argues that “[. . . ] evidence

suggests that dynamic models can provide insights into transfer behavior that are im-

possible to obtain in a static context.” Finally, Kaplan (2012) studies a model of young

workers who have the option to co-reside with their parents and finds that a noncoop-

erative approach without commitment is a preferable modeling choice over a setting

with commitment in view of the data. In his setting, however, parents cannot save. The

author acknowledges that this assumption is not innocuous, but remarks on the techni-

cal and computational difficulty that a fully strategic dynamic setting would bring with

it.

Laitner (1988) analyzes an OLG model with imperfect altruism and no-commitment

in which generations overlap for one period. This provides substantial tractability, but

limits the scope of transfer behavior. The drawback is the implicit assumption that

agents can commit to a lump-sum transfer at the beginning of a life-cycle stage. Since

one stage represents roughly 25 years, this is not innocuous. Consequently, the model

also lacks precise predictions on the timing of transfers. Our innovations allow for a finer

time resolution and thus more realistic calibrations, especially when it comes to study-

ing short-term effects of policies and transitional dynamics (see Barczyk (2012), for an

example). Related to this, our model has a richer scope of transfer behavior. Transfers

can flow temporarily, never, or always.

A framework with altruism in which households overlap for many periods can also

be made tractable by assuming perfect two-sided altruism (the dynastic model) or im-

perfect altruism with commitment. Examples of the former approach include Laitner

(1992, 1993), Fuster (1999), Fuster, Imrohoroglu, and Imrohoroglu (2003, 2007), and

Heathcote (2005); examples of the latter approach are Altig and Davis (1988, 1992, 1993).

These assumptions do provide substantial tractability, but come at a cost: the models

generate too many inter vivos transfers and a relatively low incidence of binding liquid-

ity constraints (see Fuster, Imrohoroglu, and Imrohoroglu (2007) and Laitner (1993)).

Furthermore, as mentioned above, these models have no predictions on the distribu-

tion of wealth within the family and the timing of transfers.

4There are some two-period models in the literature in which strategic interactions occur (i.e., there is no

commitment) (e.g., Lindbeck and Weibull (1988)). However, these models make simplifying assumptions in

that they restrict transfers to flow in certain situations and focus on specific timing protocols. This limits

their usefulness for extension.
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Finally, Barczyk and Kredler (2014) study a cake-eating problem with imperfect al-

truism in a deterministic setting without commitment. While their results guide our

analysis in important ways, there are crucial differences in results. They find a contin-

uum of equilibria in which imperfectly altruistic agents act as if they were a perfectly al-

truistic dynasty in the long run. However, there are multiple indeterminacies in this class

of equilibria that makes their framework hard to apply in practice. The current paper de-

livers a unique equilibrium (under certain restrictions) that can be readily computed in

a large range of variations of the basic setting.

The remainder of the paper is organized as follows. Section 2 provides the setting and

the equilibrium definition. This is followed in Section 3 by an analysis of the incentives

the players face in the cases when they are unconstrained and constrained. Section 4

presents our main results. Testable implications of the model are derived in Section 5.

Section 6 concludes.

2. S

2.1 Physical environment

Time t is continuous. There are two infinitely lived players referred to as “she” and “he.”

We will denote variables pertaining to her as plain lowercase letters (e.g., c) and variables

pertaining to him with primed letters (e.g., c′).

Agents obtain an exogenous endowment stream {y� y ′}. The endowment streams fol-

low independent Poisson processes with common support y� y ′ ∈ {y1� y2}, where y1 < y2.

The Poisson rates of transitioning from high to low and low to high income are ξ for both

players.5 Agents can save in an asset with return r and are subject to a no-borrowing

constraint. Agents’ wealth position is subject to independent shocks with standard de-

viation σ .6

At each point in time, agents choose a consumption rate, ct ≥ 0, and a nonnegative

transfer rate, gt ≥ 0, to the other agent (g stands for “gift”). These choices imply the laws

of motions for wealth,

dwt =
(

rwt + yt − ct − gt + g′
t

︸ ︷︷ ︸

≡ẇt : her savings rate

)

dt +wtσ dBt� (1)

dw′
t =

(

rw′
t + y ′

t − c′
t − g′

t + gt
︸ ︷︷ ︸

≡ẇ′
t : his savings rate

)

dt +w′
tσ dB′

t� (2)

where w stands for wealth, and Bt and B′
t are uncorrelated standard Brownian motions.

When w = 0, we require c + g ≤ y (and equivalently for him). Also, note that when w = 0,

the Brownian motion does not enter the law of motion.

5A Poisson process is the analog to a Markov process in discrete time. It is straightforward to generalize

our results to general Poisson processes. We focus on this simple case for expositional ease only.
6We add Brownian motion to the law of motion as a randomization device to ensure existence and

uniqueness of an equilibrium in pure strategies in the limit of finite games. We will discuss this assump-

tion and its implications in detail in Section 4.3.
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Her preferences are represented by

E0

∫ ∞

0
e−ρt

[

u(ct)+ αu
(

c′
t

)]

dt�

The discount rate is ρ > 0 and α ∈ [0�1] is the parameter that measures the intensity

of altruism. He is a mirror-symmetric copy of her, but may have a different altruism

parameter α′ ∈ [0�1] from hers. His preferences are represented by

E0

∫ ∞

0
e−ρt

[

u
(

c′
t

)

+ α′u(ct)
]

dt�

We assume that agents do not differ in their discount rates and in the form of the felicity

function u(·). This formulation encompasses the case of selfishness (α = α′ = 0), perfect

altruism (α = α′ = 1), and one-sided altruism (α > 0, α′ = 0). For perfect altruism, the

players’ objectives are perfectly aligned and the model collapses to a single-agent model.

For selfishness, the model becomes a standard consumption–savings model with two

agents (or an OLG model once a demographic structure is added).

2.2 Equilibrium definition

We focus on Markov-perfect equilibria and study equilibria that are obtained as the

limit of a sequence of finite games (see Klein, Krusell, and Ríos-Rull (2008), for a dis-

cussion of this equilibrium-selection criterion). The payoff-relevant state is given by

x ≡ (w�w′� y� y ′). A Markovian strategy is a pair of nonnegative functions {c(x)�g(x)} for

her and a pair {c′(x)�g′(x)} for him.7

Given the continuous-time setting, agents can choose arbitrarily high c and g when-

ever they have positive wealth. After all, there always exists a time horizon �t that is short

enough such that any policy can be maintained over �t. This is not true any more, how-

ever, once wealth is zero and the borrowing limit is reached. Feasibility of a plan then

depends on the transfers the other player is giving. Since strategies can only depend on

the state x but not on the other player’s action, we draw a distinction between an agent’s

strategy c and “realized consumption” c∗, which we define as an outcome of the game.

Agents’ preferences are defined over the outcome c∗. We define c∗ = c whenever w > 0,

but specify realized consumption when she has run out of assets as

c∗(0�w′� y� y ′) = min
{

c
(

0�w′� y� y ′)� g′(0�w′� y� y ′) + y
}

� (3)

This says that she cannot eat more than her labor income plus what he gives to her when

she is broke, but she can announce plans to do so. Otherwise, realized consumption

equals the announced strategy c(0�w′� y� y ′) because she faces no constraint. Strategi-

cally, this has the following consequence: fixing her strategy c, he knows that increasing

7Technically, we have to assume that these policy functions are continuously differentiable on the inte-

rior of the state space so as to ensure that value functions are twice differentiable and that the derivatives in

the Hamilton–Jacobi–Bellman equation (7) exist in the conventional sense. Computationally, we solve the

model by discrete approximation techniques that are robust to nondifferentiabilities, so that differentiabil-

ity is not a practical issue for our results; see the discussion in the Computational Appendix.
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his transfers will lead to higher realized consumption up to c and go into savings from

then on. We define realized consumption c′∗(w�0� y� y ′) for him in the same manner.

When the other player’s strategy is Markovian, the best-response problem of each

player is a dynamic-programming problem and best responses are also Markovian. Let

xt ≡ (wt�w
′
t� yt� y

′
t) denote the state vector, and let v(x) and v′(x) be the value functions

for her and him. We will now heuristically derive the Hamilton–Jacobi–Bellman equa-

tion, which will provide the intuition for why working in continuous time is advanta-

geous here.

Using Bellman’s principle, we separate her problem into a trade-off between today

(an interval of length �t) and a continuation value tomorrow,

v(xt)= max
c�g≥0

{

u(c)�t + αu
(

c′(xt)
)

�t + e−ρ�t
Etv(xt+�t)

}

s.t. wt+�t −wt
︸ ︷︷ ︸

≡�wt

=
[

rwt + yt + g′(xt)− c − g
]

︸ ︷︷ ︸

≡ẇt

�t + σwt�Bt� (4)

w′
t+�t −w′

t
︸ ︷︷ ︸

≡�w′
t

=
[

rw′
t + y ′

t + gt − c′(xt)− g′(xt)
]

︸ ︷︷ ︸

≡ẇ′
t

�t + σw′
t�B

′
t�

where we take the continuation value v and his strategy {c′� g′} as given. �Bt = Bt+�t −Bt

and �B′
t = B′

t+�t
−B′

t are the shocks, that is, the increments of Brownian motion over �t.

We now take a second-order Taylor expansion of the continuation value around wt and

w′
t , fixing incomes yt and y ′

t at today’s values for now,

v
(

wt+�t�w
′
t+�t� yt� y

′
t

)

≃ v(xt)+ vw(xt)�wt + vw′(xt)�w
′
t

+
1

2
vww(xt)(�wt)

2 +
1

2
vw′w′(xt)

(

�w′
t

)2 + vww′(xt)�wt�w
′
t�

where the subscripts on v denote partial derivatives. We now want to determine her

expected continuation value at t. First, note that Et[�wt] = ẇt�t since the shocks have

mean zero, that is, Et[�Bt] = 0. By Ito calculus, we also have

Et

[

(�wt)
2
]

≃ σ2w2
t Et

[

(�Bt)
2
]

= σ2w2
t �t�

Et

[

�wt�w
′
t

]

≃ σ2wtw
′
tEt

[

�Bt�B
′
t

]

= 0�

where the last step follows since the two Brownian motions are uncorrelated. All other

terms vanish since they are of order lower than �t. We thus have

Et

[

v
(

wt+�t�w
′
t+�t� yt� y

′
t

)]

≃ v(xt)+ vw(xt)ẇt�t + vw′(xt)ẇ
′
t�t

(5)

+ vww(xt)
σ2

2
w2
t �t + vw′w′(xt)

σ2

2
w′2
t �t�

At this step, we see that the effects of the Brownian shocks on the continuation value are

completely summarized by the second derivative of the value function. If she is locally
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risk-averse (i.e., vww(xt) < 0), then these terms have a negative effect on the continua-

tion value. The larger these shocks are, that is, the higher σ is, the more pronounced this

negative effect is.

