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ABSTRACT  There has been increasing interest in devel-

oping micro/nanostructured aluminum-based materials

for sustainable, dependable and high-efficiency electro-

chemical energy storage. This review chiefly discusses

the aluminum-based electrode materials mainly including

Al2O3, AlF3, AlPO4, Al(OH)3, as well as the composites

(carbons, silicons, metals and transition metal oxides) for

lithium-ion batteries, the development of aluminum-ion

batteries, and nickel-metal hydride alkaline secondary

batteries, which summarizes the methodologies, related

charge-storage mechanisms, the relationship between nanos-

tructures and electrochemical properties found in recent

years, latest research achievements and their potential ap-

plications. In addition, we raise the relevant challenges

in recently developed electrode materials and put forward

new ideas for further development of micro/nanostructured

aluminum-based materials in advanced battery systems.
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INTRODUCTION
Nowadays, the environmental problems, such as pollu-
tion and global warming, are increasing rapidly, which
has boosted the society to reduce reliance on fossil fuels.
Therefore, it has given a great impetus to utilize renewable
energy and sustainable resources. Battery technologies can
store various intermittent renewable sources, such as solar
and wind energy, thus achieving the goal [1–4].

Lithium-ion batteries (LIBs) are considered as the most
promising electrochemical portable devices among the
commercial batteries for their high energy density, no
memory effect, and merely a dull loss of capacity when not
in use. The advent of LIBs has led to a revolution in the
wireless. Furthermore, it has stimulated intense efforts on
powering electric vehicles (EVs) and hybrid electric vehi-
cles (HEVs). Electrode materials are the key components

of LIBs, which play a vital role in the overall performance
[5–11]. Energy density, power density, safety, life and cost
are five basic elements in the application of LIBs. Only
by balancing these factors with suitable materials can we
power electrochemical energy storage devices.

It is worth mentioning that aluminum is a material with
great promise for LIBs due to the following superiorities.
Firstly, aluminum has considerably high theoretical capac-
ity (∼993 mA h g−1), and its volume expansion is merely
about 97% [12–14]. Secondly, the steady power output of
LIBs using aluminum-based (Al-based) materials can be
indicated by the flat and wide plateaus in the charge-dis-
charge curves. Finally, aluminum is the most abundant
metal in the Earth. It is cheap and environment-friendly,
encouraging a broader range of applications of LIBs.

On the other hand, with the rapidly emerging market of
LIBs, there is a huge consumption in lithium resources each
year, which will further aggravate the shortage of lithium
resources [15]. Recently, a large number of studies have
been focusing attention on alternative battery systems,
such as aluminum-ion (Al-ion) batteries (AIBs), which
have similar operating principles as LIBs. Moreover, three
electron transfers are involved in the Al-based redox cou-
ple during the electrochemical charge/discharge process,
so that the AIB possesses competitive storage capacity
comparing to the single-electron LIB. The electrochemical
equivalent of an Al-based redox couple (8.04 A h cm−3) is
5.98 A h cm−3higher than that of lithium [16]. But identify-
ing an inexpensive ionic liquid electrolyte is still exploring,
and finding suitable cathode materials for simple ions to
transport in a reversible manner remains a challenge. Even
so, the obvious advantages of AIBs still make them more
attractive for future power source development.

Apart from the advanced LIBs and new rechargeable
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AIBs, nickel-metal hydride (Ni-MH) alkaline secondary
batteries also have attracted much attention. They have su-
perb power density, high specific energy, smooth discharge
platform, and are nontoxic and environmental-friendly.
Besides, they exhibit good electrochemical property at low
temperature. These advantages make them become one of
the most potential devices for EVs and HEVs applications
as well.

Numerous researches have focused on Al-based mate-
rials in rechargeable batteries. The creative and rational
design of unique nanoarchitectures in Al-based materials
help address many issues encountered during the electro-
chemical reactions. In this review, we highlight recent ap-
plications ofAl-basedmaterials on the development of LIBs
(Al2O3, AlF3, AlPO4, Al–Si alloy, etc.), AIBs (the evolu-
tion and selection of electrolyte and cathode materials) and
Ni-MH alkaline secondary battery (merit and demerit of
nickel aluminum layered double hydroxide materials and
the improvement by doping with various other materials).
In addition, we will discuss the progress and give our in-
sight toward these batteries based on the literature studies.

Al-BASED NANOSTRUCTURES AS

ELECTRODE MATERIALS FOR LIBs

Al2O3

It is the key to the next generation of high-energy LIBs
to develop excellent electrode materials with low cost
and high energy density. Recently, various oxides such
as lithium manganese-based oxides, lithium trivanadate
(LiV3O8), nanostructured silicon materials [17–27], car-
bon materials such as graphite, carbon nanotubes (CNTs)
and other materials are considered to be promising mate-
rials for large-scale production due to their environmental
benignity, safety, good rate capability and cost-effective
application for rechargeable LIBs. However, for lithium
manganese-based oxides, such as spinel LiMn2−xNixO4

(0<x≤0.5) cathode oxides, the high operating voltage
(~4.7 V) always results in serious electrolyte decompo-
sition and a thick solid-electrolyte interphase (SEI) layer
on the electrode surface with weak electronic and lithium
conductivity [28–32]. So when charged to 4.5 V or higher,
lithium manganese-based oxides, show appreciable ca-
pacity fade during cycling. In addition, they suffer from
Mn dissolution, leading to material loss through corro-
sion. So the cycle ability of the materials has not been
sufficient enough as a commercial cathode. Besides, the
commercial use of Si anode materials in LIBs is severely
hindered by some problems, including enormous volume

expansion and contraction resulted from lithium insertion
and extraction, surface side reactions, the electrochemical
agglomeration, and irreversible trapping caused by plenti-
ful drawbacks [32].

To date, numerous strategies have been used to overcome
the aforementioned problems, for example, optimized
preparation methods [33], surface modification [34],
fabrication of nano-sized materials [35], and tuning of
crystal planes [36]. These methods can effectively im-
prove Coulombic efficiency, high-rate capability and cycle
performance. Among the approaches mentioned above,
surface modification is particularly noticed on account of
its simplicity and flexibility. It can reduce the side reaction
and form stable SEI layers on the materials surface. As
coating materials, carbon, metals, metal oxides, fluorides
and phosphates [37–45], all of them have the ability to im-
prove the electrochemical property. Among them, Al2O3

has always been regarded as one of the most popular coat-
ing materials because of the rich resources of aluminum,
the low price of the raw materials, and the ease of film
deposition. Besides, some metals, such as Cu, can improve
capacity retention, but is inactive to Li, which will result in
the detraction of the storage capacity. And carbon coating
can improve the electrochemical stability of Si electrode
materials, but sometimes the maximum storage capacity is
reduced by Si, thus the total capacity shows no noticeable
enhancement. Al2O3 is an inactive metal oxide material,
the increasing thickness of Al2O3-coating layer will degrade
the property of electrodes. However, several groups have
demonstrated that coating with proper Al2O3 can mitigate
unfavorable side reactions, maintain structure, enhance
electrical conductivity, improve the rate capability and
extend the electrode cycle life. Furthermore, a LiAlO2 ma-
terial has been prepared which shows outstanding Li-ion
transport properties at the engineered interfaces.

Generally speaking, the reasons for the improvement in
electrochemical properties are mainly attributed to two as-
pects. First, the Al2O3-coating layer is able to keep the
active core material from contacting with the electrolyte
directly and prevent the dissolution of metal ions, which
brings about improvement of cycling stability even at a high
cut-off voltage [33,46]. Second, the existence of the coat-
ing layer can keep up more oxygen vacancies generated in
the process of the initial charge, leading to more Li ions in-
sertion. As a consequence, the rate capability will increase
in the charge/discharge process [40,44,47]. During cycling,
the thin Al2O3 layer can also reduce the charge transfer re-
sistance and stabilize the surface structure of active mate-
rial. Compared with the pristine one, the electrochemical
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performance can be improved obviously.
For instance, Kim et al. [48] presented that

LiNi0.5Mn1.5O4 (LNMO) particles were successfully coated
with ultrathin (<1 nm) Al2O3 by atomic layer deposition
(ALD). The Al2O3 ALD coated LNMO showed signally

improved electrochemical performance at 30°C. The SEI
layer on it was not only much thinner but also involved
fewer organic species than that on the bare LNMO (Fig.
1a, b), which was responsible for inhibition of the side
reaction at  high voltages.  In  addition,  Huang  et al.  [49]

Figure 1   Schematic illustration of (a) bare and (b) Al2O3 ALD coated LNMO electrodes after charge/discharge cycling. Transmission electron micro-
scope (TEM) patterns of (c) the pristine, and (d) 1 at.% Al2O3-coated samples. (e) Quantitative X-ray fluorescence (XRF) analysis of Mn and Mn-con-
taining compound deposited in the SEI layer on the surface of lithium anode and dissolved from (1) bare LiMn2O4, (2) 2 wt.% Al2O3 coated LiMn2O4, and
(3) 5 wt.% Al2O3 coated LiMn2O4 during 25 cycles. (f) Charge-discharge (0.5 C) curves of (1) the pristine, (2) 1 at.% Al2O3-coated samples at room-tem-
perature. (g) Two-step method for the synthesis of LiAlO2-surface modified LiMn1.58Ni0.42O4microspheres. (a and b) Reproduced with permission from
Ref. [48]. Copyright 2015, Elsevier. (c, d and f) Reproduced with permission from Ref. [49]. Copyright 2014, Elsevier. (e) Reproduced with permission
from Ref. [39]. Copyright 2012, Elsevier. (g) Reproduced with permission from Ref. [53]. Copyright 2013, Elsevier.
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presented the effects of high-voltage spinel LNMO ma-
terial coated with Al2O3 via a novel carbamide-assistant
hydrothermal process followed by a heat treatment. The
coated ones did not change crystal structure as well as
microstructure compared with the pristine sample (Fig.
1c, d), but it delivered significantly enhanced capac-
ity retentions (Fig. 1f), especially at high temperature.
Li(Ni1/3Mn1/3Co1/3)O2 particles were successfully coated
with thin layers of Al2O3 by Riley [50], Huang [51], and
Fey et al. [52]. The electrochemical property was greatly
improved at a high cut-off voltage of 4.5 V after the for-
mation of Al2O3 surface film. Kim et al. [39] reported
that bare LiMn2O4 surface could form a thin Al2O3 layer
by electrostatic attraction forces. The cycle performance
of LiMn2O4 with uniform and ultrathin Al2O3 coating on
the surface is observably enhanced via inhibiting the Mn
dissolution under high temperature. For the reduction
of Mn dissolution (Fig. 1e), the Al2O3 coated LiMn2O4

samples display better structural stability. As a result, the
charge transfer resistance of the Al2O3 coated LiMn2O4

is much less than that of the bare LiMn2O4. Moreover,
LiAlO2-surface modified spinel cathode material such as
LiMn1.58Ni0.42O4, has been synthetized by a two-step proce-
dure for LIBs (Fig. 1g). The formed LiAlO2 coating layer is
able to offer a stable interface between electrolyte and elec-
trode. The material exhibits remarkable electrochemical

property, especially in the cyclability and rate capability.
These results demonstrate that this method is facile and
effective to improve the electrochemical property of 5 V
spinel cathode oxides for high-powered LIBs [53].

