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Graphical abstract 

 

 

Synopsis 

Aluminum-based salen and salan complexes mediate the living and immortal ROP of rac-b-butyrolactone and 

rac-lactide with a considerable degree of control over the polymerization, yielding polymers with controlled 

molecular weight and narrow PDIs. Copolymerization of these monomers to yield poly(rac-lactide-co-rac--

butyrolactone) was successful under neat conditions at 120°C, presenting the first case where narrow PDIs 

were achieved. A strong bias for rac-lactide insertion over rac--buytrolactone was observed. 

 

Abstract 

Aluminum-based salen and salan complexes mediate the ring-opening polymerization (ROP) of rac--

butyrolactone (rac--BL), -caprolactone and rac-lactide. Al-salen complexes displayed impressive control 

over the ROP of rac--BL, with narrow PDIs of < 1.15, while Al-salan complexes also showed superb control 

with PDIs of <1.05. All poly(3-hydroxybutyrate) (PHB) isolated using Al-salen and salan complexes 

contained an atactic microstructure. Kinetic studies of rac--BL ROP by 
1
H NMR spectroscopy revealed 

pseudo-first order polymerization kinetics and a linear relationship between molecular weight and percent 

conversion. Al-salen and salan complexes also mediated the immortal ROP of rac--BL and rac-lactide by 

addition of excess benzyl alcohol of up to 50 mol eq. with excellent control observed. Screening novel 

methyl/adamantyl substituted Al-salen complex showed improved control in the ROP of rac-lactide and rac-

-BL, yielding atactic PHB and highly isotactic PLA (Pm = 0.88). All complexes gave only modest control in 

the ROP of ε-caprolactone, with broadened PDIs. Control over the copolymerization of rac-lactide and rac--

BL was achieved utilizing the Al-salan complex under neat polymerization conditions to produce poly(rac-

LA-co-rac--BL) with narrow PDIs of < 1.10. 
1
H NMR spectra of the copolymers a strong bias for insertion 

of rac-lactide over rac--BL observed.   
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Introduction 

Interest in the development of biodegradable polyesters, in particular poly(lactic acid) (PLA), poly(glycolic 

acid) (PGA), poly(-caprolactone) (PCL) and their copolymers, for biomedical devices has continued to 

increase.
1-4

 While these polymers remain at the forefront of research efforts in this field, other classes of 

biodegradable polyesters such as the poly(hydroxyalkanoates) (PHAs) have begun to attract greater focus in 

the past decade.
5
 Poly(3-hydroxybutyrate) (PHB), one of the more well-known PHAs, has been of particular 

interest as it is produced by bacteria with high isotactic stereoregularity producing semicrystalline PHB with a 

Tg and Tm of approximately 5°C and 180°C respectively, giving it properties similar to that of isotactic 

polypropylene.
6
 Alternatively, ring opening polymerization of -butyrolactone (-BL) by metal-based 

complexes has provided an additional route to this biodegradable polyester, gaining access to PHB with 

predictable molecular weight, narrow PDI and potentially alternative stereoregularity from the completely 

isotactic bacterial PHB. Rare-earth and group 3 complexes have been particularly proficient at mediating the 

ROP of rac--BL, while aluminum complexes which can polymerize this monomer in a controlled and 

stereoregular manner have remained relatively unexplored.
7,8

 

Once a catalyst system has been developed that can effectively control the ROP of cyclic esters, access to 

novel biodegradable materials can be achieved by the copolymerization of two or more monomers in the 

hopes of observing properties unique to the copolymer. In particular, reports of complexes which effectively 

mediate the ROP of rac--BL and rac-lactide in the copolymerization of these monomers remain scarce. It 

has been reported that tin alkoxides copolymerize (R)--BL and L-lactide, producing poly((R)-3-

hydroxybutyrate)-co-poly(L-lactic acid) where the presence of (R)--BL and L-lactide in the copolymer 

correlated well with the initial monomer:catalyst feed ratio.
9
 However, these copolymers possessed 

considerably high PDIs of >1.7. When mediated by dibutylmagnesium, the copolymerization of rac--BL and 