We now consider shocks to incomes yt and y ′
t . A change in income occurs with a

probability ξ�t over a short horizon �t for each player. Fixing wealth (w�w′), we can

write, to a first order,

Et

[

v
(

w�w′� yt+�t� y
′
t+�t

)]

≃ (1 − 2ξ�t)v
(

w�w′� yt� y
′
t

)

(6)
+ ξ�tv

(

w�w′� ỹt� y
′
t

)

+ ξ�tv
(

w�w′� yt� ỹ
′
t

)

�

where tildes denote the income state a player is currently not in (i.e., ỹt = yl if yt = yh,

etc.). Now, using Equations (5) and (6) in Bellman’s principle (4), and approximating

e−ρ�t ≃ 1 − ρ�t, we obtain

v(xt) ≃ [1 − ρ�t − 2ξ�t]v(xt)+ ξv
(

wt�w
′
t� ỹt� y

′
t

)

�t + ξv
(

wt�w
′
t� yt� ỹ

′
t

)

�t

+ max
c�g≥0

{

u(c)�t + αu
(

c′(xt)
)

�t + ẇtvw(xt)�t + ẇ′
tvw′(xt)�t

}

+
σ2

2
w2
t vww(xt)�t +

σ2

2
w′2
t vw′w′(xt)�t�

At this step, it is important to note that we were able to discard several terms of order

lower than �t. First, and most importantly, instantaneous interactions between agents’

decisions are of second order (i.e., ẇt�tẇ
′
t�tvww′ ). This simplifies our analysis of strategic

interaction over a short horizon dramatically; more on this below. Second, interactions

between income uncertainty and the instantaneous consumption decision are also of

second order (i.e., ξ�tẇt�tVw). We can thus determine the optimal consumption deci-

sion solely from the marginal value of savings in the current income state, which is a key

simplification that arises in continuous time.

Finally, divide by �t and rearrange to obtain the Hamilton–Jacobi–Bellman equation

(HJB), a partial differential equation (PDE) that her value function and its derivatives

have to satisfy:

ρv = max
c�g≥0

{

u(c)+ αu
(

c′) + ẇ′vw′ + ẇvw
}

(7)

+ ξ
[

v(·� ỹ)− v(·� y)
]

+ ξ
[

v
(

·� ỹ ′) − v
(

·� y ′)] +
σ2

2

(

w2vww +w′2vw′w′
)

�

We suppress the dependence of the function v on x for better readability. In the case that

he (or she) is broke, we have to replace c′ (or c) within the max operator by the realized-

consumption function in (3). When she is broke, there is also the constraint c + g ≤ y

on the controls. His problem is characterized by a mirror-symmetric HJB. Throughout

the paper, we will only state her equations as long as the counterpart for him is obvious.

We discuss the interpretation of the HJB as well as the constrained case in the following

section.

We now have everything in place to define a recursive equilibrium.
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D 1. A Markov-perfect equilibrium (MPE) is a collection of functions {v(·)�
c(·)�g(·)} for her and {v′(·)� c′(·)�g′(·)} for him such that

1. {v(·)� c(·)�g(·)} solves her problem given {c′(·)�g′(·)}, that is, they solve (7)

2. {v′(·)� c′(·)�g′(·)} solves his problem given {c(·)�g(·)}.

Since players’ strategies are required to be optimal for all points in the state space,

players have to be best responding at any node of the game tree, even the ones off the

equilibrium path. As is well known, Markov perfection thus implies subgame perfection.

3. U ’ 

3.1 Best responses: HJBs

We now return to her HJB (7) so as to shed light on her optimal choices in response to

his consumption and transfer strategy. We will see that obtaining her best responses is

akin to solving a standard consumption–savings problem.

We first focus on the case where both players are unconstrained. For convenience

we reproduce her HJB, additionally writing out her and his savings policies, ẇ and ẇ′,

and group terms according to whether they can be controlled or not:

ρv = αu
(

c′) +
(

rw′ + y ′ − g′ − c′)vw′
︸ ︷︷ ︸

his decisions

+
(

rw + y + g′)vw

+ ξ
[

v(·� ỹ)− v(·� y)
]

︸ ︷︷ ︸

shock to her y

+ξ
[

v
(

·� ỹ ′) − v
(

·� y ′)]

︸ ︷︷ ︸

shock to his y ′

+
σ2

2

(

w2vww +w′2vw′w′
)

︸ ︷︷ ︸

shocks to wealth

(8)

+ max
g≥0

{

g[ vw′ − vw
︸ ︷︷ ︸

≡µ: transfer motive

]
}

+ max
c≥0

{

u(c)− cvw
︸ ︷︷ ︸

consumption–savings trade-off

}

�

The key simplification of continuous time with respect to discrete time is that the play-

ers’ four decisions do not contemporaneously interact with each other. The max oper-

ator for the transfer decision can be separated from the one for the consumption deci-

sion, and the other player’s decisions do not enter these max operators.

Of particular importance is the fact that his contemporaneous consumption deci-

sion c′ does not affect her optimal choice c. In other words, her best-response function

over an infinitesimal amount of time is a constant. This simplification occurs for two

reasons: first, the instantaneous payoff u(c) + αu(c′) is separable in c and c′; second,

the influence of his contemporaneous actions on her marginal value of saving, vk, is

small; recall, that in the derivation of the HJB, the term ẇ′
t�tẇt�tvww′ vanishes. Eco-

nomically speaking, for an agent who reconsiders her savings decisions on a daily basis,

it is enough to keep an eye on the other’s bank account to be sufficiently informed.

The first-order condition (FOC) for consumption is given by

uc(c) = vw�
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which says that the marginal utility of current consumption equals the marginal value of

saving in the optimum. At first glance, it seems striking that his current decisions should

not matter to her. But note that this is only true for the decisions taken in the same

instant of time. In general, his decisions do matter for her, which will become evident

from her Euler equation. For now, bear in mind that the effects of his future decisions on

her are all contained in the partial derivative vw, which encodes the savings incentives

stemming from the continuation of the game.

From (8), we see that the maximization problem with respect to the transfer g is

linear or of the “bang–bang” type. If the term µ ≡ (vw′ − vw), which we will refer to as

the transfer motive, is negative, then transfers are set to zero—after all, she cannot force

him to give transfers to her. If µ= 0, then any transfer flow is consistent with optimality.

Should the transfer motive be positive, however, then the agent wants to choose g as

large as possible.

3.2 Savings incentives: The Euler equation

Just as in standard settings, most of the insights into the consumption–savings trade-off

come from the Euler equation. To obtain it, take the derivative of her HJB (8) with respect

to w, use the FOC for consumption, and rearrange:

Auc(c)
︸ ︷︷ ︸

expected growth of uc
(9)

= (ρ− r)uc(c)
︸ ︷︷ ︸

standard

+
[

vw′ − αuc
(

c′)]c′
w

︸ ︷︷ ︸

altruistic-strategic distortion

+
[

uc(c)− vw′
]

g′
w

︸ ︷︷ ︸

transfer-induced incentives

�

Here, c′
w and g′

w denote the partial derivatives of his policy functions with respect to w.

The operator A (the infinitesimal generator) is defined for any twice-differentiable func-

tion f (x) of the state x as the “expected time derivative”:

Af (xt) ≡ lim
�t→0

1

�t
Et

[

f (xt+�t)− f (xt)
]

= fwẇt + fw′ẇt +
σ2

2

(

w2
t fww +w′2

t fw′w′
)

+ ξ
[

f (·� ỹ)− f (·� y)
]

+ ξ
[

f
(

·� ỹ ′) − f
(

·� y ′)]�

Introducing the operator A makes the right-hand side of the Euler equation identical to

the one obtained in a deterministic environment; see Barczyk and Kredler (2014) for an

extensive discussion of the strategic interactions described by this equation in a deter-

ministic setting.

We now compare Equation (9) to the efficient benchmark. Consider a family plan-

ner who maximizes a convex combination of v and v′. This planner faces a standard

consumption–savings problem, intertemporal optimality, being characterized by the

standard Euler equation for a single agent (see Appendix A.1 for a formal derivation):

Auc(ceff)= (ρ− r)uc(ceff)� (10)
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We see that (9) and (10) differ by two distorting terms, which we refer to as an altruistic-

strategic distortion and transfer-induced incentives. We will later find that transfers do

not flow on the interior of the state space in equilibrium; thus transfer-induced incen-

tives are zero. The interpretation for the altruistic-strategic distortion in (9) is, however,

key to understand our results. Suppose his consumption is increasing in her wealth, that

is, c′
w > 0. On the one hand, increasing her wealth w gives an instantaneous benefit

αuc(c
′)c′

w to her, which enters with the same sign as the interest rate and thus consti-

tutes an incentive to save. On the other hand, there is a cost vw′c′
w that enters with the

same sign as the discount rate does. The rise in his consumption causes his wealth to

decrease, which she dislikes and thus induces her to save less. In equilibrium, the latter

effect will prevail, inducing agents to overconsume with respect to the social optimum.

Finally, it is instructive to consider the special cases of selfishness and perfect

altruism. In the absence of altruism (α = α′ = 0), we have c′
w = g′

w = 0, that is, his be-

havioral response to her decisions is zero. Then there are no altruistic-strategic dis-

tortions or transfer-induced incentives, and we are left with the standard Euler equa-

tion, which says that marginal utility grows at the efficient rate (ρ − r). On the other

hand, in the fully altruistic case (α = α′ = 1), the agents’ criteria are identical and thus

v′
w′ = v′

w = vw = uc(c) = uc(c
′). The behavioral responses c′

w and g′
w are now nonzero,

but the brackets in (9) vanish since players are in perfect agreement and thus indifferent

with respect to the distribution of wealth between them.

3.3 Optimality when broke

The characterization so far was confined to the case where both agents have positive lev-

els of wealth. Contrary to discrete time, in continuous time, a saver is unconstrained for

any positive level of wealth, which simplifies our analysis and our computational algo-

rithm substantially. We now discuss the important case where one agent is broke. For the

discussion of the case where both agents are broke, we refer the reader to Appendix A.2.

Consider her problem when he is broke (i.e., w′ = 0) but she has positive assets

(w> 0).8 To simplify matters, we leave out all terms in agents’ HJBs that are not influ-

enced by agents’ contemporaneous decisions and focus on the Hamiltonians:

max
c≥0�g≥0

H(c�g) = max
c≥0�g≥0

{

u(c)+ αu
(

c′∗(c′
0� g

))

+ (rw + y − c − g)vw

(11)
+

(

y ′ − c′∗(c′
0� g

)

+ g
)

vw′
}

�

max
c′≥0

H ′(c′) = max
c′≥0

{

u
(

c′) +
(

y ′ − c′∗(c′� g
)

+ g
)

v′
w′

}

� (12)

We now guess that g′ = 0 and will later verify this. Recall that c′ is his consumption strat-

egy; realized consumption c′∗ for him is obtained from g and c′ as prescribed by Equa-

tion (3):

c′∗(c′� g
)

=
{

c′ if y ′ + g ≥ c′�

y ′ + g if y ′ + g < c′�

8The case w′ > 0 and w = 0 is entirely symmetric.
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We will now show that agents’ optimal consumption strategies are given by the “un-

constrained levels” (c0� c
′
0), which we implicitly define as

uc
(

c′
0

)

= v′
w′�

(13)
uc(c0) = vw�

Obviously, c0 maximizes H and is thus the optimal strategy independent of c′
0. As for

him, observe that the unconstrained maximum of H ′ is reached at c′
0. So setting c′

0 is

definitely optimal if it is feasible. Also, since H ′ is increasing in c′ for c′ < c′
0, announc-

ing c′
0 leads to the constrained optimal outcome c′∗ = y + g in the case that c′

0 > y + g.