The principle is also suitable for nanostructured silicon
materials, layered LiV3O8, organics, CNTs material and so
on. Silicon nanowires (Si NWs) have been used as electrode
materials in LIBs half-cells. Memarzadeh et al. [54] inves-
tigated the influence of aluminum coating layers. Fig. 2a
reveals that the surface roughness was increased with alu-
minum coatings. The cycling performance of Si NWs was
enhanced when Si NWs were coated with 3 and 8 wt.% alu-
minum. Besides, Hwang et al. [55] demonstrated that mi-
cron-scale nanostructured Si/Al2O3 foam particles can be
synthesized via chemical etching and a selective thermal
oxidation process from Al-Si alloy. As a LIB anode, the
synthesized Si/Al2O3 foam exhibits excellent cycling stabil-
ity, with a capacity retention of 78% at the C/5 rate after
300 cycles. The rate capability is outstanding as well. The
volume expansion also can be effectively alleviated during
long-term cycling (Fig. 2d, e).

Since 1950s, when the layered LiV3O8 cathode material
came to light, it has also attracted great attention because
it is inexpensive and possesses high discharge capacity
[56–58]. However, the existence of incomplete reversible
phase transformation and  local  structural  damage  result

Figure 2    (a) Scanning electron microscope (SEM) images of 3Al/SiNWs. (b) SEM images of the Al2O3-coated LiV3O8 powders. (c) TEM image of
single CNTs with ultrathin Al2O3 coatings. (d) First cycle voltage profiles at the C/20 rate. (e) Cycle performances at the C/5 rate for etched Al-Si and
thermally oxidized (10, 30, and 60 min) Si/Al2O3 electrodes. (f) Schematic illustration showing the benefits provided by Al2O3-coated CNTs anode on the
Cu current collector. (a) Reproduced with permission from Ref. [54]. Copyright 2012, the Royal Society of Chemistry. (b) Reproduced with permission
from Ref. [61]. Copyright 2013, Elsevier. (c and f) Reproduced with permission from Ref. [68]. Copyright 2011, the Royal Society of Chemistry. (d and
e) Reproduced with permission from Ref. [55]. Copyright 2015, the Royal Society of Chemistry.
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in poor rate capability and serious capacity loss during
the insertion of lithium [59,60]. Herein, Huang et al. [61]
reported that the performance of layered LiV3O8 cathode
material could be enhanced when surface modified with
Al2O3. They have synthesized surface modified-LiV3O8

materials by a simple thermolysis method. Apart from
serving as a protective layer, the Al2O3 coating made a
Li-V-Al-O solid solution form at the LiV3O8/Al2O3 in-
terface, which offered a faster Li+ diffusion path (Fig.
2b), so that it could polish up the electrochemical perfor-
mance. For the 0.5 wt.% Al2O3-coated LiV3O8 electrode,
even if the current densities reached up to 2000 and 3000
mA g−1, the specific discharge capacities could still at-
tain 139.4 and 118.5 mA h g−1 after 100 cycles. Mo et al.
[62] demonstrated that unique Al2O3-modified LiV3O8

nanosheets were successfully synthesized via a simple and
cost-effective strategy based on a hydrothermal process
and layer-by-layer self-assembly. Compared to LiV3O8

nanosheets, Al2O3-modified LiV3O8 nanosheets exhibited
far better lithium-storage properties. The thickness of
Al2O3 nanolayer influenced the electrochemical perfor-
mance of the Al2O3-modified LiV3O8 nanosheets, which
proved that proper surface modification could enhance
physical and/or chemical properties. The LiV3O8 with
proper Al2O3 coating as the cathode material has a great
promise for its application in high-power LIBs.

Besides, Lee et al. [63] synthesized a nonwoven poly-
imide (PI) separator which sandwiched between thin Al2O3

overlayers via an electrospinning strategy and dip-coating
of Al2O3 nanopowders subsequently. The Al2O3-coated PI
separator showed a high capacity and excellent rate capabil-
ity on account of the PI inner membrane, and a restrictive
increase of cell impedance during long time cycling because
of the Al2O3 surface layer.

CNTs are highlighted as the possible electrode materi-
als [64–67]. The Al2O3-coated CNTs have been success-
fully prepared on a copper substrate and tested as a LIB
anode [68]. CNTs can form the binder-free electrode for
LIBs since they grow on the copper current collector di-
rectly via chemical vapor deposition. Then the ultrathin
Al2O3 layer will be deposited on the CNTs via ALD (Fig.
2c). CNTs can form the core of the structure, thus provid-
ing outstanding conductivity, integrality of structure, and
Li-ion intercalation ability. Meanwhile, the Al2O3 coating
reinforces the stability of electrode additionally, leading to
further improvement of capacity. The novel anode exhibits
excellent electrochemical performance and has been con-
sidered as a potential anode for the prospective LIBs (Fig.
2f).

AlF3

Fluoride is an optional additive to protect electrode. Aswell
known, the erosion action of HF and the accumulation of
LiF are two main factors in deteriorating the electrochemi-
cal property of electrode materials. Fluoride can work as a
protective layer while free fluoride ions reduce the forma-
tion of LiF film, which enhance the cycle lives of cathode
materials. LiF is an electronic insulator. In previous stud-
ies, LiF coating, acting as HF inhibitor, was demonstrated
to effectively improve cycle performance and the rate ca-
pability of lithium manganese-based oxides electrode ma-
terials during cycling [69,70]. AlF3 has also been exten-
sively used to improve the electrochemical performance of
layered cathode materials by coating strategy. Particularly,
AlF3 has stable and strong Al–F bonds, which can negate
the oxygen activity on the surface of the cathode materials
during cycling. Owing to these Al–F bonds, AlF3 has excel-
lent ionic conductivity and can enhance the rate capability,
capacity, retention, and thermal stability of the cathodema-
terials [71–75]. For instance, the electrochemical property
of Li-rich layered oxides (LRO) can be enhanced via coat-
ing AlF3 on the surface [76].

Wu et al. [77] presented a simple synthesis of AlF3-modi-
fied LMNO cathode materials by chemical deposition. The
AlF3 surface modified one showed no change on the bulk
structure compared to the pristine one. They yet showed
improved cycle stabilities, especially the 1 wt.% sample.
The sample possessed the best reversibility relatively, and a
capacity retention ratio of 93.6% after 50 cycles, while that
of the pristine one was only 77.6%. The electrochemical
performance of the AlF3 coated Li(Li0.17Ni0.25Mn0.58)O2 [33],
Li[Ni0.8Co0.15Al0.05]O2 (Fig. 3a–f) [78], Li[Li1/9Ni1/3Mn5/9]O2

[79], Li[Li0.19Ni0.16Co0.08Mn0.57]O2 [80], Li1.1Al0.05Mn1.85O4

[81], LiMn2O4 [82] and other spinels were also investi-
gated. Compared to the pristine one, the AlF3-coated
sample generally has a markedly enhanced electrochemical
property (Fig. 3k). The fundamental functions of the AlF3

coating can be summarized as follows. First, similarly to
Al2O3, an AlF3 coating layer holds back the active material
from directly contacting with the electrolytes, thus greatly
reducing the formation of SEI layers. Second, AlF3 coating
enhances structure stability of the electrode materials
and mitigates the phase transformation from layered to
spinel-like structure, significantly improving stability of
voltage profiles during cycling. Finally yet importantly, the
coating layer effectively protects the spinel-like phase from
attack by the acidic species in the electrolyte. Materials
with such coatings can maintain more than 100 cycles
without identifiable capacity degradation [83].
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Figure 3    (a) SEM images of the pristine Li[Ni0.8Co0.15Al0.05]O2 and (b) AlF3-coated Li[Ni0.8Co0.15Al0.05]O2. (c) Magnified images of (a). (d) Magnified
images of (b). TEM images of (e) the pristine Li[Ni0.8Co0.15Al0.05]O2 and (f) AlF3-coated Li[Ni0.8Co0.15Al0.05]O2. TEM images of (g) uncoated graphite
powders, (h) 2% AlF3-coated graphite powders. (i) Pure LTO, (j) AlF3-modified LTO. (k) Rate capability of the pristine, 1 wt.% AlF3-coated and 2 wt.%
AlF3-coated electrodes. (l) Cycle performance of the bare and AlF3-coated LiV3O8 at 55°C at 0.5 C-rate (150 mA g−1) between 1.8 and 3.8 V. (m) First
cycle charge-discharge profiles of various graphite samples at 0.05 C rate. (a–f) Reproduced with permission from Ref. [78]. Copyright 2013, Elsevier.
(g, h and m) Reproduced with permission from Ref. [84]. Copyright 2012, the Royal Society of Chemistry. (i and j) Reproduced with permission from
Ref. [85]. Copyright 2014, Elsevier. (k) Reproduced with permission from Ref. [71]. Copyright 2012, Wiley-VCH. (l) Reproduced with permission
from Ref. [83]. Copyright 2013, Elsevier.

Besides, Wang et al. [83] reported that unique AlF3-
coated LiV3O8 nanosheets were synthesized successfully.
TheAlF3-coated LiV3O8 showed outstanding cycling stabil-
ity due to the AlF3 coating layer as well, which could also

protect the materials and make it easy for the kinetics of
Li-ion diffusion, thus the electrochemical impedance be-
came smaller. The coated one had the capacity retention of
91% at 150 mA g−1 after 50 cycles, much higher than that
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of the bare one, 61%. During cycling, the coated electrode
suffered from a capacity loss of 19.1%, while that of the bare
one was badly larger (44.8%) at 55°C (Fig. 3l).