L-lactide produced similar results to those of tin alkoxides - good correlation between the ratio of monomers 

in the feed to those observed in the resulting copolymer, but PDIs of > 1.6.
10

 Zirconium amine-tris(phenolate) 

complexes successfully copolymerized rac--BL and rac-lactide, again with broad PDIs of > 1.6, however, 

the authors noted that the rate of insertion of rac--BL was significantly higher than that observed for rac-

lactide at 80°C in toluene when the polymerization was monitored by 
1
H NMR.

11
 Thus, the resulting 

copolymer was composed of two distinct blocks rather than the expected random or gradient copolymer. Only 

by utilizing a sequential addition of rac--BL followed by rac-lactide was a block-co-polymer of narrow PDI 

(<1.1) obtained. Finally, it was demonstrated that an aluminum half-salen complex which had similar 

observed rates in rac--BL and rac-lactide ROP at 90°C in toluene resulted in no rac--BL incorporation 

during the copolymerization, with only PLA formed, even after extended polymerization times.
12

 

In this study, we chose aluminum-based salen (salen = N,N’-bis(salicylaldimine)-1,2-ethylenediamine) and 

salan (salan = N,N’-bis(o-hydroxybenzyl)-1,2-diaminoethane) frameworks that were known to produce PLA 
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with narrow PDIs, to explore their ability to mediate the ROP of rac--BL. We then used these tetradentate 

salen and salan aluminum complexes in the copolymerization of rac--BL and rac-lactide, comparing their 

activity to previously reported systems. In particular, we can generate poly(rac-LA-co-rac--BL) polymeric 

materials of controlled molecular weight and polydispersities. To support previous reports mentioned, we 

wished to observe similar preference for insertion of rac-lactide over rac--BL, and if these tetradentate salen 

and salan complexes would provide increased control to access the targeted copolymers with narrow PDIs. 

 

Experimental 

Materials 

All chemicals and solvents were obtained from Sigma Aldrich unless otherwise stated. 4-Methylphenol, 1-

adamantanol (99%), tin(IV)chloride (97%), paraformaldehyde powder (95%), 1,2-diaminoethane (≥99%), 

N,N’-dibenzylethylenediamine (97%) and trimethylaluminum (2.0 M solution in heptane) were used as 

received. Triethylamine (≥99%) was dried over calcium hydride at ambient temperature overnight prior to 

vacuum transfer and was degassed by 3 freeze-pump-thaw cycles prior to use. Benzene-d6 (D, 99.5%) and 

toluene-d8 (D, 99.94%) were purchased from Cambridge Isotope Laboratory, dried over calcium hydride at 

reflux overnight prior to vacuum transfer and were degassed by 3 freeze-pump-thaw cycles prior to use. rac-β-

Butyrolactone (≥98%) was dried over calcium hydride overnight at ambient temperature, distilled under 

vacuum and degassed by 3 freeze-pump-thaw cycles prior to use. PURASORB DL-lactide was obtained from 

PURAC Biochem by Gorinchem and sublimed 3 times under vacuum prior to use. ε-Caprolactone was dried 

over calcium hydride and distilled under inert atmosphere prior to use. Complexes 1
13

 and 2,
14

  as well as 3-

adamantyl-2-hydroxy-4-methylbenzaldehyde
15,16

 were prepared according to literature procedures.  