This means that announcing c′
0 is a dominant strategy for him, and in case that he is

constrained, it always leads to the best outcome for him.9

To analyze her transfer decision, it will be convenient to introduce a variable gdict

that tells us what she would like to give to him (or take from him) if she could dictate his

consumption in the current instant. We define

gdict ≡ arg max
−∞<g̃<∞

H(c0� g̃)

⇒ αuc
(

y ′ + gdict

)

= uc(c0)�

For the case of constant elasticity of substitution (CES) utility, for example, we have

gdict = α1/γc0 − y ′.
We will now study the properties of the Hamiltonian H(c�g) in Equation (11). Since

utility is separable in c and c′, H is additive in its c and g terms. This greatly simplifies

our analysis. We see that H is concave in c and that

∂H

∂c
= uc(c)− vw

{

≥ 0 if c ≤ c0�

< 0 if c > c0�

H is continuous in g, but there is a kink at the point where he starts saving the additional

transfer instead of consuming it:

∂H

∂g
=

{

αuc
(

y ′ + g
)

− vw if g < c′
0 − y ′�

vw′ − vw if g > c′
0 − y ′�

The jump in the derivative reflects that her transfers go directly into his consumption

until the satiation point c′
0 is reached. On this lower part, H(c� ·) is concave and may

(or may not) reach a local maximum. This local maximum—if it exists—occurs at gdict.

From the satiation point on he starts saving, which is marginally valued by her at vw′ . We

are guessing an equilibrium in which transfers are never optimal within the state space,

so let us assume vw′ < vw for now. In this case, she never desires to raise g to the point

where he saves additional transfers.

We will distinguish between two cases: in Case 1, he saves even when transfers are

zero, that is, c′
0 < y. In Case 2, he consumes the marginal transfer at g = 0, that is, c′

0 > y.

9Barczyk and Kredler (2014) have an explicit formulation of a transfer and a (subsequent) consumption

stage, and show that this is the unique equilibrium of the stage game.
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F 1. Transfer decision when w> 0.

We will denote her optimal transfer choice by gunc (unc is for unconstrained, in contrast

to the case where she is also constrained).

Figure 1 provides an illustration of these two cases. It plots level lines of her Hamil-

tonian H(c�g) as curves and the optimal choice as a circle. The graph in the upper-left

corner depicts Case 1. She sets gunc = 0 since all transfer units would go into savings,

but vw′ < vw. We may say that her transfer margin (the marginal benefit of increasing

transfers) is lower than the savings and the consumption margins (the marginal benefits

of savings and consumption, respectively).

The remaining graphs refer to the Case 2, which is split up into further subcases. In

Case 2a (gdict ≤ 0 < c′
0 − y ′), she is already unwilling to give transfers to him at g = 0, that

is, ∂H/∂g|g=0 ≤ 0. Then the optimal transfer is zero since H is decreasing in g throughout

and thus gunc = 0. Again, her transfer margin is lower than the consumption and savings

margins.

In Case 2b (0 < gdict < c′
0 − y ′), there is an interior solution where he consumes the

entire transfer and she sets the c and g margin equal, so she can implement her desired

consumption for him. In this case, she equalizes the consumption, savings, and transfer

margins, and we end up with her favored allocation over the next instant �t.

Finally, Case 2c shows that another corner solution can occur where she increases

transfers until reaching his satiation point where he would start saving the transfer,

which she dislikes. In this case, she gives c′
0 −y ′ and we have 0 < c′

0 −y ′ ≤ gdict so that he is

just indifferent between saving and consuming the marginal transfer unit. The transfer

margin is now lower than the consumption and savings margins when considering a lo-

cal increase in transfers at the optimum, and is higher than the consumption and savings

margins when considering a marginal decrease in transfers at the optimum. Graphically,

this shows ups as kinks in the level lines of the Hamiltonian.
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Computationally, we later find that in equilibrium all cases apart from Case 2c occur.

We can summarize all cases by defining her optimal transfer by the formula

gunc = max
{

0;min
{

gdict� c
′
0 − y ′}}� (14)

The maximizers for problem (11) are thus (c�g)eq = (c0� gunc). His equilibrium con-

sumption is given by using his policy rule for her optimal choice gunc,

c′∗
eq = min

{

c′
0� y

′ + gunc

}

= y ′ + gunc� (15)

where the second equality follows because she never gives a transfer that would flow

into his savings.

4. R

4.1 Algorithm

Our algorithm uses the Markov-chain approximation method (see Kushner and Dupuis

(2001)). The state space is discretized on a linear grid, and the law of motion for the

state is approximated by a Markov chain that is locally restricted to adjacent grid points.

If the local properties of the Markov chain are chosen such that they are in line with

the true continuous-time process (in first and second moments), then it is known that

the discretized solution converges to the continuous-time solution as the grid becomes

finer (see again Kushner and Dupuis (2001)). The algorithm can also be seen as a tra-

ditional finite-difference PDE approximation scheme for the two HJBs. The Compu-

tational Appendix provides details of the algorithm as well as an introduction to the

Markov-chain approximation method for continuous-time problems and its connection

to finite-difference methods.

Our algorithm is closely related to value-function iteration in discrete time. Since the

equilibrium-selection criterion is to pick equilibria that are the limit of finite games, the

algorithm starts at a final time interval [T − �t�T ] of short duration. The first step is to

determine a reasonable consumption allocation over this final interval. It turns out that

letting players play a static altruism game in transfers over this final interval leads to nu-

merical instability since the value functions of this game have kinks (as is well known).

A more stable approach is to choose a consumption allocation that is smoothly increas-

ing in wealth. The precise form of this rule is not essential for the algorithm’s results. We

have found that all reasonable (i.e., smooth, monotone, and concave) specifications of

final value functions at T −�t consistently yield the same equilibrium in the limit.

We then iterate backward, computing optimal policies in the following manner. On

grid points where he has positive assets, her transfers are set to zero and her consump-

tion rate is determined from her marginal value of assets. As pointed out before, it is very

easy to find the equilibrium of the “stage game” when both players are unconstrained

since best responses are constant in our continuous-time setting. On grid points where

one or both players are broke, the algorithm follows the results from Section 3.3 and Ap-

pendix A.2. We proceed with the algorithm backward in time until value functions con-

verge. Due to the simplicity of the optimal policy rules in the stage games, the algorithm

is very fast and computation time is not an issue.
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Once value functions have converged, we have to check that the transfer motive is

indeed negative for both players throughout the state space and over time, which justi-

fies that we set transfers to nonbroke recipients to zero in the algorithm. If this is the

case, then the transfers-when-constrained equilibrium is the unique equilibrium ac-

cording to our selection criterion. For the specification u(c) = c1−γ and α = α′, we find

that for reasonable parameter configurations {ρ�γ�α� y� y ′� ξ}, there always exists σ large

enough such that this type of equilibrium exists. The values for σ that are required are

2–3% yearly. We further discuss the existence and uniqueness of the equilibrium and the

role the shocks play in Section 4.3.

4.2 Equilibrium properties

The equilibrium can be understood as being made up of three distinct regions. We refer

to them as transfer regions, overconsumption (OC) regions, and self-sufficient (SS) re-

gions. Before going into more detail we describe the key features of these regions. The

reader may glance at Figures 2 and 3 so as to follow the discussion in this part better.

The transfer regions are defined by a positive transfer flow. Transfers are given by

relatively wealth- and (labor-)income-rich donors to poorer recipients. They only flow

once the recipient has exhausted his assets and is borrowing-constrained. In this way,

the donor can control the consumption behavior of the recipient and temporarily takes

on the role of a family dictator, that is, the donor implements the allocation that is in his

best interest for the time that transfers flow. Positive labor income shocks to the recip-

ient (and negative labor income shocks to the donor) cause transfers to decline or stop

entirely.

The OC regions border the transfer regions with both players’ wealth being positive.

In these regions, one agent is poor relative to the other and so the wealth distribution

is relatively unequal. In anticipation of transfers, the poorer player spends down her

wealth and the economy heads toward the transfer region. A defining feature of equi-

librium policies in these regions is moral hazard. The poor agent behaves recklessly by

overconsuming, counting on the benevolence of the altruistic donor. Meanwhile, the

richer agent is also overconsuming. The resulting inefficiencies are similar to the tragedy

of the commons. Both agents ultimately use a common resource (the donor’s assets),

which leads both agents to overconsume long before transfers actually occur. We call

this result the dynamic Samaritan’s dilemma. Finally, the recipient’s consumption path

exhibits a downward discontinuity upon entering the transfer region.

The SS region comprises the rest of the state space. Here, the wealth distribution is

relatively balanced. The possibility of future transfers is remote, and consumption poli-

cies resemble those that agents would choose in the absence of a second altruistic agent.

The allocation is close to efficient in this region.

4.2.1 Numerical example We now study a numerical example so as to illustrate the

central features of the equilibrium. The numerical example is without loss of general-

ity in the sense that all transfer-when-constrained equilibria display the same quali-

tative features as long as both agents are at least imperfectly altruistic. Quantitatively,
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F 2. Transfer policies. Not shown are her transfers for {y = 25� y ′ = 50}, his transfers for

y = 50, and {y = 25� y ′ = 50}. His transfers are zero throughout the grid when y = 50 (but would

become positive for high wealth levels w′ if a larger grid was chosen).

of course, the salience of these features varies depending on the particular parameter

values. Appendix A.3 discusses changes to the altruism parameters, in particular, the

special cases of selfishness, perfect altruism, and one-sided altruism, and studies the

robustness of our results with respect to the other model parameters.

Table 1 provides a summary of the parameter values for the baseline example. We

choose standard values for r and γ. Our value for ρ is slightly lower than in one-agent

models, since the model generates too many binding constraints otherwise. Both agents

face the same process for labor income, but she is more altruistic than he is, that is,

α> α′.

4.2.2 Transfer policies Players’ equilibrium transfer policies are shown in Figure 2.

Transfers only flow when the recipient has no wealth left. Once the donor’s wealth

becomes too low, transfers stop altogether in this example. It is, in general, possible,

however, that transfer regions extend all the way to the origin, that is, that an agent
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F 3. Consumption policies. This figure depicts realized consumption c∗. Not shown are

cases where either player’s labor income is high.

T 1. Parameters in the numerical example.

Parameter Value Parameter Value

α 0�3 yh, y ′
h

50

α′ 0�2 yl, y
′
l

25

γ 2 ξ 10%

ρ 3�4% ξ′ 10%

r 3% σ 3%

with zero wealth gives transfers. This situation occurs when labor-income differences

are large and altruism of the donor is high.

Furthermore, transfers are increasing in the donor’s level of wealth (all panels), in-

creasing in the donor’s labor income (compare the two left panels), and decreasing in

the recipient’s labor income (compare the two lower panels). As mentioned above, all

these features are in line with the empirical evidence on inter vivos transfers.

Considering the transfer policies, it is noteworthy that transfers react very strongly to

an increase (decrease) in the recipient’s income, but much less to an increase (decrease)

in the donor’s income. We see that a change in his income, for example, an increase from

y ′ = 25 to y ′ = 50 shown in the lower two panels, leads to a sizeable reduction in trans-

fers of roughly 25 units, leaving the recipient’s consumption almost stable. In contrast, if

she receives an income shock, for example, an increase from y = 25 to y = 50 seen in the

two left panels, transfers react comparatively weakly, again keeping the recipient’s con-

sumption stable. The reason for the different reaction to the two income shocks is that

she is smoothing both her and his consumption using her stock of wealth as a buffer.
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Finally, note that since she is more altruistic than he is (α > α′), her transfers are

more generous than his; compare the two top panels.

4.2.3 Consumption, savings, and equilibrium dynamics Players’ (realized) consump-

tion in equilibrium is depicted in Figure 3. We only show consumption for the case in

which both players have low labor income since policies for the high labor income state

are qualitatively very similar (although they are higher in levels, especially in regions

where wealth is low). Unsurprisingly, consumption is increasing in both own and the

other player’s wealth.