In addition, the AlF3-coated commercial graphite pow-
ders were synthesized successfully for the first time via

chemical precipitation by Ding et al. [84]. The 2 wt.%
AlF3-coated graphite particles showed no evident change
on the bulk structure, while the thin film was uniform and
only 2 nm thick approximately (Fig. 3g, h). The initial
discharge capacity of an AlF3-coated graphite anode was
much improved in comparison with that of an uncoated
one (Fig. 3m). Besides, the AlF3-coated graphite anode
delivered a long cycle life than the uncoated one.

Moreover, Li et al. [85] reported that commercial
Li4Ti5O12 (LTO) could be modified by AlF3 to restrain the
gas generation of LTO anode battery effectively. On the
one hand, part of Al3+ and F− have been doped into the bulk
phase of LTO particles. On the other hand, the remaining
Al3+ and F− are still on the surface of the LTO particles for
the formation of an AlF3 coating layer (Fig. 3i, j). AlF3

modification is a facile and effective route, which not only
can perfect the high-rate charge/discharge performance
but also can restrain the gassing behavior of LTO anode
battery.

The AlF3 compounds are deemed to be a new material,
which have been introduced to investigate the performance
of electrode. Surface coating with AlF3 on various cath-
ode materials were tested in LIBs and the results displayed
promising electrochemical features.

AlPO4

Apart from Al2O3 and AlF3, AlPO4 is explored as a promis-
ing coating material. Cho et al. [86–89] pointed out that
the cycling and thermal stability of cathode materials
can be enhanced by surface modification with AlPO4·
(PO4)3− polyanions and Al3+ with high electronegativ-
ity, which resist the side reaction with the electrolyte,
and oxides with (PO4)3− bonding are thermally stable,
improving the cycling performance [88,90]. Besides,
AlPO4 coating acts as a protective layer, reducing the
surface exposure of cathode in the electrolyte, thus
remitting metal dissolution and reducing oxygen gen-
eration [87,89,91–93]. The application of AlPO4 coating
involves various kinds of cathode materials, including
LiCoO2, LiNi0.8Co0.1Mn0.1O2, LiMn1.5Ni0.5O4 (Fig. 4a–c),
Li[Li0.2Ni0.11Co0.11Mn0.54Al0.04]O2, LiNi0.8Co0.15Al0.05O2,
LiV3O8, LiMn2O4 and so on [88,93−100]. The results
have demonstrated the positive effects on the perfor-
mances. Lately, Wu et al. [101] presented that the

layered Li-rich, Fe- and Mn-based cathode materials,
Li[Li0.2Fe0.1Ni0.15Mn0.55]O2, were synthesized via a copre-
cipitation method and modified with AlPO4 subsequently
(Fig. 4d). The 5 wt.% coated sample attracted much
attention due to excellent electrochemical performances.
Compared to the pristine one, the discharge capacity,
cycling, and rate performances were all improved greatly.
The sample is able to keep more oxygen ions vacancies,
thus improving the discharge capacity. The high elec-
tronegativity of (PO4)3− polyanions with Al3+ brings about
strong resistance to the reaction between bulk material and
the electrolyte, then leads to super cycling stability. The
enhancement of rate capability is in virtue of the formed
Li3PO4 phase at the surface and the reduction of charge
transfer resistance. Due to the great electrochemical prop-
erty and low cost, the AlPO4 compounds materials show a
great promise in designing and modifying Li-rich cathode
materials for prospective LIBs.

Several examples of the pristine and Al2O3, AlF3, AlPO4-
based electrode materials and their electrochemical perfor-
mances are given in Table 1.

Al-Si alloy

Silicon is known as a promising anode material for LIBs
because it is inexpensive, abundant in nature and has
comparatively low working potential (<0.4 V vs. Li/Li+) as
well as high theoretical capacity [102,103]. Nevertheless,
there is large volume change in Si electrodes (4300%) dur-
ing Li insertion/extraction process, which is responsible
for the pulverization of electrodes. Meanwhile, it could
facilitate the formation of unstable thick SEI layers and
accelerate electrolyte depletion, leading to relatively bad
capacity fading. Due to these issues, the commercial use
of Si anode materials in LIBs has been severely hindered.
One main solution to overcome the defect is to prepare
nanostructured Si materials, such as nanoparticles [104],
nanowires [105], nanorods [106], NTs [107] and nanocom-
posites [108,109]. In this way, the stress induced by the
large volume expansion could be suppressed partly [110].
However, a few important problems have not been solved
yet. For example, nano-scaled Si materials are difficult to
synthesize; the volumetric energy density is limited; side
reaction is aggravated and becomes complicated during
the synthetic process; and the cost on production may stay
at a relative high level [110,111]. Nowadays, people have
taken infinite effective measures to improve the electro-
chemical features of nanostructured Si materials of LIBs.
An alternative technique is to develop multinary alloys.
Facts proved that Al seems of  great  interest  as  potential
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Figure 4   Field emission scanning electron microscopy (FESEM) images of (a) pristine LiMn1.5Ni0.5O4, (b) 1 wt.% LiMn1.5Ni0.5O4/AlPO4, and (c) 3 wt.%
LiMn1.5Ni0.5O4/AlPO4. (d) Schematic illustration of the multifunctional AlPO4 coating synthetic process. (a–c) Reproduced with permission from Ref.
[99]. Copyright 2010, Elsevier. (d) Reproduced with permission from Ref. [101]. Copyright 2015, the American Chemical Society.

materials. Here we will illustrate some examples.
First of all, we want to introduce a three dimensional

nanostructured multilayer Si/Al film (3D-MSAF) as anode
material for LIBs. Si film anodes are good electrical con-
tact to current collector with no need for polymer binders.
However, the actual application of Si film anode is lim-
ited seriously for the low active material loading [112–114].
Zhang et al. [115] reported a synthesis of 3D-MSAF ma-
terials deposited on a 3D nanostructured Cu current col-
lector via magnetron sputtering method. This Si film in
the 3D-MSAF anode with the thickness of 1 μm, provides
enough active material loading. In addition, ductile Al
works as a buffer, placed between Si films to form a mul-
tilayer structure for improving the electronic conductivity.
The total thickness of Al film reaches 10 nm [116–120].
The anode has been tested in LIBs. At current density of
4.2 A g−1 or even higher, the reversible capacity is still sta-
ble and high, which should be attributed to the nanostruc-
ture of the 3D-MSAF, as illustrated schematically in Fig.
5a. The 3D-MSAF could alleviate the volumetric expansion

markedly, which is confirmed by the SEM characterization
(Fig. 5b, c).

Krishnan et al. [121] proposed a functionally
strain-graded carbon-aluminum-silicon (C-Al-Si) archi-
tecture anode material that showed superb performance
for high power LIBs. Fig. 5d (right) exhibits the schematic
diagram of the multilayer nanoscoop. An intermediate
layer of aluminum is formed on an amorphous carbon
nanorod and a silicon nanoscoop is finally capped on the
very top. The gradation of volume change in the three ma-
terials with lithium results in the graded levels of strain. Al
acting as an intermediate layer plays a significant role in the
gradual transition of strain from C to Si, thus minimizing
the incongruity at the interfaces. Therefore, the introduc-
tion of Al could keep stable operation of the electrode even
under high rate charge/discharge conditions. The anode
could provide an average capacity of ∼412 mA h g−1 con-
stantly over 100 charge/discharge cycles at an accelerated
current density of ∼51.2 A g−1 (i.e., charge/discharge rate
of ∼40 C). And the capacity retention  could  be  improved
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Table 1 Electrochemical performances of the pristine and Al2O3, AlF3, AlPO4-based nanocomposites

Nanocomposites
Initial

discharge capacity
(mA h g−1)

Discharge capacities
(mA h g−1)

Cycle Capacity retention Temp. Ref.

Pristine LiMn1.5Ni0.5O4 103.8, 0.5 C 66.8 300 64.40% RT [49]

1 at.% Al2O3-coated LiMn1.5Ni0.5O4 101.4, 0.5 C 77.7 300 76.60% RT [49]

Pristine LiMn1.5Ni0.5O4 120.8, 0.5 C 27 100 22.40% 55°C [49]

1 at.% Al2O3-coated LiMn1.5Ni0.5O4 107.7, 0.5 C 84.5 100 78.50% 55°C [49]

Bare Li(Ni1/3Co1/3Mn1/3)O2 168.4, 30 mA g−1 132.7 100 78.80% RT [51]

1% Al2O3-modified Li(Ni1/3Co1/3Mn1/3)O2 170.6, 30 mA g−1 158.6 100 92.97% RT [51]

Bare LiMn2O4 119.7, 20 mA g−1 68.9 25 57.56% 55°C [39]

2 wt.% Al2O3 coated LiMn2O4 118.6, 20 mA g−1 90.2 25 76.05% 55°C [39]

Pristine LiV3O8 309.1, 100 mA g−1 165.4 100 53.51% RT [61]

0.5 wt.% Al2O3-coated LiV3O8 283.1, 100 mA g−1 205.7 100 72.66% RT [61]

Pristine LiV3O8 170.6, 2000 mA g−1 91.7 100 53.80% RT [61]

0.5 wt.% Al2O3-coated LiV3O8 195.5, 2000 mA g−1 139.4 100 71.30% RT [61]

Pristine LiV3O8 134.2, 3000 mA g−1 74.2 100 55.30% RT [61]

0.5 wt.% Al2O3-coated LiV3O8 160.2, 3000 mA g−1 118.5 100 73.97% RT [61]

Pristine LiMn1.5Ni0.5O4 108.6, 14.7 mA g−1 84.3 50 77.60% — [77]

1 wt.% AlF3-coated LiMn1.5Ni0.5O4 103.6, 14.7 mA g−1 97 50 93.60% — [77]

Pristine Li1.1Al0.05Mn1.85O4 102, 50 mA g−1 87 100 85.30% 55°C [80]

AlF3-coated Li1.1Al0.05Mn1.85O4 106, 50 mA g−1 110.2 100 96.20% 55°C [80]

Pristine LiMn2O4 109.7, 148 mA g−1 78.4 100 71.40% RT [81]

2 wt.% AlF3-coated LiMn2O4 103.4, 148 mA g−1 92.9 100 89.80% RT [81]

3 wt.% AlF3-coated LiMn2O4 99, 148 mA g−1 90.7 100 91.60% RT [81]

Bare LiV3O8 240.6, 150 mA g−1 146.8 50 61.01% RT [83]

AlF3-coated LiV3O8 231.5, 150 mA g−1 212.5 50 91.80% RT [83]

Bare LiV3O8 244.9, 150 mA g−1 135.1 40 55.20% 55°C [83]

AlF3-coated LiV3O8 239.6, 150 mA g−1 193.8 40 80.90% 55°C [83]

LiMn1.5Ni0.5O4 133 115 30 86.47% 55°C [99]

1 wt.% AlPO4-coated LiMn1.5Ni0.5O4 130 129 30 99.23% 55°C [99]

Pristine Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 246.2, 40 mA g−1 161.5 50 65.60% — [101]

5 wt.% AlPO4-coated
Li[Li0.2Fe0.1Ni0.15Mn0.55]O2

267.2, 40 mA g−1 196 50 73.35% — [101]

from∼60% to∼90% after 100 cycles at∼60C.A comparison
of the discharge capacity retention in the C-Al-Si system
with a C-Si system indicates that the intermediate Al layer
has great effects on improving the electrochemical property
(Fig. 5d, e). Clearly, such architecture demonstrates im-
mense feasibility in designing high capacity and high power
LIBs.