Toluene and pentane were obtained from an Innovative Technologies glovebox equipped with an inline 

Solvent Purification System, consisting of columns of alumina and copper catalyst. The solvents were 

degassed by 3 freeze-pump-thaw cycles prior to use. All air-sensitive manipulations were performed in an 

MBraun LABmaster sp glovebox or using standard Schlenk techniques. 
1
H (300 MHz) and 

13
C{

1
H} NMR (75 

Hz) spectra were collected on a Bruker Avance Spectrometer. Gel permeation chromatography (GPC) 

analysis was carried out on a Polymer Laboratories PL-GPC 50 Plus integrated GPC system with two 300 × 

7.8 mm Jordi Gel DVB mixed bed columns using HPLC grade THF at a flow rate of 1 mL per minute at 50°C 

utilizing a refractive index detector and poly(styrene) standards for molecular weight determinations. 

Copolymers of rac--BL and rac-lactide were analyzed using a Wyatt Technology miniDAWN™ TREOS® 

multiple angle light scattering (MALS) detector operating at 658 nm and using dn/dc values for PLA and PHB 

of 0.050
17

 and 0.065
18

 respectively. DSC analyses were completed on a TA Instruments DSC Q100 in 

hermetically sealed aluminum pans. A nitrogen flow rate of 50 mL min
-1

 and heating parameters of 5°C min
-1

 

for heating and cooling were employed. 
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Synthesis and characterization of 3: 3-Adamantyl-2-hydroxy-4-methylbenzaldehyde (0.869 g, 3.21 mmol) 

of was dissolved in of absolute ethanol (10 mL). To this solution, 1,2-diaminoethane (0.097 g, 1.61 mmol)  

was added followed by several drops of formic acid, and the mixture was refluxed for 4 hours with a yellow 

precipitate observed generally within the first 30 minutes. After 4 hours, heating was ceased, and the mixture 

was allowed to cool to room temperature. The yellow precipitate was filtered and washed with cold absolute 

ethanol. Yield: 0.663 g (73%).
 1
H NMR (300 MHz, CDCl3, , ppm):  13.67 (s, -OH, 2H), 8.34 (s, ArCH=N, 

2H), 7.06 (s, ArH, 2H), 6.88 (s, ArH, 2H), 3.91 (s, N-CH2CH2-N, 4H), 2.17 (m, AdH and ArCH3, 30H), 1.80 

(bs, AdH, 15H) ppm. 
13

C{
1
H} NMR (75 MHz, CDCl3,, ppm): 167.8, 158.8, 137.7, 131.0, 129.9, 127.1, 

118.7, 59.9, 40.7, 37.6, 37.4, 37.3, 29.5, 21.1 ppm. Anal. For C38H48N2O2 Calcd.: C, 80.81; H, 8.57; N, 4.96. 

Found: C, 81.12; H, 8.40; N, 5.10. 

Synthesis and characterization of 4: 2-Adamantyl-4-methylphenol (2.25 g, 9.28 mmol) was dissolved in of 

absolute ethanol (10 mL). To this solution N,N`-dibenzyl-1,2-diaminoethane (1.12 g, 4.64 mmol) was added 

followed by paraformaldehyde (0.96 g, 9.28 mmol), and the mixture was refluxed for 18 hours. After 18 

hours, heating was ceased, and the mixture was allowed to cool to room temperature. A white precipitate 

formed and was filtered then washed with cold absolute ethanol. Yield: 2.45 g (35%). 
1
H NMR (300 MHz, 

CDCl3,, ppm): 10.36 (bs, -OH, 2H), 7.31 (m, ArH, 10H), 6.92 (s, ArH, 2H), 6.59 (s, ArH, 2H), 3.61 (s, 

ArCH2, 4H), 3.50 (s, PhCH2N, 4H), 2.65 (s, ArCH3, 6H) ppm. 
13

C{
1
H} NMR (75 MHz, CDCl3, , ppm):  

154.4, 136.9, 129.8, 128.7, 127.7, 127.5, 126.9, 122.1, 59.0, 58.3, 49.8, 41.5, 40.6, 37.4, 37.3, 36.9, 29.4, 29.3, 

21.0 ppm. Anal. For C52H64N2O2 Calcd.: C, 83.38; H, 8.61; N, 3.74. Found: C, 83.18; H, 8.44; N, 4.02. 