Consider first the OC region in her consumption function. This OC region covers an

area where she is asset-poor and he is wealthy, and so she expects to obtain transfers

in the foreseeable future. This explains why in the OC region her consumption depends

more on his assets than on her own. A striking feature is that her consumption jumps

downward when she goes from positive to zero wealth. The region in which this jump

takes place corresponds to the region in which he provides transfers. Figure 2 shows that

in the case of {y = 25� y ′ = 25}, he provides transfers when w′ > 600; essentially, once the

economy reaches the transfer region, he restricts her consumption to what he deems

desirable. We discuss the optimality of the consumption discontinuity further in Sec-

tion 4.2.6. This downward jump does not occur when his wealth is low and he gives no

transfers; in this case, we observe standard consumption–savings behavior. The donor’s

consumption policy, however, evolves continuously when she moves from being solvent

to broke; after all, he is always in control of his consumption and thus we see the famil-

iar consumption smoothing. From his consumption policy, we see that the situation is

reversed when she is wealthy and he is poor and receives transfers.

Within an OC region, the economy is moving toward a transfer region. Figure 4 visu-

alizes the dynamics by plotting the economy’s law of motion. The heavy solid arrows de-

pict the law of motion, or drift, (ẇ� ẇ′) for a given state (w�w′) in equilibrium. To put our

results into perspective, we contrast the law of motion of the imperfect-altruism econ-

omy with the law of motion of a no-altruism economy, that is, an economy in which

α = α′ = 0 but where all other parameters are held constant (the dashed arrows). We

see that in his OC region (the lower-right corner of all panels), the altruistic economy

heads rapidly toward the region in which he obtains transfers. In the self-sufficient/no-

altruism economy, however, he always shows typical precautionary-savings behavior: he

saves when his labor income is high, that is, the dashed arrows point upward in the two

right panels where his income is y ′ = 50, and dis-saves when his labor income is low, that

is, the dashed arrows point downward in the two left panels where his income is y ′ = 25.

As for her consumption policy in this region, it is worthwhile to point out that she often

consumes less (or saves more) than in the self-sufficient/no-altruism benchmark as her

wealth decreases since she foresees that she will have to provide for him eventually.10

The SS region is the region in which the wealth distribution is relatively balanced.

In this part of the state space, players’ consumption is determined mainly by their own

10However, her consumption path is still inefficiently front-loaded relative to the social optimum, as

Section 4.2.7 will show.
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F 4. Law of motion/drift of asset position. The heavy solid arrows denote the drift in the

altruism economy (baseline model); the dashed arrows denote the drift in the no-altruism econ-

omy (α = α′ = 0; other parameters are as in the baseline model).

assets: her consumption function is increasing in her assets w and flat in his assets w′

(and the opposite for him). Figure 4 shows that players’ policies, and thus the law of

motion of the economy, are practically the same as in the self-sufficient economy. This

is because it is unlikely that the economy ends up in a region where one player becomes

dependent on the other.

Take a closer look at her and his consumption functions in the upper-right corner

of the state space where she has w = 1500 and he has w′ = 500. It is very interesting to

observe what occurs on the seams between the SS and the OC regions. On the bound-

ary between the SS and the OC regions, we see that both players’ consumption func-

tions have upward bumps as the economy leaves the SS region: for both him and her,

consumption is higher at this bump than would be expected when linearly extrapo-

lating from within the SS region. The reason for this is that both players have incen-

tives to overconsume as they enter the OC region—the dynamic Samaritan’s dilemma.

For him, this effect indeed leads to the consumption function being locally decreas-

ing in his own wealth. This is equivalent to the value function being convex, meaning

that he is locally risk-loving. We will return to this feature of the equilibrium in Sec-

tion 4.2.8.

From the phase diagram in Figure 4, we see that once the economy crosses this seam

it becomes increasingly unlikely that the economy returns to the SS region. As a result,

the future donor curbs her consumption in anticipation of having to provide transfers.

The future recipient, on the other hand, does not fully internalize the effects of his con-



Quantitative Economics 5 (2014) Altruistically motivated transfers under uncertainty 725

sumption behavior on her resources and overconsumes. As a final note, Figure 4 reveals

that the OC region in the lower-right corner is larger than in the upper-right corner. This

is because her altruism is higher than his, which induces him to rely on her in a wider

range of circumstances.

4.2.4 Ergodic distribution Figure 5 informs us about the ergodic distribution of wealth.

The contour lines in the upper-right quadrant show the level lines of the ergodic density

over (w�w′). Note that due to the wealth shocks, there is always a chance that both play-

ers wealth grows large, so the support of the ergodic distribution is the entire R
2
+. Since

both players are saving when facing high labor income, the economy always comes

back into the region where both players have positive wealth. We see that she usually

holds higher wealth than he does, since he relies more on her transfers than she does on

his.

Indeed, in the example, we find that she gives transfers to him 10�0% of the time,

whereas he gives transfers to her only 2�9% of the time. The curve in the lower-right

quadrant gives the mass distribution over states {(w�w′) :w > 0�w′ = 0}, which has a to-

tal mass of 18�7% under the ergodic distribution. So 8�7% of the time he is broke but

does not receive transfers from her. The upper-left quadrant shows the distribution over

cases where only she is broke, which is the case 9�6% of the time. Finally, there is a mass

point at the origin where both players are broke, in which the economy spends 0�7%

F 5. Contours of the ergodic distribution. Income dimensions are integrated out. The up-

per-right quadrant shows contour lines of the density for situations where both players have

positive wealth. The upper-left quadrant depicts the mass region where she is broke but he has

positive assets (w = 0�w′ > 0) as a univariate density over w′ (total mass: 9�6%). The lower-right

quadrant shows the distribution for the case (w > 0�w′ = 0), total mass: 18�7%. The lower-left

quadrant gives the size of the mass point where both are broke simultaneously (w =w′ = 0; 0�7%

of time). In total, she is broke 10�3% of the time and he is broke 19�4% of the time. She gives

transfers 10�0% of the time and he gives transfers 2�9% of the time (not shown in figure).
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F 6. A history of wealth, consumption, and transfers. Both players start with y0 = y ′
0 = 25,

the only switch in income occurring for him at t = 13. Wealth shocks are set to zero for illustrative

purposes.

of the time. In the corresponding no-altruism economy, agents are only broke 6�6% of

the time. Thus, our model may provide a way to address one of the well known short-

comings of the Bewley model, which is that it does not generate enough wealth-poor

households.

4.2.5 A history We can gain a better appreciation of the equilibrium dynamics by con-

sidering a particular history for players’ assets, consumption, and transfers. Figure 6 dis-

plays such a history. The graph on the top displays her and his wealth trajectories. She

starts out with high assets and he is relatively wealth-poor at t = 0 (which corresponds

to starting the economy in the lower-right corner of the plots in Figure 4). As for labor in-

come, we let both agents start with the low realization and make him switch to the high

income after 13 years, as we see in the second panel. Until the third year, he consumes

his wealth down, at which point he obtains transfers as shown in the bottom panel. No-

tice that his consumption path jumps downward at the point when he obtains transfers,

which corresponds to the discontinuity of his consumption function in Figure 3. She

then provides him with transfers from year 3 to year 10. These transfers decrease over

time (since she is spending down her wealth) and eventually stop. For 3 years, he then

consumes only his labor income. In year 13, he obtains the high income realization and

as a result begins to accumulate wealth, her transfers remaining zero.

4.2.6 Characterizing incentives in OC region We now return to the discontinuity in the

recipient’s consumption path when entering the transfer regime. We find that the size of
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F 7. Means-tested benefit G. Would you prefer plan 1 or plan 2?

the jump is decreasing in both altruism parameters. The more agents take into account

the effects of their behavior on the other, the smaller the inefficiency becomes.11

The intuition for why a jump in consumption can indeed be optimal in the presence

of conditional transfers can already be gleaned from a simple example of means-tested

benefits in the absence of altruism. Consider a consumer with wealth w0 > 0 and no

labor income. A government provides a means-tested benefit in the form of a flow pay-

ment G handed out conditional on the agent having zero wealth. For simplicity, assume

that ρ = r, which implies that the optimal consumption path is constant while assets

are positive, that is, ct = c̄ for all t for some constant c̄. Given w0, the agent will be able

to consume c̄ over an interval t ∈ [0;T(c̄)], where T(c̄) ∈ (0;∞] is the insolvency time

implied by the consumption plan.

Consider the two consumption paths depicted in Figure 7. A smooth consumption

path implies c̄ = G. As is obvious from the figure, any plan with c̄ > G does better than

this, so a smooth consumption plan cannot be optimal. In technical terms, the familiar

theorems from control theory fail because the law of motion wt = rwt + ct +GIwt=0 is a

discontinuous function of the state at w = 0. In terms of marginal cost–benefit analysis,

a means-tested benefit adds an additional cost of saving to the standard consumption–

savings trade-off: in postponing bankruptcy, a saver diminishes the net present value of

government transfers.

For an altruistic transfer recipient, the situation is similar. However, the additional

disincentive to save is not quite as pronounced since an altruistic recipient takes the

effects of her behavior on the donor into account. To see this, suppose she has a small

level of wealth �w left. Define �t as the time it takes her to reach zero assets given a con-

sumption rate c. Her problem, taking his policy c′ and thus ẇ′ as given, may be written

as

max
c≥0

{

u(c)�t + αu
(

c′)�t + e−ρ�tv
(

0�w′ + ẇ′�t; y� y ′)}�

11Barczyk and Kredler (2014) derive a closed-form expression for the size of this jump in the same set-

ting without flow labor income and with logarithmic preferences. They argue that this discontinuity is the

equivalent to the Samaritan’s dilemma in two-period models.
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where

�t =
�w

c − y − r�w
�

The first-order condition with respect to c is

uc(c)�t
︸ ︷︷ ︸

flow utility

+
d�t

dc

[

u(c)+ αu
(

c′) − ρV
︸ ︷︷ ︸

A

+ ẇ′vw′
︸ ︷︷ ︸

B

]

= 0�

An increase in c leads to additional flow utility, uc(c)�t, but exhausts her wealth earlier,

that is, d�t/dc < 0. Expression A says that exhausting wealth earlier replaces flow utility

before going broke, u(c)+αu(c′), with the flow value of being broke, ρV . The term A will

usually be positive, since consumption just before being broke is higher than consump-

tion when broke. So term A acts as an incentive to delay the point of going broke, that

is, it is an incentive to save. Depending on the sign of ẇ′, expression B either provides an

incentive or a disincentive to save. In our example history from before, he was dis-saving

when giving transfers (i.e., ẇ′ < 0). This would be an additional disincentive to save for

her. Consuming more makes her face a richer donor upon entering the transfer regime,

which increases the transfers she can expect.

The discontinuity in the recipient’s consumption path is a stark deviation from effi-

ciency. The poor agent behaves recklessly by overconsuming, counting on the benevo-

lence of an altruistic donor. This is a form of moral hazard: if agents’ consumption and

transfer decisions were contractible, this inefficiency could be avoided. It turns out that

in equilibrium there are also other sources of inefficiency, which we turn to next.

4.2.7 Inefficiencies We first introduce a measure for inefficiency of an allocation. An

allocation is a contingent plan for consumption and transfers for both agents for t ∈
[0�∞). Whenever an inefficient allocation is played at some point x = (w�w′� y� y ′) in

the state space, then there exists a continuum of efficient allocations indexed by Pareto

weights η that is preferred by both players. The Pareto weights associated with these

preferred allocations lie in a range η ∈ [
¯
η(x)� η̄(x)]. Depending on η, the efficiency gains

are shared differently: the
¯
η(x) allocation gives all gains to him, while the η̄(x) allocation

gives all gains to her. So as to have a unique measure for the potential welfare gains, we

will focus on the efficient allocation that provides the same gain to both players’ welfare

in the sense of consumption equivalent variation.