Zhou et al. [122] reported that unique Al-Si-graphite
composites with 7.9 wt.% Si were successfully prepared via

ball-milling eutectic Al-Si powder and graphite. Ex-situ

X-ray radiation diffraction (XRD) shows Al-graphite has
large volume change during lithium insertion/extraction

process, resulting in the issue that the active material is iso-
lated and unavailable for electrochemical reactions. How-
ever, the Al-Si-graphite is just an opposite: all the mate-
rials in it remain available. The reversible capacity of the
Al-Si-graphite is higher than 0.65 A h g−1 after 10 cycles,
equal to 1.6 A h cm−3, nearly double that of graphite alone.

The two active components (Si andAl) enable the gradual
transition of volume change in electrode on account of their
varying lithiation potentials, bringing about stable cycling
performance. The electrical conductivity and capacity of
electrode can be effectively improved too. In addition, as
what  mentioned  above,  the  electrochemical  property  of
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Figure 5    (a) Schematic diagram of the mechanism of 3D-MSAF electrode. SEM images of (b) P-MSAF electrode after 55 cycles and (c) 3D-MSAF
electrode after 120 cycles. (d) The right schematic diagram shows the C-Al-Si nanoscoop structure deposited on stainless steel (SS). (e) Discharge ca-
pacity retention of C-Si and C-Al-Si structure over 100 cycles. (a–c) Reproduced with permission from Ref. [115]. Copyright 2015, Elsevier. (d and e)
Reproduced with permission from Ref. [121]. Copyright 2010, the American Chemical Society.

nanostructured Si material electrode can be enhanced by
surface modification of Al2O3, AlF3, AlPO4 and other ma-
terials.

Al(III) doped composites

To improve electrochemical performance of electrode
materials, besides coating with conductive electroactive
material on the surface [123–128], doping with metals is
also a good method. Metals can not only rise electronic
conductivity but deflate polarization as well, therefore
the stability of electrode is improved [129–136]. In the
past few years, a series of lithium-rich layered cathode
materials, with general formula xLi2MnO3·(1−x)LiMO2, in
which M is a transition metal or a mixture of transition
metals, has attracted extensive attention. However, the
family of cathode material has two main defects. First, it
delivers a low initial Columbic efficiency and suffers from
large irreversible capacity loss during its electrochemical
activation at 4.4–4.8 V, which can bring about the change
of internal structure. Second, the lithium-rich material
has poor rate performance and low discharge voltage
plateaus during cycling, especially under high temperature
[137,138]. Metal ion doping exerts an enormous function

on improving the electrochemical performance of these
cathode materials [139–141]. Some doped metal ions like
Al3+ [142], Mg2+ [143], Ti4+ [144], Cr3+ [145], Zn2+ [146],
Co3+, Ga3+, Ti4+, etc. [147–152] can facilitate the diffusion
of Li ions in the material. Meanwhile, the structure stabil-
ity can be strengthened due to the reinforced combination
of M–O bonds in the crystal during cycling. Among these
doped elements, Al has some economic and applied merits
[153]. The works using Al as doping elements proved good
achievement.

Yuan et al. [154] synthesized a series of Al-doped
LiAlxMn2−xO4 materials by solid-phase grinding reaction at
room temperature and calcining at different temperatures
for different durations subsequently. Electrochemical
experiments demonstrated that the cyclability of the
LiMn2O4 (LMO) spinel dopingwith an appropriate amount
of Al was better than the pristine LMO in an aqueous
media. Besides, Ryu et al. [155] successfully synthe-
sized LiAlxMn2xO4 nanostructures from Al-doped MnO2

nanorods, nanothorn spheres and spheres. They found
that the electrochemical property of LMO was improved
by the combined effect of morphological structure and the
critical concentration of Al. Wang et al. [156] reported
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3D porous spinel-type lithium manganese oxides were
successfully synthesized via a phase-inversion technology
utilizing poly(methyl methacrylate) as the template, and
annealing under a high temperature subsequently. The
as-synthesized LiAl0.1Mn1.9O4 (LAMO) was tested and
the result showed that doping with Al could significantly
improve the rate capability and cycle performance of the
LMO at room temperature. Besides, LAMO displayed an
improved cycling capability at 55°C as well (Fig. 6a, b).
These results suggest that Al-doped LMO could develop
into a promising candidate electrode material for LIBs.

A family of Al-substituted spinel LiNi0.5xAl2xMn1.5xO4

(0≤2x≤1.0) materials were synthesized and the effects of
Al concentration on the structural, electrochemical and
thermal properties were investigated as well. Not only the
hollow structures but also the presence of Al is thought to
have great effects on strengthening crystal structure and

enhancing cycling stability and capacity. For example, Liu
et al. [146] presented a simple and cost-effective synthesis
of LNMO and Al-doped LNMO hollow microspheres.
Compared with the pristine sample, the Al-doped LNMO
hollow structures can enhance discharge capacity (up to
140 (±5) mA h g−1) as well as cycling stability (70% capacity
retention after 200 cycles) effectively when acting as high
voltage cathode materials. Moreover, Al3+can substitute for
Co3+, which is relatively toxic and expensive. Herein, the
cost of production will be brought down and the materials
become more environmentally friendly. Additionally, Al3+

can give the oxygen sheets of the layered structure greater
binding energy during the Li ion removal process, which
is propitious to maintain the structure stability as well as
improve cycle and rate capabilities of the electrode ma-
terials [157]. Jafta et al. [158] found that nanostructured
Li[Li0.2Mn0.52Ni0.13Co0.13Al0.02]O2 (LMNCA) was more orde-

Figure 6   Galvanostatic charge-discharge curves of (a) the pristine LiMn2O4 and (b) LiAl0.1Mn1.9O4 electrodes and their capacity retention ratios. FE-
SEM images of (c) LMNC and (d) LMNCA. Cyclic performance of (e) Li4Ti5O12 and (f) Li4Ti4.95Al0.05O12 discharged to 1 V. (a and b) Reproduced with
permission from Ref. [156]. Copyright 2012, Elsevier. (c and d) Reproduced with permission from Ref. [158]. Copyright 2012, Elsevier. (e and f)
Reproduced with permission from Ref. [160]. Copyright 2012, Elsevier.
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red and crystalline than the Li[Li0.2Mn0.54Ni0.13Co0.13]O2

(LMNC) (Fig. 6c, d). Although the LMNCA delivered a
lower initial discharge capacity, it proved better discharge
capacity and cycling stability than that of the LMNC.
LMNCA also exhibited enhanced electron transfer rate
constant and diffusion coefficient in comparison with that
of the LMNC. Doping with Al provides more chances to
improve the electrochemical property of the LMNC [159].

What’s more, spinel lithium titanate and ZnO nanopar-
ticles have also been chosen to investigate the effect of Al3+

substitution on the microstructure and electrochemical
properties of the materials. Lin et al. [160] reported a sim-
ple sol-gel process to synthesize spinel Li4Ti4.95Al0.05O12 ma-
terials. Compared to Li4Ti5O12 electrode, Li4Ti4.95Al0.05O12

electrode has outstanding initial discharge capacity. Mean-
while, the rate capability is improved for the higher Li+

diffusivity and lower charge-transfer resistance because of
the substitution of Al3+ for Ti4+. And the cyclic performance
of Li4Ti4.95Al0.05O12 electrode is better than that of Li4Ti5O12

electrode (Fig. 6e, f) [161] . Zhang et al. [162] revealed
unique layered structure of composites were synthesized
by anchoring Al-doped ZnO nanoparticles (AZONs)
on the surface of reduced graphene oxide (RGO) sheets
based on a facile annealing process. The AZONs/RGO
composites have been tested as an LIB anode, the initial

charge capacity of which reaches to 624 mA h g−1. And the
composites deliver a 100th charge capacity of 391 mA h g−1.
The AZONs and RGO act synergistically in ways with the
unique layered structure, so that the cycling stability and
reversible capacity are observably improved too.

All these evidence shows that Al-doped materials can be
employed as possible electrode materials for LIBs.

Al(OH)3

The electrochemical performances of lithium manganese-
based oxides can also be improved bymixingwithAl(OH)3.
Al(OH)3can adsorb traces of HF in the electrolyte for form-
ing AlF3, thereby reducing harmful side reactions between
cathode and electrolyte, so that the corrosion in active cath-
ode material can be alleviated and the LiF precipitation on
the cathode can be suppressed. Hou et al. [163] reported
LiCo1/3Ni1/3Mn1/3O2 was synthesized via a facile route mix-
ing with Al(OH)3 additives (Fig. 7a). Commercial 18650
size Li-ion cells was assembled using artificial graphite as
anode, Al(OH)3-mixed LiCo1/3Ni1/3Mn1/3O2 as cathode in a
LiPF6-based nonaqueous electrolyte. The method has sim-
ple operation, thus it can easily realize industrial mass pro-
duction. Al(OH)3-mixed LiCo1/3Ni1/3Mn1/3O2 material cell
shows a capacity retention of 63.1%, much higher than that
of the pristine material,  29.7%,  between  4.3 and 2.75 V at

Figure 7    (a) SEM image of 2 wt.% Al(OH)3-mixed LiCo1/3Ni1/3Mn1/3O2 cathode sheet. The Al(OH)3 particles have been marked with white circles. (b)
The cycle performance of the cells without and with additives mixed. (c) High-resolution SEM micrograph showing curved Al NWs produced. (d) TEM
micrograph exhibiting a low-resolution image of a twin boundary within an Al NW grown on the surface of Cu at 125°C. (e) Energy-dispersive spec-
troscopy (EDS) spectra taken from a single Al NW. (a and b) Reproduced with permission from Ref. [163]. Copyright 2015, Elsevier. (c–e) Reproduced
with permission from Ref. [186]. Copyright 2011, the American Chemical Society.
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55 C after 300 cycles. The cell also has an excellent storage
stability compared to the pristine cell (Fig. 7b).