Synthesis and characterization of 5: In a nitrogen filled glovebox, of 3 (0.900 g, 1.59 mmol) was dissolved 

in toluene (15 mL) in an oven-dried ampoule. With vigorous stirring, a 2.0 M solution of trimethylaluminum 

in heptane (0.552 g, 1.59 mmol) was added dropwise. Effervescence was observed, and the ampoule was 

sealed, removed from the glovebox and heated to 110°C for 24 hours. After 24 hours a yellow precipitate 

formed and the ampoule was allowed to cool to room temperature. The precipitate was filtered and washed 

with pentane. Yield: 0.414 g (43%).
 1
H NMR (300 MHz, C6D6,, ppm): 7.33 (s, ArCH=N, 2H), 7.32 (s, ArH¸ 

2H), 6.60 (d, ArH, 2H, J = 1.8 Hz), 2.93 (q, N-CH2CH2-N, 2H, J = 6.3, 12.3 Hz), 2.51 (br, AdH and N-

CH2CH2-N, 14 H), 2.28 (s, ArCH3, 6H) 2.18 (br, AdH, 6H), 1.87 (bm, AdH, 14H) -0.41 (s, AlCH3, 3H). 

13
C{

1
H} NMR (75 MHz, C6D6, , ppm): 168.2, 165.4, 142.2, 138.2, 135.0, 131.3, 129.7, 126.0, 124.5, 120.1, 

54.0, 41.5, 38.3, 38.0, 30.2, 21.7, 21.1 ppm. Anal. For C39H49AlN2O2 Calcd.: C, 77.45; H, 8.17; N, 4.63. 

Found: C, 77.27; H, 8.03; N, 4.39. 

Synthesis and characterization of 6: In a nitrogen filled glovebox, 4 (0.815 g, 1.08 mmol) was dissolved in 

toluene (15 mL) in an oven-dried ampoule. With vigorous stirring, a 2.0M solution of trimethylaluminum in 

heptane (0.358 g, 1.08 mmol) was added dropwise. Effervescence was observed, and the ampoule was sealed, 

removed from the glovebox and heated to 110°C for 24 hours. After 24 hours a white precipitate formed and 

the ampoule was allowed to cool to room temperature. The precipitate was filtered and washed with pentane. 
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Yield: 0.564 g (66%).
 1
H NMR (300 MHz, C6D6, , ppm): 7.23 (s, ArH, 2H), 7.05 (m, ArH, 10H), 6.49 (s, 

ArH, 2H), 4.10-3.52 (br, ArCH2 and ArCH2N, 6H), 2.50 (m, AdH, 14H), 2.34 (s, ArCH3, 6H),  
13

C{
1
H} NMR 

(75 MHz, C6D6, , ppm): 157.5, 140.0, 132.8, 129.7, 129.2, 129.1, 120.9, 41.2, 38.1, 37.9, 30.4, 21.5 ppm. 

Anal. For C53H65AlN2O2 Calcd.: C, 80.67; H, 8.30; N, 3.55. Found: C, 80.52; H, 8.13; N, 3.48. 

General conditions for the living ROP of cyclic esters: An example of a typical polymerization procedure is 

as follows: In a nitrogen filled glovebox,  2 (0.0366g, 0.0546 mmol)and benzyl alcohol (6.0 L, 0.055 mmol) 

were dissolved in toluene (3 mL)and allowed to stir for 5 minutes. This was followed by the addition of rac--

BL (0.500g, 5.46 mmol). The ampoule was sealed, removed from the glovebox and heated at 70°C for 6 h. 

The ampoule was cooled to room temperature and methanol (0.5 mL) was added, and the solution was left to 

stir for 30 minutes at ambient temperature. The solution was then precipitated into cold methanol (100 mL). 

The white precipitate was filtered and dried under vacuum to constant weight. 