Formally, consider the following thought experiment. At a given point x in the state

space, offer the efficient allocation with Pareto weight η to both agents. Compute the

percentage increase γ(x�η) in consumption (for all future t, for all states of the world,

and for both players) that she requires to be indifferent between the offered η allocation

and the equilibrium allocation. Equivalently, compute the percentage increase γ′(x�η)

that he would require. We can then compute γ and γ′ for all efficient allocations η ∈
[0�1], as is illustrated in Figure 8 for one particular x. In this example, she is sufficiently

well off under the equilibrium allocation to reject any efficient allocation that assigns

weight lower than
¯
η(x) = 0�5 to her, whereas he would accept any allocation with η <
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F 8. Potential welfare gains for a given state x= (w�w′; y� y ′).

F 9. Quantifying distortions: consumption equivalent variation. Not shown are income

states where either player has high income. The average inefficiency (γ∗) using ergodic weights

is 2�0%.

η̄(x) = 0�8. There is an interval [
¯
η(x)� η̄(x)] of allocations that make both players better

off. This interval must contain at least one point by the definition of Pareto efficiency.

The efficient allocation that gives equal gains to both agents is associated with the

value η∗ that solves γ(x�η∗) = γ′(x�η∗). Obviously, the intersection of γ and γ′ that

identifies this value must be unique. The common welfare gain associated with this al-

location is γ∗(x) = γ(x�η∗) = γ′(x�η∗) and is our measure for the inefficiency of the

equilibrium allocation at x. Using this procedure, we now obtain the potential welfare

gains for all points in the state space.

Figure 9 shows contour lines of γ∗ and η∗ for our numerical example.
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F 10. Altruistic-strategic distortions in Euler equation. The figure depicts the al-

truistic-strategic distortion in Euler equation (9) as a fraction of marginal utility (i.e.,

c′
w[v′

w − αuc(c
′)]/uc(c′)). This number gives us the growth rate of marginal utility in excess of

the efficient rate ρ− r = 0�4%. The average distortions using ergodic weights is 0�03% for her and

0�06% for him.

In the SS region, we see that the allocation is close to efficient: recall that players’

policies are close to the SS policies, which satisfy the planner’s Euler equation (10). Sim-

ilarly, Figure 10 plots the altruistic-strategic distortions for her and him from the Euler

equation (9) and shows that the Euler equations are essentially undistorted in the SS

region.12

For the OC region, Figure 10 shows that distortions to the Euler equations (EE) are

large and positive for the poorer player: his growth rate of marginal utility is up to 0�7%

higher than the efficient rate ρ− r = 0�4% in the lower-right corner. There are also pos-

itive distortions to the richer player’s EE, but they are somewhat weaker. These distor-

tions entail what we call the dynamic Samaritan’s dilemma: inefficiencies feed back in

time to long before transfers start to flow, and both players are overconsuming.13 The

intuition behind this type of inefficiency is akin to the tragedy of the commons. Both

agents ultimately consume out of a common resource—the donor’s assets. Agents take

into account the adverse consequences of their behavior on the other person, but fail to

do so completely because their altruism is imperfect and thus they engage in a race to

the bottom. In fact, we find that the less altruistic is a player, the stronger are the distor-

tions to his Euler equation.

12Note that since transfers are zero inside the state space, transfer-induced incentives are zero and we

can focus solely on the altruistic-strategic distortion when analyzing distortions to the EE.
13In the two-period models studied before in the literature, only the recipient’s savings decision is dis-

torted and, by the two-period assumption, distortions are only present immediately before transfers flow.
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Figure 10 shows that agents’ Euler equations are undistorted in the transfer regions,

the distortions sharply dropping with respect to the OC region. This is because the donor

effectively acts as a family dictator inside the transfer region. Figure 9 confirms this; it

shows that the rich player obtains a value very close to his/her preferred allocation (the

implied Pareto weights are close to 0 or 1). Figure 9 further shows that when the recipient

has little wealth left, the allocation is still almost efficient. The reason for this is that

the OC inefficiency is short-lived at this point: there is only a little time left until the

economy enters a close-to-efficient regime. However, the criterion γ∗(x) is about the

consumption allocation for the entire future. When moving farther into the OC region,

more time is spent in a distorted regime and γ∗ increases.

Finally, due to the presence of labor-income risk, a type of inefficiency known from

(no-altruism) Bewley models is also present in our setting. In Figure 9, we see that the

equilibrium allocation is inefficient in the lower-left corner, where she is broke and he

does not provide transfers to her. At this point, she is constrained (w = 0 and c = y) in

equilibrium, but the Pareto planner is not (W = w′ > 0). What would the planner do to

implement efficiency gains at this point? The planner would make agents share their

labor-income risk by providing her with higher consumption in the constrained state

but reduce her consumption in future high-income states.14

In general, the welfare gains from moving to full commitment are not overwhelming

(2�0% if weighted by the ergodic distribution), so it is plausible that families play this

equilibrium if commitment is difficult or costly to attain.

4.2.8 Risk-lovingness As alluded to before, another form of moral hazard (besides over-

consumption) can arise in this model if we allow for a portfolio decision. Value functions

can be locally convex for the poor player on the seam between the SS and the OC regions,

meaning that the poor player becomes locally risk-loving. The economic intuition for

this risk-lovingness is as follows. Suppose the agent could participate in a fair lottery.

Then his downside risk would be limited: if he lost the bet and entered the OC region,

the rich agent would take on part of the losses by providing transfers eventually. The up-

side potential of the bet, however, is enjoyed by the poor agent alone: winning a large

amount would bring the economy into the SS region, where the possibility of transfers

is remote.

We extend the setting from before by giving players access to two assets: a safe asset

with rate of return r and zero variance, and a risky asset with expected rate of return r

and standard deviation σ . In addition to consumption and transfers, players now have

to choose the portfolio share in the risky asset. The portfolio shares in the risky assets are

14For parameter constellations where the transfer region extends all the way to the origin, this type of

inefficiency does not occur. One could argue that altruistic agents, especially inside a family, should be

able to write contracts that avoid underconsumption of a constrained agent. If we allowed for fully state-

contingent contracts between agents, there would be commitment, which we explicitly rule out. Short of

fully contingent contracts, one could also imagine restricting altruistic agents to basic lending contracts

with a fixed interest rate. This possibility is clearly of interest, but is beyond the scope of the current paper.
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functions z(x) ∈ [0�1] and z′(x) ∈ [0�1], that is, we rule out short-selling. The resulting

law of motion for her wealth is then dwt = (rwt + yt − ct − gt + g′
t)dt + ztwtσ dBt and her

HJB becomes

ρv = ξ
[

v(·� ỹ)− v(·� y)
]

+ ξ′[v
(

·� ỹ ′) − v
(

·� y ′)]

+ αu
(

c′) +
(

rw′ + y ′ − g′ − c′)vw′ + z′2w′2σ
2

2
vw′w′

+ max
c≥0

{

u(c)+
(

rw+ y + g′ − c
)

vw
}

+ max
g≥0

{

g[vw′ − vw]
}

+ max
z∈[0�1]

{

z2w2σ
2

2
vww

︸ ︷︷ ︸

risk-taking

}

�

where the portfolio decision shows up in the terms in second derivatives of the value

function. The risk-taking decision can be decoupled from the consumption and trans-

fer decision; it is given by the bang–bang-type rule z∗ = I(vww > 0), where I(·) is the

indicator function. So she goes fully into the risky asset whenever the value function is

convex; otherwise she invests only in the safe asset.

Figure 11 shows the states in which players choose the risky asset (parameters are

as in the baseline model). We see that both players invest in the risky asset when caught

between the SS and the OC region and “gamble for resurrection.” Since the risky asset is

assumed to have the same expected return as the safe asset, it is never efficient to invest

in it; thus this constitutes a form of moral hazard.

F 11. Risk-taking regions. For the risk-taking model, the parameters are as in baseline

model; see Table 1. Players choose the risky asset inside the gray areas. Not shown are the states

where either player has low income.
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4.3 Discussion

We finally discuss existence and uniqueness of equilibrium and the role that the Brow-

nian wealth shocks play as a randomization device.

We first explain how the transfers-when-constrained equilibrium breaks down when

σ is chosen too low. After a certain number of iterations, the transfer motive (µ or µ′) of

the richer agent turns positive on the seam between the SS and the OC region. The richer

player would then prefer to lift the poorer one into the SS region by giving a transfer so as

to avoid the OC region and the associated inefficiencies, and the algorithm breaks down

because the transfers-when-constrained conjecture is not fulfilled. We experimented

with algorithms that allow for transfers within the state space, but were unsuccessful

in finding equilibria that converge to stationary policies. Determining transfers within

the state space is challenging in our grid-based algorithm because of the bang–bang na-

ture of the transfer decision.15 We find that problems with the transfer motive occur first

on the margins of the grid, where agents’ wealth is large and {y� y ′} are unimportant as a

source of income.

Indeed, we have found that the policies in our setting converge to those of an other-

wise identical problem without labor income as studied in Barczyk and Kredler (2014),

henceforth BK, when players’ joint wealth W ≡w+w′ grows large. In their homogeneous

setting, the wealth share P ≡ w/(w+w′) is the unique state variable and P ∈ {0�1} are the

two steady states in a transfers-when-constrained equilibrium. BK find that a transfers-

when-constrained equilibrium does not exist in the absence of wealth shocks. The intu-

itive reason is that there are tensions between the two players, who disagree on to which

of the steady states the economy should converge. These tensions cannot be resolved

in a deterministic setting. Mathematically, the ordinary differential equations (ODEs) in

P that characterize the equilibrium are overdetermined by the boundary conditions at

P ∈ {0�1}. Mixed strategies, the tool of choice to ensure existence of equilibrium in static

games, are not tractable in differential games, so BK introduce wealth shocks. They find

that a transfer-when-constrained equilibrium then exists, the ODEs being exactly deter-

mined.

One may have conjectured that income uncertainty alone would be sufficient for the

transfers-when-constrained equilibrium to exist, but we find that this is not the case; it

is crucial to have a shock that grows proportionally to joint wealth W .

If shocks to wealth are large enough, then the transfers-when-constrained equilib-

rium is the unique equilibrium we find computationally by backward iteration. In Ta-

ble 2, we report the minimal level for σ necessary for this, given different levels of γ and

a ≡ α1/γ . The reparameterization a is a more intuitive measure of altruism, which keeps

the generosity of the donor constant when other model parameters change.16 As men-

tioned above, we find that the income-process parameters {y� y ′� ξ} have no bearing on

15Barczyk and Kredler (2014) discuss one possibility of such a transfer (mass transfers) in more detail in

their simplified setting, but can rule out equilibria where such transfers are given to an impoverished agent.
16Reparameterization a is the fraction of recipient’s consumption to donor’s consumption that a donor

chooses under power utility. Her first-order condition for transfers is αc′−γ = α(y ′ +g)−γ = c−γ , from which

we obtain the optimal consumption ratio a≡ (y ′ + g)/c = α1/γ .
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T 2. Lower bound for σ (in %).

a= a′ 0�1 0�3 0�5 0�7 0�9

γ = 0�5 2�5 5�3 3�9∗ 2�6∗ 0�9

γ = 1 1�1 3�2 3�1∗ 3�1 0�9

γ = 2 0�8 1�8 2�5 2�4 0�9

γ = 4 0�4 1�0 1�3 1�6 0�9

γ = 8 0�1 0�3 0�6 0�7 0�6

Note: Lowest value of σ for which the transfer motive µ stays negative throughout the state space, and thus equilibrium

exists for given γ and a= a′ , where a= α1/γ and a′ = α′1/γ . Values are calculated using the homogeneous model that obtains in
the limit when wealth becomes large with respect to income; see Barczyk and Kredler (2014). In the cases marked with asterisks,
the portfolio-variance effect has to be neutralized for the equilibrium to exist. Values for ρ and r are as in the baseline example.
When altruism is asymmetric, we find that the lower bound for σ is governed mainly by the higher altruism parameter.

the issue of existence of the transfers-when-constrained equilibrium. For convenience,

altruism is assumed to be symmetric (a′ = a).17 We find that for fixed γ, the lower bound

for σ is inverse U-shaped in a, just as altruistic-strategic distortions are (not shown

here). Tensions disappear at the extremes where the model converges to the selfish or

the perfectly altruistic case and are maximal for intermediate values of altruism. When

fixing a, the lower bound is (weakly) decreasing in γ. This is due to a portfolio-variance

effect that is explained in detail in Appendix A.3.3.