What’s more, Al(OH)3-coated spinel materials such as
Li[Ni1/3Co1/3Mn1/3]O2 [164] and Li[Li0.2Ni0.2Mn0.6]O2 [165]
also show very good electrochemical properties, which is
mainly ascribed to the Al(OH)3 coating because it can sup-
press the transition metal dissolution and reduce the area-
specific impedance value.

Al NWs

Fundamental researches about the effects of constrained
dimensions on thermal and electrical conductivities in
one-dimensional (1D) conductors as well as magnetism of
transition metals give a great impetus to earlier researches
of metal nanowires (NWs) [166–171]. In the past decade,
the size-dependent breakdowns of superconductivity
have drawn particular attention in small diameter NWs
[166–168]. Nowadays, potential application prospect of
metal NWs becomes broader and more attractive, includ-
ing sensors [172], interconnects [173], ultra-high-density
magnetic recording and spintronics [174], transparent
current collectors for touch screens and organic solar cells
[175], fuel cells [176], current collectors for LIBs [177,178],
active anodes for LIBs [179], catalysis [180],hydrogen stor-
age [181], capacitors [182] and supercapacitors [183,184].

Al has long attracted interest as anode materials for LIBs
because of numerous advantages. Various alloying NWs
have showed better properties than their bulk counterparts,
which has stimulated intense research efforts on preparing
Al NWs. The synthesized Al NWs have rather small di-
ameter, providing an easy strain relief path. The electro-
chemical materials will expand and contract in the reac-
tions of alloying and dealloying. Sometimes, the small di-
ameter of Al NWs can strengthen mechanical robustness
effectively. Besides, the ion diffusion pathways are short-
ened in NWs, improving the rate capabilities [185]. Ben-
son et al. [186] demonstrated that patterned Al NWs were
successfully deposited onto Cu, Ni, and SS substrates by de-
composing trimethylamine alane complex at low pressure.
The obtained Al NWs were crystalline and not mixed up
with a detectable amount of carbon impurities, whose av-
erage diameter ranged from 45 to 85 nm (Fig. 7c–e). They
have prepared an electrode material for supercapacitor by
covering 50 nm of vanadium oxide on the surface of Al NW
via ALD. The volumetric capacitance of the supercapaci-
tor electrodes was very high, which was one order of mag-
nitude higher than that of traditional activated carbon su-
percapacitor electrodes. However, whether Al NWs can be

used in LIBs like some metal NWs still needs further study.

ALUMINUM-ION BATTERYS (AIBs)
Al has drawn a particular interest as an anode for the Al-air
battery due to its overall specific energy and high theoret-
ical ampere-hour capacity [187–191]. However, there are
two main drawbacks reducing these values in a practical
battery. First, it is extremely difficult to employ Al and
the air cathode at their thermodynamic potentials. Sec-
ond, the discharge reaction will consume water gradually.
In addition, the Al anode could generate hydrogen inher-
ently in aqueous electrolytes, which has further limited the
performance of the battery. Although it has above-men-
tioned problems, the practical energy density is still very
high [192]. People have figured out several feasible so-
lutions such as mechanically replacing the Al anode after
each discharge or adding electrolyte in the battery systems
before use. Whereas these adjustments can satisfy some
of the limitations, reliable rechargeable Al/air batteries are
still hard to be employed in aqueous electrolytes because
they are under the threat of serious corrosion, and hydro-
gen evolution ofAl is prone to reacting in the electrolyte, re-
sulting in a sharp decrease of anodic efficiency. Moreover,
many researches have confirmed the cell efficiency and an-
odic voltage would be cut down in aqueous media Al/air
battery because an oxide film was covering on the surface
of the Al anode [193]. There are a number of studies in
the literature aiming to investigate the suitability of ionic
liquid-based electrolytes for electrodeposition of Al [194].
In recent years, a new battery technology using an Al-ion
conducting ionic liquid as the electrolyte has provided an
outlook of the future of AIB in application development.

Ionic liquid-based electrolytes

An AIB with stable electrochemical property and extended
cycle life was first successfully assembled by Jayaprakash
et al. [195]. They reported that Al3+ could be reversibly
inserted into V2O5 NWs in the ionic liquid/AlCl3 based
electrolyte (Fig. 8a, b). The first Al-ion cell showed some
promising electrochemical properties (Fig. 8c, d). These
features were ascribed to the combined effect of anode,
cathode and the electrolyte where the AlCl3 was dissolved
in 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl).
Particularly, a electrolyte is regarded as a key factor for
obtaining high energy density of an AIB. An apposite
electrolyte not only possesses great ionic conductivity for
Al3+, a wide and stable electrochemical window with the
existence of Al, but also can permeate the cathode materi-
als and shows reversible  electrochemical  deposition  and
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Figure 8    (a) and (b) TEM images of the V2O5 nanowires as the cathode of AIB. The cyclic voltammograms (CVs) of AIB employing Al anode and
V2O5NW cathode in (c) 1:1 v/v of Al triflate in PC/THF and (d) 1:1:1 molar ratio of AlCl3 in ([EMIm]Cl) at a scan rate of 0.2 mV s−1. Reproduced with
permission from Ref. [195]. Copyright 2011, the Royal Society of Chemistry.

dissolution of Al. It is very considerable for successful bat-
tery technology to choose right electrolyte.

Mixtures of aluminum halides and halide-containing ionic

liquids

AIBs adopting electrolytes containing Al salts and organic
solvents have been studied in recent years. For example,
AlCl3-contained imidazole-based ionic liquids are one
of the most commonly used electrolytes which displays
stable electrochemical behavior. Haloaluminate anions
are thought to play a significant role in electrochemical
performance of these electrolytes, so that they affect the
performance of an AIB. In this respect, Wang et al. [196]
first demonstrated the effect brought by anions. They
found anions had great effects on the conductivity of
ionic liquids and the electrochemical window, mainly
reflecting in the following two aspects. First, aluminum
chloride anions (Cl−→AlCl4−→Al2Cl7−) caused by various
AlCl3/imidazole salt mole ratios are the determining factor
of the electrochemical activities. Second, the halogen
anions (AlCl4−→AlCl3Br−→AlCl3I−) caused by various halo-
genated imidazole salt species exert a critical function on
the electrochemical windows.

Halide-free electrolyte

AlCl3-contained imidazole-based ionic liquids possess

much superiority; however, they are corrosive, moisture
sensitive, and have low oxidation voltage. In order to
further develop AIBs, Wang et al. [197] additionally put
forward a new strategy. They mixed 1-butyl-3-methylim-
idazolium trifluoromethanesulfonate ([BMIM]OTF) with
the corresponding aluminum salt (Al(OTF)3) to prepare a
water-stable and noncorrosive ionic liquid. On this basis,
a corrosive AlCl3-based electrolyte is used to create a route
for Al3+ on the Al anode and the as-prepared ionic liquid
is devoted to obtain stable Al/electrolyte interface subse-
quently. Experiments show that the ionic liquid electrolyte
possesses excellent ionic conductivity and a high oxidation
voltage, exhibiting a great promise in advanced battery
systems.

Polymer gel electrolyte

Besides, the polymer gel electrolyte was first prepared
by free radical polymerization. It used acidic ionic liq-
uid containing [EMIm]Cl and AlCl3 ([EMIm]Cl:AlCl3,
1:1.5, in molar ratio) as a plasticizer and AlCl3 complexed
acrylamide as a functional monomer [198]. The electro-
chemical deposition and dissolution of Al in a polymer gel
electrolyte with 80 wt.% ionic liquid not only can realize Al
deposition with less moisture sensitivity but also allow AIB
to be more flexible in cell configuration. These polymer gel
electrolytes are considered as another excellent candidate
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for advanced AIBs (Fig. 9a).

These studies are expected to give guidance in selecting
and designing suitable electrolytes for rechargeable AIBs.

Cathode materials

For LIBs, there is reversible Li ions insertion/extraction in

the electroactive materials with a charge transfer. It is re-
ported that the size of guest ions is a considerable factor
for the feasibility of the intercalation reaction and the ion
mobility. Large ions could suffer from both energetic and
steric trap, along with the difficulty of ion mobility. The ra-
dius of  Al3+  cation (53.5 pm)  is  smaller  than  that  of  Li+

Figure 9    (a) CVs of the polymer gel electrolyte with 60 wt.% of EMImCl-AlCl3 at 50°C at a scan rate of 100 mV s−1.(b) CVs of the anatase TiO2-NTA
in 1 mol L−1 AlCl3, MgCl2 and LiCl aqueous solutions at 20 mV s−1 and (c) CVs in 1 mol L−1 AlCl3 aqueous solution at various scan rates. Inset, the
relationship between the cathodic peak currents and scan rates. (d) Top view and (e) side view of FESEM images of the Al-inserted TiO2-NTA films. (f)
XRD patterns of the as-synthesized TiO2 and Al-inserted TiO2-NTA film. (a) Reproduced with permission from Ref. [198]. Copyright 2016, the Royal
Society of Chemistry. (b and c) Reproduced with permission from Ref. [206]. Copyright 2012, the Royal Society of Chemistry. (d–f) Reproduced with
permission from Ref. [207]. Copyright 2014, Elsevier.
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cation (76 pm). Hence, Al3+ cation shows a great promise in
intercalation chemistry. And recently Gu et al. [199] first
provided clear evidence that Al3+ inserted into the metal
oxide and stored reversibly was possible.