One may choose to think of the noise term as a randomization device such as pro-

vided by mixed strategies. Another obvious interpretation is that players save in risky

assets whose returns are imperfectly correlated. Examples are shocks to wealth held in

housing and other durable goods or entrepreneurial and investment risk. Finally, we

may interpret the shocks as disturbances to consumption. Under this interpretation, c

is the consumption rate that an agent desires to attain in a given year, but shocks cause

realized consumption spending to stray from this desired level. Examples are health ex-

penditures and shocks to prices of commitment goods (i.e., goods the household can-

not quickly substitute away from, e.g., renting an apartment or driving a fuel-inefficient

car). The levels of σ required for the transfers-when-constrained equilibrium to exist,

which are not higher than 3�2% for standard values of γ, seem realistically low in view of

these examples. In terms of computation, adding noise smooths value and policy func-

tions and provides additional stability. Mathematically, the noise term is reminiscent of

the theory of vanishing viscosity solutions, which is an important tool in the analysis of

PDEs, and HJBs in particular.18

Finally, we remark upon a potential type of equilibrium that BK find in the absence of

shocks. They show that there exists a continuum of tragedy-of-the commons-type equi-

libria, in which players eventually pool their wealth and behave as if they were a perfectly

altruistic dynasty (albeit with a higher discount rate than the individual players). In our

setting, this type of equilibrium is ruled out by the equilibrium-selection criterion that

17When altruism is asymmetric, we find that the lower bound for σ is governed mainly by the higher

altruism parameter.
18For an excellent introduction to viscosity solutions and the application to control theory, see Bressan’s

(2010) tutorial. BK also discuss viscosity solutions in differential games in their online appendix.
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requires the equilibrium to be the limit of a sequence of finite games. In the final pe-

riod, imperfectly altruistic players would choose not to pool their wealth, but the richer

player would reserve a larger fraction of resources for herself, causing the equilibrium to

break down.

5. T 

A novel feature of the model is that the donor conditions transfers on the recipient’s

wealth and labor income in distinct ways. It imposes fewer restrictions on the transfer–

income derivative (TID) than previous models do, but adds restrictions in that it distin-

guishes between transfer–income and transfer–wealth derivatives (TWD).

The TID is defined as the change in transfers that occurs when the donor’s income

decreases by $1 while the recipient’s income increases by $1. In most previously studied

altruism models, this derivative can be shown to equal unity, that is, the donor “undoes”

the income redistribution by decreasing transfers one-for-one, thereby maintaining the

consumption allocation unchanged. Altonji, Hayashi, and Kotlikoff (1997) estimate a

TID of 0�13 on cross-sectional transfer data from the Panel Study of Income Dynamics

(PSID) and interpret this as evidence against the altruism model. However, as McGarry

(2006) argues, the TID restriction does not hold if current income contains new informa-

tion about future income. Our model can actually generate TDIs both above and below

unity, depending on the persistence in agents’ income processes.

For wealth changes, the picture in our model is fundamentally different, and we

think we are able to point to a new way of testing the restrictions imposed by altru-

ism models in the data. We define the transfer–wealth derivative (TWD) as the change

in transfers that occurs when the donor’s wealth decreases by $1 while the recipient’s

wealth increases by $1. Due to no commitment, we show that transfer–wealth deriva-

tives (TWDs) are lower than unity if altruism is imperfect. In our numerical example

from Section 4.2, we find an average TWD of 0�33 for g and 0�27 for g′ (ergodic weights).

We refer the reader to Appendix A.4 for calculations and details regarding the TID and

TWD.

The fundamental difference between labor income and wealth suggests caution

when testing transfer-derivative restrictions. Our model says that it is crucial to differ-

entiate between flow labor income and one-time changes to the stock of wealth, which

may not always be easy in real-world data (consider, for example, labor income in the

form of a large bonus).

On a different note, the model’s implications on consumption behavior are that con-

sumption levels should depend on relatives’ assets and labor income in addition to an

agent’s own assets and income. In families where the wealth distribution is very bi-

ased, poor households’ consumption should strongly depend on the rich households’

resources and only weakly on their own resources. This should be the case even if ac-

tual transfers are not observed yet (for families in the OC region). However, this cross-

dependence should not be observed for families with a balanced asset distribution (fam-

ilies in the SS region).
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There is a large literature that is concerned not with levels, but with changes in con-

sumption over time, and that tests the implications of the Euler equations on longitu-

dinal data. Our model adds terms to the standard (selfish) Euler equation and predicts

that marginal utility should grow fastest when a family is inside the OC region. Empiri-

cally, this would become evident in consumption growth being lowest for families with

an uneven (but not degenerate) wealth distribution. Drops in consumption should be

sharpest when one household begins to receive transfers from another. Consumption

growth should be higher in regions where one household receives transfers or where the

family’s wealth distribution is balanced. Indeed, our model predicts that consumption

growth should be the same in these regions as for otherwise similar households that lack

family ties to other households.

Finally, the previously mentioned extension of the model that allows for endogenous

portfolio choice makes the prediction that households should purchase lotteries when

their wealth is low relative to that of the rest of the family, especially when they are not

yet dependent on transfers from them. This situation corresponds to the seam between

the SS and the OC regions in the model; see Figure 11). In reality, we could think of such

lotteries as purchasing insufficient insurance for health or longevity, making risky in-

vestments in assets or a business, and making risky career choices.

6. C

This paper provides a building-block model suitable for tackling economic issues in

which dynamic behavior of the family is essential. As such, it is an important step in

the direction necessary for building more realistic environments for quantitative analy-

sis. A major strength of the framework is that it is consistent with stylized facts on inter

vivos transfers and that it delivers precise predictions on the timing of transfers. Thus,

an immediate application would be to study the timing and size of inter vivos transfers

or remittances.

For future research, the model is suitable as a building block for dynamic models of

the (extended) family. Obvious applications are the welfare implications of government

policies such as pensions, health insurance, welfare programs, or the estate tax. We ar-

gue that a key issue when studying these applications is to acknowledge the interaction

of government-provided transfers with transfers already provided by the family.

Some applications will necessitate the introduction of nonmonetary transfers (in-

kind, time, co-residence) into our model. In a follow-up project (Barczyk and Kredler

(2013)), we extend the current framework using both labor-supply and time-transfer de-

cisions so as to study the macroeconomic consequences of government long-term-care

policies. While government-provided care potentially crowds out family-provided care,

it may provide households with additional insurance.

Finally, one can view our framework as a theory of partial insurance. The crucial

difference between our theory and others in the literature is that impoverished agents

receive transfers even if they have never given to the donor in the past and are unable

to reciprocate in the future. An example for this is altruistic behavior toward people

with terminal diseases or disabilities. From this point of view, it seems promising to
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further investigate the implications of our theory for risk-sharing. Kaplan and Violante

(2010), using a consumption–insurance measure proposed by Blundell, Pistaferri, and

Preston (2008), find that the standard Aiyagari–Bewley–Huggett model implies too little

consumption insurance against persistent shocks relative to the data, suggesting that

households have additional sources of insurance. Family insurance is an obvious candi-

date to reconcile theory and evidence. Our model provides a framework to test whether

family insurance can quantitatively account for the missing sources of insurance.

A

A.1 Pareto-optimal allocations

To solve the Pareto planner’s problem, individual levels of wealth and labor income can

be pooled. Define Wt ≡ wt + w′
t as the total wealth of the family and, similarly, define

Yt ≡ yt + y ′
t as total labor income.19

Given an initial wealth level W0, the planner chooses consumption policies {ct� c′
t} to

maximize

E0

[

η

∫ ∞

0
e−ρt

[

u(ct)+ αu
(

c′
t

)]

dt + (1 −η)

∫ ∞

0
e−ρt

[

u
(

c′
t

)

+ α′u(ct)
]

dt

]

s.t. dWt =
(

rWt +Yt − ct − c′
t

)

dt +WtσW dBW�t� (16)

Wt ≥ 0 ∀t, all histories,

where σW = σ/
√

2 and BW�t is a standard Brownian motion. The standard deviation for

the planner is smaller than for the individual players, since the planner will allocate one-

half of wealth in each risky asset. We will now show that this is the optimal portfolio for

the planner.

Since the planner is risk-averse, she should obviously choose the portfolio weights

such that the portfolio variance is minimized since both assets have the same expected

return. Let P be the fraction of W that goes to her asset and let (1 − P) be the one allo-

cated to his asset. Then the law of motion for W is given by

dWt =
(

rWt +Yt − ct − c′
t

)

dt + PtWtσ dBt + (1 − Pt)Wtσ dB′
t �

The variance is given by

E
[

(dWt)
2
]

= P2
t W

2
t σ

2 dt + (1 − Pt)
2W 2

t σ
2 dt�

which is minimized for P∗ = 1/2. Substituting P∗ back into the law of motion yields

dWt =
(

rWt +Yt − ct − c′
t

)

dt +Wt
σ
√

2
︸︷︷︸

≡σW

dBt + dB′
t√

2
︸ ︷︷ ︸

≡dBW�t

�

19Under our assumptions on the endowment processes, Yt contains enough information to forecast fu-

ture Yt+s , s > 0, perfectly. Under more general Poisson processes for yt and y ′
t , the planner may need to keep

track of yt and y ′
t individually so as to forecast Yt+s correctly. It is straightforward to adapt the arguments

here to this case.
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BW�t as defined here is standard Brownian motion since it has unit variance, has normal

increments, and is serially uncorrelated. This gives us the law of motion stated in the

planner’s problem (16).

Let V η(W �Y) be the value to a planner with wealth W and labor income Y when

putting weight η on her lifetime values. The planner’s value function satisfies the HJB

ρV η = max
c�c′

{
[

η+ α′(1 −η)
]

u(c)+
[

αη+ (1 −η)
]

u
(

c′)

+
(

rW +Y − c − c′)V η
W + ξ

[

V η
(

·� ỹ + y ′) − V η(·�Y)
]

+ ξ
[

V η
(

·� ỹ ′ + y
)

− V η(·�Y)
]

+
σ2
W

2
W 2

t V
η
WW

}

�

Intratemporal optimality requires that the two margins of allotting consumption to him

and to her be equalized:

[

η+ α′(1 −η)
]

uc(ct)=
[

(1 −η)+ αη
]

uc(ct) ∀t�all histories�

From this, we obtain the intratemporal optimality condition

uc(ct)=
(1 −η)+ αη

η+ α′(1 −η)
uc

(

c′
t

)

∀t�all histories� (17)

As in standard insurance problems, marginal utilities are proportional across states and

time. Here, the factor of proportionality is a function of the planner’s weight η on her

and the altruism parameters α and α′. It is instructive to consider the extreme cases

where η = 0 or η = 1. Placing all weight on her yields uc(ct) = αuc(c
′
t), whereas placing

all weight on him yields uc(ct) = 1
α′uc(c

′
t). Thus, just as in the static altruism model, the

ratio of marginal utilities is restricted to the interval [α� 1
α′ ]. The more altruistic are both

agents, the smaller is the consumption inequality a Pareto planner may tolerate. For

perfect altruism (α = α′ = 1), there is a unique Pareto-optimal allocation and both agents

consume the same amount always. As altruism goes to zero, the bounds [α� 1
α′ ] approach

zero and infinity, until reaching the standard case with selfish agents.