The research of AIBs is in beginning stage now, since
some potential issues need to solve. These problems are
all chronic and fundamental, mainly coming from the fact
that it is difficult to find suitable cathode materials which
let simple ion transfer in a reversible way. These problems
include slow ion transport, poor cycle life, the decomposi-
tion of cathodematerials, and lowdischarge voltage profiles
with unclear plateaus [187,195,200–204].

The first Al-ion cell wasmentioned above, which adopted
Al metal as the anode and V2O5 as the cathode, showing
very stable electrochemical behaviour. It has a theoretical
energy density of 240 W h kg−1. Although the energy den-
sity is not very high, it is sufficient to undertake a global
search for new materials for the other noticeable character-
istics.

TiO2 nanotube arrays

In the last few years, people have the expectation that Al3+

cations could intercalate in the anatase TiO2 electrochem-
ically in aqueous electrolytes. Anatase TiO2 is a nontoxic
material and has good chemical stability. Ithas been widely
applied in many aspects already. One of the most note-
worthy applications of the material is the electrochemi-
cal Li storage with a stable host structure in aqueous elec-
trolytes [205]. Besides, TiO2 NT arrays (TiO2-NTAs) can
be a fast diffusion path for electrolyte species and guaran-
tee good contact between electrode and electrolyte, which
are mainly ascribed to the unique nanosized geometry and
large surface area. Liu et al. [206] first initiated inves-
tigation in regard to the feasibility of the electrochemical
Al storage of anatase TiO2-NTA in AlCl3 aqueous solution
to explore aqueous AIBs. As the experiments displayed,
Al3+ were able to be inserted into and extracted from the
TiO2-NTA reversibly owing to the small radius of Al3+, thus
the TiO2-NTA showed excellent electrochemical features as
a cathode material for AIBs. In the preliminary research,
the capacity of TiO2-NTA was tested to be ~75 mA h g−1 at 4
mA cm−2 in AlCl3 aqueous electrolyte. The result indicates
a possible application of multi-valent ions with the small
radius as guest species in intercalation chemistry (Fig. 9b,
c).

In order to further promote the feasibility of AIBs in
aqueous electrolyte solution, Liu et al. [207] made deeper
investigation to enhance the electrochemical property.
They reported that the TiO2-NTAs were synthesized via

a two-step anodic oxidation process, followed by anneal-
ing at 450°C. By polarizing the TiO2-NTAs electrode at
0.4 mA for 2 min in 1 mol L−1 AlCl3, the Al-inserted
TiO2-NTAs was obtained. Compared to the pristine one,
the Al-inserted sample exhibited no change on NT array
morphology, remaining the pure anatase TiO2 phase (Fig.
9d, e). X-ray photoelectron spectroscopy (XPS) was used
to evaluate the composition and structure of the samples
too. The results demonstrated the insertion of Al3+ into
TiO2-NTAs helped the reduction of Ti4+ to Ti3+ (Fig. 9f).
What’s more, they also found the existence of Cl− exerted
an enormous function on valid insertion Al3+ into or ex-
traction Al3+ from the TiO2-NTAs. To sum up, anatase
TiO2-NTA is reported to show some promise as new elec-
trode material for AIB due to its stability and reversibility
in aluminum insertion/extraction process in aqueous
electrolyte solution. However, TiO2 NTs, which have many
advantages, deliver a relatively low specific capacity.

Graphitic materials

Lin et al. [208] recently presented that a rechargeable
AIB was constituted with a cathode of 3D graphitic foam
(3DGF), a anode of an Al metal and a non-flammable ionic
liquid as electrolyte, which had high-rate capability (Fig.
10a). The battery showed clear discharge voltage plateaus
near 2 V, a specific capacity of approximately 70 mA h g−1

and a Coulombic efficiency of about 98%. Besides, they
discovered that the cathode could accelerate the diffusion
and intercalation of anion, thus enabling to afford a charge
time of about 1 min at a current density of 4000 mA g–1

(i.e., 3000 W kg–1). Meanwhile, it showed no capacity
decay after 7500 cycles (Fig. 10b). Wu et al. [209] reported
an advanced 3DGF was prepared through intercalation
of chloroaluminate anion in the graphite and thermal
expansion along with electrochemical hydrogen evolution
in the pores of graphitic sheets occurred subsequently. The
method prevented a lot of irreversible oxidation of graphite
and avoided introduction of extensive oxidation-induced
defects into the graphene sheets. The 3DGF is able to ori-
ent vertically aligned graphene perpendicular to a current
collector substrate. Owing to the interesting feature, it
can help electrochemical reactions. A uniform vertically
aligned graphitic structure enables a cathode in an AIB
to show a discharge capacity of ~60 mA h g−1 steadily at a
high current density of 12,000 mA g−1 after 4000 cycles.

Herein, the selection of carbon as the cathode material
plays a significant role in assembling ultrafast performance
AIBs. However, the rate capabilities of natural graphite and
pyrolytic graphite are poor, the specific capacity are low at
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Figure 10    (a) Schematic diagram of the Al/graphite cell during discharge. (b) The stability test of an Al/graphitic-foam pouch cell over 7500 charge-
discharge cycles. (c) SEM image of the binder-free Ni-V2O5. (d) Schematic diagram of the redox reactions in Zn//Graphite nanosheet aqueous battery. (a
and b) Reproduced with permission from Ref. [208]. Copyright 2015, Macmillan Publishers Limited. (c) Reproduced with permission from Ref. [213].
Copyright 2014, the American Chemical Society. (d) Reproduced with permission from Ref. [214]. Copyright 2015, the American Chemical Society.

the given current densities. The 3D graphene foam and
graphite have such advantages, but the charge cutoff volt-
age is 2.45 V when used as cathode in an AIB. The charge
cutoff voltage is a little higher than the decomposition volt-
age of the electrolyte, aggravating the side reactions in the
charge process, resulting in a capacity of merely about 60
mA h g−1. Consequently, it is considerable to reduce the
cutoff charge voltage as well as enhance the capacity for a
novel AIBs [210]. To solve this problem, Yu et al. [211] for
the first time, reported plasma-etching graphene nanorib-
bons on highly porous 3D graphene (GNHPG) foam as a
cathode material for rechargeable AIBs (Fig. 11). The cut-
off charge voltage of the flexibility and freestanding pouch
cell is 2.3 V, which is lower than the electrolyte decompo-
sition voltage, disenabling side reactions during the charge
process. And the discharge voltage plateau is high close to
2 V. The cell shows a high capacity about 123 mA h g−1 at a
current density of 5000 mA g−1 with Coulombic efficiency
in excess of 98%. There is no capacity decay even aftermore
than 10,000 cycles and the rate performance are up to 148,

125, 123, 119, 116, and 111 mA h g−1 at current densities
of 2000, 4000, 5000, 6000, 7000, and 8000 m A g−1, respec-
tively. What’s more, the battery can be fully charged in 80
s and discharged for more than 3100 s. It is also rather re-
markable that no matter what the current temperature (up
to 40, 60, and 80°C or at 0°C), the AIB still shows excellent
electrochemical performance. In summary, superior elec-
trochemical properties are shown not only in the capacity,
Coulombic efficiency, cycle life, and rate capability, but also
in the fast charge together with slow discharge, and thermal
stability.

Besides, Jung et al. [212] have conducted an investiga-
tion about the structure, energetics, mechanical property
and ionic conductivity of AlCl4− inserted graphitic materi-
als by adopting the first-principles calculation. They found
the fully charged graphitic cathode in AIBs was at stage 3,
which had doubly stacked intercalation structure. The dif-
fusivity of AlCl4− in few layer graphene films tends to be
worse with the number of graphene layer decreasing below
5. Particularly,  few-layered graphene has low elastic  stiff-
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Figure 11   Schematic diagram of (a) 3D graphene and (b) nanoribbon formation on the surface of highly porous 3D graphene, (c) nanopore formation
on graphene, (d) pore of graphene, and (e) graphene nanoribbon formation on the graphene. Schematic illustration of (f) AlCl4− anions insertion/ex-
traction in the 3D graphene foam and (g) nanoribbons on highly porous 3D graphene foam. Reproduced with permission from Ref. [211]. Copyright
2016, Wiley-VCH.

ness, providing more free space for AlCl4−diffusion, which
is considered as the origin of the ultrafast rate performance
of graphitic foam. Graphite is deemed as a promising elec-
trode material for the AIBs in an AlCl3/ionic liquid elec-
trolyte. These studies represent a milestone for the devel-
opment of rechargeable AIBs.

Binder-free V2O5

Wang et al. [213] reoprted that a binder-free cathode mate-
rial was prepared via directly depositing V2O5 on a Ni foam
current collector (Fig. 10c). A rechargeable aluminum coin
cell that used the binder-free V2O5 cathode had a much
higher initial discharge capacity (239 mA h g−1) than the
cell that used a cathode material with V2O5 nanowires and
binder. The discharge voltage plateau is slightly higher as
well due to the reduction of electrochemical polarization.

Others

In addition to these studies,Wang et al. [214] demonstrated
that graphite nanosheets with an expanded interlayer
distance were successfully synthesized via a facile elec-
trochemically expanded approach. Then, a new aqueous
battery was fabricated using Zn as cathode, the graphite
nanosheet as anode and aqueous Al2(SO4)3/Zn(CHCOO)2

solution as electrolyte (Fig. 10d). The new aqueous battery
has many advantages in electrochemical properties. First,
the cycling stability is excellent (nearly 94% capacity reten-
tion after 200 cycles). Second, this aqueous rechargeable
battery has a high average working voltage (1 V) in an
ionic liquid electrolyte. Third, it could be fully charged in
2 min and retain a high capacity. Last but not least, the

raw materials are abundant and the aqueous electrolyte
with the Zn cathode is cheap. This battery is attractive for
good electrochemical properties as well as low cost and
offers new opportunities for the application in large-scale
stationary energy storage.