When using the functional form of power utility in Equation (17), we see that the

planner will choose the consumption rate of him as a fixed proportion of her consump-

tion rate. So given that the planner wants to devote expenditures Ct ≡ ct + c′
t on both

players’ combined consumption in a given state, it is now easy to determine how con-

sumption should be split between the two agents. From this rule, we can then write an

indirect utility function of the form Uη(Ct) ≡ Hη

1−γ
C

1−γ
t for the planner, where Hη is a

constant that depends on η. Since Uη represents the same preferences for all η, this im-

plies that the planner will choose the same aggregate consumption plan {Ct} regardless

of η; only the division of Ct between the agents will depend on η. Furthermore, it implies

that the planner always runs down aggregate wealth Kt at the same rate in any efficient

allocation. The reasoning just laid out leads us to the following solution strategy for the

planner’s problem(s). First, solve a standard Bewley problem in {Ct} for a planner who

faces constraints of the form in (16); then find the two agent’s consumption plans {ct� c′
t}

given {Ct} according to the sharing rule implicit in (17).
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We now turn to the intertemporal optimality conditions. Note that Equation (17)

gives us c′
t as a function of ct ,

20 so that the planner’s problem collapses to a conventional

consumption–savings problem with a modified objective function (to see this, substi-

tute out c′
t in the objective (16) using (17)). This yields the intertemporal condition (10),

which we reproduce as

Auc(c)
︸ ︷︷ ︸

expected growth of uc

≤ (ρ− r)uc(c)�

This is the same Euler equation as in the standard one-person consumption–savings

problem. If this Euler equation did not hold, the planner should reallocate resources

intertemporally for one agent maintaining the present value of resources allocated to

her/him constant. This equation says that marginal utility has to grow at the expected

rate (ρ− r) whenever the planner is unconstrained (i.e., Wt > 0), but may grow at a lower

rate when the planner is constrained.

As was pointed out in the Introduction, all commitment models of the family (such

as the unitary and collective model) build on the above Pareto problem.

Even though equilibrium allocations are usually not efficient in our framework, it is

still instructive to think about arrangements that would implement efficient allocations.

In a deterministic setting without labor income, Barczyk and Kredler (2014) show that

any efficient allocation can be implemented by assigning appropriate shares of initial

assets to the agents and then shutting down transfers forever. In the setting of the current

paper, it turns out that an analogous arrangement can support any efficient allocation

in the case that σ = 0 and u(·) is homothetic.

This analogous arrangement is as follows. Players commit to share their joint flow

labor income Yt = yt + y ′
t for all t and initial assets W0 = w0 + w′

0 according to a fixed

sharing rule, that is, she receives a fixed fraction η̃ of Yt and he receives the rest (i.e.,

(1− η̃)Yt ). Furthermore, transfers are ruled out for all t. If utility u(·) is homothetic, then

agents’ consumption rules will equal the planner’s rule since the agents’ problems are

just a scaled version of the planner’s problem. If σ = 0, indeed, this mechanism yields

exactly the same consumption allocation as the planner’s problem since there are no

gains from insuring players against investment risk. If σ > 0, however, there are also

gains from portfolio diversification. The planner will then hold exactly half of total as-

sets in each account and has to rely on transfers to implement the efficient allocation,

causing the equivalence to the resource-sharing mechanism to break down.

A.2 Transfers decision when both players are broke

The case where both players are broke introduces the additional complication that also

the donor faces a constraint. Specifically, the donor’s consumption plus transfers cannot

exceed labor income. However, the different cases and the intuition are very similar to

the case where only the recipient is constrained.

20When η = 1 and α = 0, Equation (17) does not give us c′
t as a function of ct any more; in this case,

however, it is obviously optimal for the planner to set c′
t = 0 for all t. Analogously, η = 0 and α′ = 0 imply

that ct = 0.
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Consider the case w = w′ = 0. We will consider the situation where her flow labor

income is higher than his: y > y ′. We will first study her transfer decision given that g′ = 0

and later verify that indeed g′ = 0. We assume that µ< 0.

Her problem is to maximize H(c�g) in (11) subject to the additional constraint

c + g ≤ y� (18)

which says that she cannot spend more than her current labor income.

Obviously, if the unconstrained maximizers (c0� gunc) from Section 3.3 fulfill this

constraint, then they are also the solution to the constrained problem. Also, the intu-

ition from the unconstrained case applies.

From now on we will be concerned with the case where the constraint binds, which

means that the unconstrained maximizers (c0� gunc) fall outside the feasible set defined

by (18) and the nonnegativity constraints c ≥ 0 and g ≥ 0. We will now show that the op-

timal choice must fulfill her budget constraint with equality and that transfers do not go

into savings. Formally, we want to show that the constrained maximizers (cconstr� gconstr)

lie on the line segment D defined by

D≡
{

(c�g) : c + g = y�g ≤ c′
0 − y ′}�

We will first show why g ≤ c′
0 −y ′ must hold. If we consider a pair (c�g) such that g > c′

0 −
y ′, a (feasible) decrease in g always increases H since ∂H/∂g < 0 in this region (recall that

he is saving the marginal transfer unit, which she dislikes). Thus we must have gconstr ≤
c′

0 − y ′.

Second, to see why c+g = y must hold with equality, note that the objective function

H is strictly concave in (c�g) in the region where g ≤ c′
0 − y ′ by strict concavity of u. So

any interior pair {(c̃� g̃) : c̃ + g̃ < 0� g̃ ≤ c′
0 − y ′} must be dominated by any convex combi-

nation of (c̃� g̃) and the unconstrained maximum (c0� gunc) since H(c̃� g̃) ≤ H(c0� gunc)

and H is strictly concave (note that c0 ≥ 0, gunc ≥ 0 and gunc ≤ c′
0 − y ′ by definition of

gunc). Since (c̃� g̃) was interior, there thus must always be possible improvements and

(c̃� g̃) cannot be optimal.

We have now established that the constrained maximizers must lie on the line seg-

ment D. Since this is the case, we can reduce the problem of maximizing (11) subject to

(18) to a simpler auxiliary problem in one choice variable by writing

max
g∈[0�c′

0−y ′]

{

u(y − g)+ αu
(

y ′ + g
)}

� (19)

Here, we recognize a static altruism problem subject to the additional constraint g ≤
c′

0 − y ′ (which comes from the fact that she never wants to give transfers that flow into

savings); we see that apart from this upper bound on transfers, the problem is now in-

dependent of the dynamic aspects of the game, that is, the derivatives of the value func-

tions vw� � � � .

Note that the function to be maximized, ũ(g) ≡ u(y − g)+ αu(y ′ + g), is strictly con-

cave (again by strict concavity of u) and the maximand is chosen from a closed interval.
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F 12. Her transfer decision when w =w′ = 0.

It will thus be possible to characterize the solution by just checking whether the uncon-

strained maximizer of ũ(g) falls into the constrained set. We define

gstat�dict = arg max
−∞<g̃<∞

{

u(y − g̃)+ αu
(

y ′ + g̃
)}

�

where the subscript stat�dict suggests that this is the transfer that she would choose in

a static problem if she could also force negative transfer upon him. For CES utility, we

obtain gstat�dict = (α1/γy − y ′)/(1 + α1/γ).

The following cases can arise in the situation where her constraint binds. Figure 12

depicts the level lines of her Hamiltonian as curves, the constraint as a line, and the

optimal choice as a circle.

1. c′
0 < y ′: He saves even when transfers are zero, so she should set the transfer to zero

since vw′ < vw. The transfer margin is dominated by the consumption margin.

2. c′
0 ≥ y ′: The following subcases can arise:

(a) gstat�dict ≤ 0: She sets gconstr = 0 since the criterion in (19) is decreasing in g for all

g ∈D. The transfer margin is dominated by the consumption margin.

(b) 0 < gstat�dict < c′
0 − y ′: There is an interior solution and she sets gconstr = gstat�dict;

the unconstrained maximizer for the problem (19) falls into the feasible set. Here, she

sets the transfer margin equal to the consumption margin and the allocation is the one

predicted by the static altruism model.

(c) gstat�dict > c′
0 − y ′: A corner solution occurs in the auxiliary problem (19). She in-

creases transfers until reaching his satiation point where he would start to save the
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marginal transfer. She stops the transfer at this point and sets gconstr = c′
0 − y ′. Her trans-

fer margin is lower than the consumption margin when considering a marginal increase

in transfers at the optimum, but the transfer margin is larger than the consumption mar-

gin when considering a marginal decrease in the transfer at the optimum. This is what

the kinks in the level lines of the Hamiltonian indicate.

It is important to recall that we were always operating under the assumption that the

unconstrained maximizer (c0� gunc) does not fall into feasible set, so she sets savings to

zero. This means that her consumption margin is larger than her savings margin in all

cases.

We can summarize the solution for all (constrained) cases by

gconstr = max
{

0�min
{

gstat�dict� c
′
0 − y ′}}�

Since the budget constraint always holds with equality when she is constrained, her con-

sumption is always given by cconstr = y − gconstr. His consumption is c′
constr = y ′ + gconstr

(recall that she never gives transfers that would go into his savings, so we need not en-

force the upper bound c′
0).

Finally, we can also conclude that when both players are bankrupt, then only the

player with the higher flow labor income (the “labor-income-rich” player) can possibly

give transfers. Note that gstat�dict is negative for the labor-income-poor player, so it is a

dominant strategy for him to set transfers to zero. For this to hold, we technically need

the altruism parameters to be lower than 1: if α was larger than 1, then she might want

to transfer to him although she has lower flow labor income than he does.

A.3 Comparative statics and robustness

In general, our algorithm performs well and is stable across the parameter space. The

qualitative features of equilibrium discussed in Section 4.2 are always preserved under

imperfect altruism.

A.3.1 Special cases For both selfishness (α = α′ = 0) and perfect altruism (α = α′ = 1),

the equilibrium is described by a Bewley-type economy. In the selfish case, both agents

solve their separate consumption–savings problem and transfers are zero. The agents’

consumption depends solely on their own state (w� y) and is invariant in the other

agent’s state (w′� y ′). When altruism is perfect, a dynastic household solves a Bewley

problem given the agents’ joint labor income resources (as in the planner’s problem

in Appendix A.1). Agents’ consumption is equalized in all states and depends solely on

the joint state (W �Y), but depends neither on the distribution of assets w/W between

agents nor agents’ contribution to total labor income y/Y .

We find that the equilibrium consumption functions converge to these special cases

when (α�α′) approach their bounds. Consumption depends more on joint wealth when

altruism is high and more on own wealth when altruism is low. The transfer regions and

OC regions become large when (α�α′) → (1�1); they become small and start at higher

levels of (w�w′) when (α�α′) → (0�0). In both cases, distortions to consumption–savings
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decisions vanish as the limit is approached; distortions and overconsumption are most

pronounced for intermediate values of (α�α′). Immiseration occurs ever faster in the

OC region when (α�α′) → (1�1) as consumption of the poor agent gets close to the rich

agent’s consumption level.