MICRO/NANOSTRUCTURED Al-BASED

MATERIALS FOR NICKEL-METAL

HYDRIDE BATTERY
Layered double hydroxides (LDH), a class of materials
belonging to the natural anionic clay family, noted as
M2+

1−xM3+
xAx/n

n−(OH)2·yH2O (An−=OH−, CO3
2−, NO3

−),
are believed to have potential applications spreading over
many fields. As a point of clarification, a net positive
charge will appear in natural anionic clays when a certain
fraction x of the divalent and trivalent cations are sub-
stituted. Excess positive charge can make up for anions
which are involved in the interslabs [215,216]. On account
of the capacity for anions intercalation and exchange,
LDH materials play a role in catalysis [217], magnetics
[218,219], precursors to oxides [220], anion exchangers
[221,222], and electrodes for rechargeable alkaline battery
[223–225]. The representative cathode materials for alka-
line battery include nickel hydroxide. It has been divided
into two kinds. While one is α-Ni(OH)2, the other is
β-Ni(OH)2. They will respectively turn into γ-NiOOH and
β-NiOOH after fully charged [226]. In general, the capac-
ity of α-Ni(OH)2 is more reversible than that of β-Ni(OH)2,
mainly ascribed to the higher average oxidation state of
nickel. It is noted that the γ-NiOOH transformed from
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α-Ni(OH)2 reveals a higher oxidation value of 3.67, com-
pared with the β-NiOOH (an oxidation value of 3) [227].
Nonetheless, the stability of α-Ni(OH)2 is poor, which
easily transforms into β-Ni(OH)2 in the synthesis process.
Besides, strong alkaline media can also lead to the same
results. These facts bring about rapid capacity decay to the
electrode [228]. Under the circumstances, nickel-based
LDHs are suggested to be the electrode materials for alka-
line secondary battery in order to increase configurational
stability of α-Ni(OH)2. The Ni2+ in Ni(OH)2 host layer are
partly substituted by metal ion like Al3+ [229–232], Co3+

[233,234], Fe3+ [235,236], Zn2+ [237,238], Mn3+ [236,239],
or Y3+ [240], in the nickel-based LDHs. Among these
fungible metal ion, Al3+ is thought to be the best candidate
for its good electrochemical suitability [230]. Several
investigations confirm that the Al-substituted α-Ni(OH)2

(also known as nickel aluminum layered double hydroxide
(Ni-Al LDH)) not only shows better cycle stability but
also delivers a higher discharge capacity than α-Ni(OH)2

[241–243].
Hu et al. [244] prepared a [Ni4Al(OH)10]OH electrode,

which could be fully charged within 12 min and deliver
a good capacity. But this Al substitution strategy suffers
from the following two problems. First, the relative atomic
mass of Al element is much smaller than that of Ni, lead-
ing to a great decline of tap-density as the increase of Al
amount. Although the ionic radiuses of the two elements
are different, it does not change the result. Second, Al is in-
efficient in the electrochemical redox reaction, so that the
increase in the Al amount also can result in a discharge ca-
pacity fade [245]. Besides, it is quite difficult to achieve Al
contained metal particles coprecipitation with high density
and large size [246]. For instance, Chen [245] has come up
with a complexation-coprecipitation approach for the syn-
thesis of spherical Ni-Al LDH samples. Even the highest
tap-density is merely 1.1 g cm−3, which is inferior to spher-
ical β-Ni(OH)2 [243]. Besides, LDHs is enslaved to inher-
ent electrical conductivity directly, which give rise to seri-
ous polarization in alkaline rechargeable batteries during
high-rate charge/discharge cycling. This problem must be
noticed as well [247,248].

Nickel-aluminum layered double hydroxide/carbon (Ni-Al

LDH/C)

Béléké et al. [249–252] demonstrated a novel synthetic
method to prepare Ni-Al LDH/C for the applications in
battery systems, which was called liquid phase deposition
(LPD) [253–257]. Unlike traditional LPD process, this ap-
proach used Al(NO3)3 as a raw material directly to receive

Ni-Al LDHand a fluoride scavenger. The reaction equation
is described as follows.

Al(NO3)3 + 6HF = H3AlF6 + 3HNO3

The LPD method has some benefits. On the one hand,
the amount of substituted Al3+ in the Ni(OH)2 lattices
and the films deposited on carbon particles is feasibly
controlled. On the other hand, the synthetic products have
high crystallinity and pure phase. And the method does
not need to adjust the pH value.

The features of LPD-prepared Ni-Al LDH/C were evalu-
ated through a variety of ways. The results showed not only
the LDH content but also the Al3+/(Al3++Ni2+) (Al ratio)
was important to the electrochemical property of the Ni-Al
LDH/C electrode (Fig. 12a–c). The discharge capacity of
the optimal composition is 393 mA h g−1

comp at 1.0 C-rate.
That is to say, each Ni atom can exchange 1.35 electrons.
The capacity retention of the electrode is also very good.
In addition, a superb electrochemical stability is achieved
after 300 charge-discharge cycles (Fig. 12d, e). It is easy to
see that the Ni-Al LDH/C composites show a great promise
in the application of prospective Ni-MH secondary battery.

Nickel-aluminum layered double hydroxide-graphene (Ni-Al

LDH-graphene)

Graphene, a flat sheet of carbon just one atom thick, has at-
tracted extensive attention in electrochemical energy stor-
age. Graphene is an excellent conductive enhancer owing
to its extremely high intrinsic electrical conductivity. Gao
et al. [258] reported that Ni-Al LDH could be grown on the
graphene sheets directly based on a hydrothermal process.
The as-prepared Ni-Al LDH-graphene composites showed
splendid capacitive property. Zhang et al. [259] demon-
strated that a Ni-Al LDH-graphene was successfully syn-
thesized via in situ LPDof LDHsheets onGO.The compos-
ite also showed outstanding capacitive property. Obviously,
it is feasible for the Ni-Al LDH-graphene to be supercapac-
itor electrode materials, which is mainly attributed to the
conducting networks of graphene. The magical networks
can facilitate the redox rate on LDH surface, thereby satis-
fying the supercapacitor power demand [260]. In spite of
that, it is difficult for Ni-Al LDH-graphene to be electrode
materials in high-rate battery through deposition growth
strategies. Because just the outmost layer next to graphene
sheets can capture/deliver the electrons from/to the con-
ducting graphene base rapidly, however, the other layers in
the multilayered LDH composites do not have the capabil-
ity to support high-rate energy.

Hu et al. [261] presented a synthetic method of Ni-Al
LDH-graphene superlattice composites, as illustrated sche-
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Figure 12   The top view SEM image of Ni-Al LDH/C (a) 67.2 wt.% LDH contents, (b) 86 wt.% LDH contents. (c) XRD patterns of Ni-Al LDH/C with
different LDH contents. (d) Fifteenth charge-discharge curves of cathodes containing different LDH contents at 1.0 C-rate (2 mA). (e) Typical CV of
the electrode with 19.2% Al3+ and 86.2 wt.% LDH at 1 mV s−1. (f) Schematic illustration of the construction for Ni-Al LDH-graphene composite. (1)
Superlattice obtained by alternating assembly, (2) hybrid via deposition growth. (a–e) Reproduced with permission from Ref. [250]. Copyright 2012,
Elsevier. (f) Reproduced with permission from Ref. [261]. Copyright 2015, the Royal Society of Chemistry.

matically in Fig. 12f. Compared with the pristine Ni-Al
LDH, the composite is observed without an obvious
change on bulk structure. However, the intercalated
graphene shows a wider interlayered gap (Fig. 13a–c). And
there is always a graphene layer between every two LDH
block layers. The superlattice structure activates all the
Ni-Al LDH layers via neighboring graphene conducting
networks, leading to the improvement in the electrochem-
ical performance of LDH materials, especially in quick
charge-transfer reactions. The Ni-Al LDH-graphene su-
perlattice composites electrode can take full advantage
of the conductivity of graphene and maximal layers of
the LDH, maintaining steady cycle life and exhibiting a
superior capacity at a high current density (Fig. 13d–f).
Therefore, the composite is regarded as a suitable cathode
material for a high-rate battery.

Cobalt-aluminum layered double hydroxide (Co-Al-LDH)

Hu et al. [244] showed an interest in incorporating Co2+

into the crystal lattice of Ni-Al LDH, because of the com-
paratively similar size of Co2+ and Ni2+. It is probable for
Co2+ to form LDHs with Al3+ which possess a semblable
construction to Ni-Al LDH [262]. The coprecipitation of
Co2+ is proved to be effective to improve the cycle life and

charge efficiency of Ni-Al LDH. Divalent Co2+ will be ox-
idized into trivalent Co3+ which is insoluble in the alka-
line solution. The Co3+ ions exert the function of Al3+ ions
on increasing structural stability of Ni-Al LDH materials
[263]. Depth research on the effects of cobalt in Ni-Al LDH
materials have been carried on, including the morphol-
ogy, structure and electrochemical property. Ni4−xCoxAl
LDHs (x is 0, 0.8, 1.0, 2.0, 3.0, 3.2 and 4.0) were success-
fully synthesized via the homogeneous coprecipitation and
the hydrolysis of urea. The electrochemical property of
Ni-Al LDH can be enhanced by substituting an appropri-
ate amount of cobalt for nickel, since cobalt can improve
the electrode conductivity and reduce the charge transfer
resistance. Electrochemical characterizations also exhibit
that precipitating Co4Al LDH on the surface of Ni4Al LDH
is optimal (Fig. 14a, b). As far as they are concerned, sur-
face precipitation of Co4Al LDH shows a more even distri-
bution on Ni4Al LDH, resulting in improved electric con-
ductivity and availability.

Feng et al. [264] presented that the Co-Al-LDH was suc-
cessfully prepared via hydrothermal synthesis method and
they tested the electrochemical property of the Co-Al-LDH
as an additive for the nickel electrode in Ni-MH secondary
battery. They came up with the same result about the best

 596  July 2017 | Vol.60 No.7
© Science China Press and Springer-Verlag Berlin Heidelberg 2017

REVIEW SCIENCE CHINA Materials



Figure 13    (a) SEM images of Ni-Al LDH nanoplatelets. (b) Ni-Al LDH-GO, inset, a certain amount of GO and a mass of delaminated Ni-Al LDHs
mixed dispersions. (c) Ni-Al LDH-graphene composite. (d) Typical charge-discharge curves and (e) capacity maintaining plots at 1000 mA g−1. (f) Rate
property profiles of the Ni-Al LDH electrode and Ni-Al LDH-graphene composite electrode between 200 mA g−1 and 5000 mA g−1. Reproduced with
permission from Ref. [261]. Copyright 2015, the Royal Society of Chemistry.

molar ratio of Co/Al, which is equivalent to 4:1. With the
optimal molar ratio of Co/Al, the Co-Al-LDH composite
displays a greatest hexagonal crystal construction. Among
the pure nickel, CoO added nickel and Co4Al LDH elec-
trode, the latter has the most stable cycle performance and
the highest discharge capacity. Besides, the high rate ca-
pability of the electrode can meet the requirements in high
energy storage applications.

Gong et al. [265] demonstrated that the NiAlCo
LDH/CNT composite was successfully prepared as a novel
electrode material. The material has stable structure due to
the substitution of Al and Co in α-Ni(OH)2. Also, it shows
excellent electrochemical property, which is ascribed to
the small ultrathin nanoplates morphology as well as
the strong interaction between NiAlCo LDH nanoplates
and CNTs. (Fig. 14c). A Ni-Zn battery was successfully
fabricated using electro-deposited Zn as anode, NiAlCo
LDH/CNT as cathode, delivering an energy density of 274
W h kg−1 and a power density of 16.6 kW kg−1, ultrafast
charge/discharge times reaching to 41 s.

Zinc-aluminum layered double hydroxide (Zn-Al-LDH)

In addition to above LDH mentioned, Zn-Al-LDH, Zn-Al-
La-LDH, Zn-Sn-Al-LDH and so on are regarded as ad-
vanced electrode materials for Zn-Ni and Ni-Zn secondary
battery.

Xie et al. [266] have developed a facile hydrothermal
method with anion-exchange processes subsequently for

inserting dodecyl sulfate (DS) anions into LDHs interlayer
to synthetize the Zn-Al-CO3 LDHs. Compared to conven-
tional LDHs, the dodecyl sulfate intercalated LDHs (LDH-
DS) show no change on the layer structure, but the crystal-
lization becomes higher and the surface is much smoother.
These as-synthesized LDH-DS samples not only deliver a
higher specific discharge capacity of 375 mA h g−1 but also
have superb cycle stability after 150 cycles (Fig. 14d, e). In
addition, the active materials have been made in full use.

Zn-Al-La-hydrotalcites with various Al/La molar ratios
were successfully prepared via co-precipitation by Fan et

al. [267]. The hybrid has a hexagonal crystal structure,
in which the degree of crystallization is also very high. As
cathode material in a Zn-Ni secondary battery, it displays
splendid electrochemical properties, including reversibil-
ity, cycling stability, positive corrosion potential and excel-
lent utilization ration, particularly in the case of Al/La =
0.8/0.2 (molar ratio).

Wang et al. [268] preparedZn-Sn-Al-hydrotalcites LDHs
successfully via the hydrothermal method. The structure
and property of the compound electrode materials have
been investigated. In contrast of Zn-Al-LDH without Sn
addition, the Zn-Sn-Al-LDHs still present hexagon layer
structure while show more excellent electrochemical per-
formance (Fig. 14f, h).

Zn-Cu-Al-CO3 LDHs have been prepared via constant
pH co-precipitation by Wen et al. [269]. It is regarded as
another novel anodic material for Zn-Ni secondary battery.
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Figure 14    (a) Tenth charge and (b) discharge curves of Ni4−xCoxAl LDH samples (1 through 7 corresponding to x = 0, 0.8, 1.0, 2.0, 3.0, 3.2, 4.0, respec-
tively). (c) TEM image of NiAlCo LDH/CNT compound. (d) SEM images of LDH-CO3 electrode and (e) LDH-DS electrode after 150 cycle. (f) SEM
image for Zn-Sn-Al-LDH sample (Zn/Sn/Al=2.8:0.2:1). (g) CVs of the pure LDH, ZnO and LDH/CNTs. (h) Schematic diagram of Zn-Sn-Al-LDH after
cycles. (a and b) Reproduced with permission from Ref. [244]. Copyright 2013, Elsevier. (c) Reproduced with permission from Ref. [265]. Copyright
2014, the Royal Society of Chemistry. (d and e) Reproduced with permission from Ref. [266]. Copyright 2014, Elsevier. (f and h) Reproduced with
permission from Ref. [268]. Copyright 2014, Elsevier. (g) Reproduced with permission from Ref. [270]. Copyright 2013, Elsevier.

The Zn-Cu-Al-LDHs with different Zn/Cu/Al molar ratios
exhibit stable cycle performance, lower charge-transfer re-
sistance and excellent reversibility. AsZn/Cu/Al = 2.8/0.2/1
(molar ratio), the electrochemical features of Zn-Cu-Al-
LDHs are deemed to be optimal than other samples.

Yang et al. [270] have prepared one kind of novel
LDH/CNT composite by assembling nanostructured
Zn-Al LDH and CNTs based on electrostatic force. The
material has many obvious advantages. For example,
compared with traditional ZnO and Zn-Al-LDH, the
LDH/CNT composite possesses excellent cycling stability.
Meanwhile, it can maintain a discharge capacity of 390 mA
h g−1 after 200 cycles. Besides, it displays higher discharge

plateau voltage and lower charge plateau voltage. In ad-
dition, the average utilization ration of the anode is up to
95.6% (Fig. 14g). It is quite evident that the LDH/CNT
composite shows a great promise employed as anode for
Ni-Zn batteries.

SUMMARY AND OUTLOOK
In this review, we have attempted to give a summary of
some recent progress in micro/nanostructured Al-based
materials for advanced battery systems, including LIBs,
AIBs and Ni-MH alkaline secondary batteries. The cre-
ative synthetic method and unique design of the batteries
get many problems effectively solved. For these Al-based
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materials, the electrochemical performances such as cycle
life, rate capability and capacity are all inspiring. These
improvements promote the development of Al-based
chemistry and enrich the electrochemical energy storage
devices.

For rechargeable LIBs [271,272], the lithiation-induced
strain in electrodes often give rise to high stress, fracture,
and capacity fade. By surface modification of Al2O3, AlF3,
AlPO4, ect. and doping with Al3+, the electrochemical
performance can be improved conspicuously. Developing
multinary alloys is also an alternative technique to improve
the electrochemical properties. Many evidences show
that the Al-based materials are deemed to be potential
electrode materials for LIBs.

AIBs have similar operating principles as LIBs, which are
ideal for energy storage on a large scale in the future. Tra-
ditional AIBs usually have short cycle life, slow ion trans-
port, decomposition of cathode and low discharge voltage
plateaus on account of the difficulty to find a suitable cath-
ode material and choose a right electrolyte. Until the first
functional rechargeable AIB was designed, further oppor-
tunities showed up for improvement in the electrochemical
property of the AIBs. The battery using an Al metal as an-
ode, V2O5 nanowires as cathode, and an ionic liquid/AlCl3
based solution as electrolyte displayed quite encouraging
electrochemical stability. Although its energy density was
not very high, it was enough to inspire a new wave of global
research for new materials and innovative designs of AIBs.
Numerous studies on developing new intercalation mate-
rials and electrolytes help provide a bright prospect of the
application of AIBs. Nowadays, it is of great interest to ex-
plore the performance of AIBs in order to satisfy the re-
quirements of commercial AIBs.

Beyond the recent research progress of nanostructured
Al-based materials for LIBs and the development of
AIBs, another topic to explore is micro/nanostructured
Al-based materials in Ni-MH alkaline secondary batter-
ies. A large amount of Ni-Al LDH composites such as
Ni-Al LDH/C, Ni-Al LDH-graphene, Co-Al-LDH, NiAlCo
LDH/CNT, Zn-Al-LDH, Zn-Al-La-LDH, Zn-Sn-Al-LDH,
Zn-Cu-Al-LDH and Zn-Al-LDH/CNT have been inves-
tigated. The electric conductivity, crystallization and the
utilization ration of LDH materials have been significantly
improved in these composites. Therefore, they exhibit
superb electrochemical performance as electrode materials
in Ni-MH alkaline secondary batteries.

During the past decade, great achievements have been
made in Al-based materials for advanced battery systems.
However, most of the breakthroughs are in the stage of lab-

oratory, with no production yet for a mass market offer-
ing. It is filled with challenges on the road to commercial
functional batteries which use Al-based materials. There-
fore, a comprehensive and in-depth understanding of the
Al-based chemistry is necessary. There are complex mate-
rial conversions and structure evolutions taking place dur-
ing the electrochemical reactions, particularly as it relates
to the nanosized domains. The relations between structure
and property and the electrochemical mechanisms of the
batteries using Al-based materials must be taken into ac-
count. It is anticipated that future researches will be de-
voted to purposefully design and apply Al-based materi-
als which can be produced on an industrial scale, facilely
and cheaply. Under the circumstances, more experimen-
tal measurements, mathematical modeling and theoretical
simulation are required.

Besides building a comprehensive understanding of the
reactionmechanisms to optimize design, another topic is to
effectively reduce irreversible capacity loss. The investiga-
tion on micro/nanostructured Al-based materials needs at-
tach importance to the interface issues and the compatibil-
ity of electrolyte since the inserted charge would be unable
to all remove during the first discharge while electrolyte
would be reduced on the electrode surface. Proper modifi-
cation of electrodematerials and electrolytes could remark-
ably enhance the overall electrochemical property of batter-
ies. And studies need pay attention to increasing the initial
coulombic efficiency for the commercialization of Al-based
materials in advanced battery systems.

To realize commercialization of micro/nanostructured
Al-based materials in electrochemical energy storage
devices, more work must to be done. The cost, safety,
volumetric energy density and compatibility and so on
all need to be fully considered. Al is an abundant natural
element, and the raw material is relatively cheap and en-
vironment-friendly. The availably applications are being
in the stage of research and development. Thanks to the
progress of the modern science and technology, innova-
tive materials and research design could make advanced
battery systems be full of infinite possibilities. We believe
the further exploration in this field will bring about more
exciting achievements.
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铝基材料在先进的电池系统方面的应用
邱嘉晴,赵明明,赵群星,徐玉霞,张丽,陆欣,薛怀国,庞欢*

摘要   微/纳米铝基材料用作可持续、可靠、高效电化学储能材料一直是近些年的研究热点. 本文主要论述了铝基电极材料在锂离子电池
方面的应用(材料包括氧化铝、氟化铝、磷酸铝、氢氧化铝以及一些铝基复合材料,包含碳、硅、金属和过渡金属氧化物),铝离子电池与
镍氢碱性二次电池的发展. 对近年来发现的方法论、相关的电荷存储机制、纳米结构与电化学性能之间的关系、最新的研究成果以及
它们的潜在应用进行了总结. 此外,提到了近年来电极材料发展过程中遇到的相关挑战,并且对未来发展微/纳米铝基材料于先进的电池
系统进行了展望.
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