Further, one-sided and symmetric altruism warrant discussion. Importantly, strate-

gic interactions between players are still present for these cases.

Even when altruism is one-sided, the other player’s state (w′� y ′) is of interest for

both players. A selfish agent will contemplate her counterpart’s situation so as to gauge

the likelihood of transfers, and an altruistic agent has to keep track of the selfish coun-

terpart’s state so as to see if transfers are needed. As is to be expected, in equilibrium,

the selfish player never gives transfers. There is neither a transfer nor an OC region on

the side where the selfish player has high wealth. On the side where the altruistic agent

has high wealth, there is a transfer region and an OC region with the characteristics de-

scribed before.

In the case of symmetric imperfect altruism (0 < α = α′ < 1), the only simplification

that occurs is that the equilibrium is now symmetric. Its features are as in the baseline

example. Apart from this, symmetric imperfect altruism is not fundamentally different

from asymmetric altruism. Note that agents do not have the same preferences: they still

disagree on the desirability of allocations—preferences are only mirror-symmetric. The

only case in which agents agree is perfect altruism.

A.3.2 Changes in γ Due to our parsimonious specification of preferences, γ plays var-

ious roles. In addition to governing risk aversion and the elasticity of intertemporal sub-

stitution, it also impinges on transfer behavior.21 In our setting, however, as is apparent

from the definition of a, γ only affects transfer behavior in conjunction with α. It turns

out that when keeping (a�a′) constant, the equilibrium transfer functions are essentially

invariant in γ. Distortions to consumption–savings decisions are not visibly affected

either. Qualitatively, the consumption functions also preserve their characteristic. The

only way we find γ to affect the equilibrium is through the well known precautionary-

savings mechanism. The higher is γ, the stronger is the precautionary-savings motive

and the larger is agents’ wealth under the ergodic distribution. Since more time is spent

in regions with high wealth, this also means that transfers flow more often.

A.3.3 Changes in σ It turns out that there is also an upper bound on σ above which

equilibrium ceases to exist for given (γ�a), which we report in Table 3. The intuition

for this upper bound is the following. Recall from the planner’s problem (Appendix A.1)

that the optimal portfolio choice of the planner is to keep half of total wealth W in each

agent’s account—this minimizes portfolio risk. So when agents are perfectly altruistic,

21If transfers had a price, then γ would also determine the elasticity of transfers with respect to this

price. In our setting, both players face the same prices, so this is irrelevant. An example where the transfer

elasticity is potentially important is the case of remittances. Consider an emigrant who sends funds back

home. Then the transfer elasticity governs the response of remittances to changes in the real exchange rate

between the host and the home country. A specification of preferences that decouples the transfer elasticity

from risk aversion and intertemporal substitution is E0

∫ ∞
0 e−ρt [cβt + αc

′β
t ](1−γ)/β dt, where β governs the

transfer elasticity.
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T 3. Upper bound for σ .

a= a′ 0�1 0�3 0�5 0�7 0�9

γ = 0�5 10�6 7�6 – – 1�2

γ = 1 25�0 8�8 – 3�5 1�3

γ = 2 5�8 4�9 4�3 3�1 1�2

γ = 4 3�4 3�2 3�0 2�6 1�3

γ = 8 2�0 2�1 1�9 1�7 1�1

Note: Highest value of σ for which the transfer motive µ stays negative throughout the state space and thus equilibrium
exists (given γ and a= a′). Values are calculated using the homogeneous model that obtains in the limit when wealth becomes
large with respect to income. ρ and r are as in the baseline example. In the cells with dashes (–), the equilibrium does not exist
for any value of σ unless the portfolio-variance effect is neutralized.

they will distribute their assets in this way. However, for imperfect altruism, the equilib-

rium dynamics are such that the poorer agent heads toward being broke. At that point,

however, portfolio risk is maximal from the family’s perspective, which creates an in-

centive to head back to a more balanced asset distribution. When altruism gets close

to perfect, value functions flatten out because agents become indifferent with respect

to the distribution of wealth. The portfolio effect then at some point overrides the richer

agent’s preference for own wealth, making the transfer motive positive and thus preclud-

ing the transfers-when-constrained equilibrium. Since the portfolio effect is increasing

in σ , this occurs more often for high values of σ , thus inducing an upper bound for σ for

a given (γ�a) combination. For some parameter configurations, the upper bound for σ

cuts below the lower bound, so that there is no level of σ under which equilibrium exists

for given (γ�a). The dashes in the table indicate when this occurs.

However, we note that the portfolio effect is not in the spirit of why we introduced

shocks to assets in the first place—to overcome the underlying tensions in the setting

through an element of uncertainty. When neutralizing the portfolio effect, we can al-

ways find σ large enough to ensure of equilibrium for any (γ�a). The lower bound on σ

persists, but the upper bound disappears. We thus argue that the upper bound on σ is a

less serious limitation for the usefulness of our model than the lower bound.

From Table 3, we see that the upper bound on σ is decreasing in a. Value functions

become flatter as altruism increases, and it becomes easier for the portfolio effect to

override agents’ preference for own assets, causing transfer motives to turn positive. The

bound is for the most part decreasing in γ: the more risk-averse agents become, the

stronger is the portfolio effect.

We can think of two ways to neutralize the portfolio effect while maintaining the

smoothing force of shocks, the first of which we have implemented.

The first is to assume that only the asset distribution P =w/(w+w′) between agents

is subject to disturbances, but total family assets W = w + w′ are unaffected by shocks.

Technically, this approach is paramount to finding a viscosity (i.e., smooth) solution to

the HJBs in the cake-eating setting studied by Barczyk and Kredler (2014). Indeed, we

find that there is no upper bound on σ when we follow this approach. The reason we did

not choose this modeling approach in the first place is that it lacks a microfoundation:

there are very few real-world examples of such shocks (an example is a family receiving a
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court verdict that one family member has property rights on an asset previously thought

to be the property of another).

A second, more microfounded, way of shutting down the portfolio effect would be to

make shocks proportional to consumption c and not assets w. This would also be in line

with some of the examples we gave to motivate our shocks to assets (e.g., expenditure

shocks, such as repair of consumer durables, or health shocks). To see why this approach

is likely to work, observe that for perfectly altruistic agents, consumption functions are

invariant in P . Thus expenditure risk would be invariant in P , canceling the portfolio ef-

fect. The problem with this approach is that it is unclear how such consumption shocks

should be handled technically when an agent is constrained: Suppose both agents are

broke and are hit by a negative expenditure shock they cannot pay for (this may occur

since Brownian-motion shocks are unbounded). It is not straightforward to handle this

situation, so we chose not to take this avenue.

A.3.4 Other parameters Changes to the remaining parameters in the model have the

expected effects. An increase in ρ makes agents more impatient and brings consump-

tion functions to a higher level, but leaves the qualitative features of the equilibrium

unchanged. The opposite is true for an increase in r. As mentioned before, widening the

gap between agents’ flow labor income y and y ′ results in transfer regions drawing closer

to the origin and eventually reaching it.

We have also computed equilibria for the case where only she faces income risk. In

this case, only the player with income risk engages in precautionary-savings behavior.

He, however, ends up broke eventually almost surely (we set ρ < r). The ergodic distri-

bution collapses to a “mass strip” on the line where he is broke, with a mass point at the

origin.

A.4 Transfer derivatives

A.4.1 Transfer-income derivatives To compute transfer-income derivatives (TIDs), we

compute the change in transfers �g following a downward jump in the donor’s labor

income paired with an upward jump in the recipient’s labor income of the same mag-

nitude (conditional on transfers still being positive after the change to labor incomes).

Dividing the ensuing change in transfers �g by the change in income �y = y2 − y1 gives

us the analog of the TID to a model where income can be varied in a continuous fash-

ion. Our model generates TIDs below and above unity, depending on the hazard rates

of labor-income changes for agents. This softens the restrictions from the one- and two-

period models considered so far in the literature, which impose that the TID equal unity.

The intuition is that in situations where a donor gives transfers, he essentially dic-

tates the allocation, taking into account total dynasty wealth. If the hazard rates for both

labor income processes are the same, then an increase in his labor income paired with

a decrease of her labor income of the same size leaves the dynasty’s lifetime wealth un-

changed, and the donor implements the same consumption policies as before. For this

special case, we find a TID very close to unity for states where transfers flow (e.g., in our

baseline example). When considering asymmetric hazard rates, we are able to gener-

ate TIDs that differ from unity in both directions. This is because changing both labor
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incomes by the same amount has different implications on the dynasty’s permanent la-

bor income. To see this, consider the situation where the agent with the more persistent

labor-income process draws a bad shock while the agent with a less persistent process

draws a good shock. This is definitely bad news for expected total dynasty income and

the donor will decrease transfers. This is similar to the mechanism in McGarry (2006),

except that her model yields TIDs strictly below unity.

A.4.2 Transfer-wealth derivatives Suppose that an econometrician measures the cu-

mulative transfers over a time interval �t (say a month or a year). At a given point

x0 = (0�w′
0; y0� y

′
0) in the state space, he gives transfers g′(x0)�t > 0 to her over this time

interval (to a first order). We will now study how the observed transfers change when the

donor’s initial wealth is decreased by �w, while the recipient’s initial wealth is increased

by �w. We assume that �w is small enough so that some transfers still flow over �t when

starting the economy from the new endowment point (�w�w′
0 − �w; y0� y

′
0) (assuming

that there are no changes to labor income).

Denote by clim(x0) = limwց0 c
′(w�w′

0; y0� y
′
0) her consumption when given a small

amount of assets. The law of motion for her wealth at the new endowment point

(�w�w′
0 − �w; y0� y

′
0) is given by ẇ′ = y ′

0 − clim(x0), to a first order. This means that it

will take a time interval �̃t ≡ �w/[clim(x0) − y ′
0] until she runs out of wealth. She then

starts to receive a transfer g′(x0), so that the total transfer received over �t is given by

g′(x0)(�t − �̃t). Note that the probability of labor-income changes is of lower order and

may be dropped to a first approximation.

The transfer-wealth derivative (TWD) at x0 is then defined as the change in transfers

(observed over �t) divided by the change in wealth �w,

TWD(x0) ≡
(�t − �̃t)g′(x0)− g′(x0)�t

�w
=

−g′(x0)

clim(x0)− y0

=
−1

1 +
clim(x0)− c(x0)

g′(x0)

>−1�

where the last step uses the fact that c(x0) = y0 + g′(x0).

We see that the larger is the recipient’s drop in consumption upon going broke (i.e.,

the drop in consumption upon going broke), the lower is the TWD. We also see that

the TWD is less than unity in absolute value, unlike in static models. The intuition for

this may be gleaned from the following example: say he is rich and provides transfers of

$10,000 per year to her. She has labor income of $10,000 per year, so her consumption

is $20,000. The standard altruism model would then predict that if we transfer $10,000

from him to her in the beginning of the year, he would choose transfers equal to zero

and both would consume the same as before. We see that transfers react one-to-one to

a redistribution of wealth. In our model, however, she will overconsume once she has

received $10,000 since she knows that he will provide transfers later in the year once she

becomes broke. If the consumption discontinuity is such that she spends at a rate of

$30,000 per year, her wealth will decline at a rate of $20,000 per year so that she becomes

broke after 6 months. He will then provide another $5,000 of transfers over the second
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half of the year. As can be seen in this example, the TWD is one-half: transfers decrease

by $5,000 following a wealth redistribution of $10,000. The prediction is different because

our model is dynamic; in a one-period model, the donor can essentially commit to a

transfer over the duration of the model period.
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