General conditions for the immortal ROP of cyclic esters: An example of a typical polymerization 

procedure is as follows: In a nitrogen filled glovebox, 2 (0.0084 g, 0.0138 mmol) and benzyl alcohol (7.5 L, 

0.069 mmol) were dissolved in toluene (3 mL) and allowed to stir for 5 minutes. This was followed by the 

addition of rac-lactide (1.00 g, 6.94 mmol). The ampoule was sealed, removed from the glovebox and heated 

at 70°C for 24 h. The ampoule was cooled to room temperature, a crude sample was removed for 
1
H NMR 

spectroscopic analysis and 1% conc. HCl/methanol solution (v/v, 0.5 mL) was added. The solution was then 

precipitated into cold methanol (100 mL). The white precipitate was filtered and dried under vacuum to 

constant weight. 

General conditions for the copolymerization of rac--BL and rac-lactide: An example of a typical 

polymerization procedure is as follows: In a nitrogen filled glovebox, rac-lactide (0.500 g, 3.46 mmol), rac--

BL (0.299 g, 3.46 mmol), 2 (0.0219 g, 0.0346 mmol) and benzyl alcohol (3.6 L, 0.035 mmol) were added to 

an ampoule. The ampoule was sealed, removed from the glovebox and heated at 120°C for 6 h. The ampoule 

was cooled to room temperature and the residue was dissolved in a 10:1 mixture of CH2Cl2:MeOH. After 

stirring for 30 minutes at ambient temperature, a sample was removed for 
1
H NMR spectroscopic analysis. 

The solution was then precipitated into cold methanol (100 mL). The precipitate was filtered and dried under 

vacuum to constant weight. 

 

Results and Discussion 

Al-salen complex 1 and Al-salan complex 2 were chosen as the representative complexes to be examined in 

this study (Scheme 1) due to their ease of synthesis and their ability to mediate the ROP of rac-lactide with 

great control over PDIs and high polymer tacticity. Moreover, we synthesized novel Al-salen and salan 

complexes with methyl and adamantyl substitutions on the phenolate rings that were inspired by other ortho-
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substituted adamantyl phenoxide ligands (Scheme 1).
15,16

 Treatment of 3 and 4 with trimethylaluminum in 

toluene at 110°C for 24 h allowed access to pure 5 and 6 in moderate isolated yields due to the high solubility 

of the complexes in a variety of solvents. Single crystals of 5 were grown by slow evaporation of a 

concentrated solution of 5 in toluene (Figure 1). The Al centre exists in a distorted square pyramidal 

coordination environment, evident by the O(1)-Al(1)-O(2), N(1)-Al-N(2), O(1)-Al(1)-C(1) and N(1)-Al(1)-

C(1) angles of 94.54(4), 76.50(5), 117.58(6) and 93.04(6) respectively. This system’s bond lengths and angles 

are comparable to other sterically hindered Al-based salen systems.
13 

 

 

Scheme 1. Al-salen (1) and salan (2) complexes previously employed in the ROP of rac-lactide including the 

synthesis of complexes 5 and 6 through ligands 3 and 4. 

 

 

← Figure 1. Molecular structure of 5 with 

thermal ellipsoids drawn at 50% probability 

and hydrogen atoms omitted for clarity. 
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The ability of complexes 5 and 6 ability to mediate the living ROP of rac-lactide was examined at 70°C in 

toluene to compare to similar systems. These ligand frameworks represent a modest change in steric bulk and 

electronics due to the decreased bite-angle of the ligand when comparing salen complexes 1
13

 and 5, but a 

significant change in both sterics and electronics when comparing 6 to 2. It has been shown that bulky dialkyl 

substituted Al-salan complexes exhibited poor activity in the ROP of rac-lactide, and thus a similar trend was 

expected.
14

 This was confirmed as only trace amounts of PLA oligomers were isolated after 24 h at 70°C in 

toluene using 6 (Table 1, Entry 4). In contrast, 5 was effective in mediating the living ROP of rac-lactide 

(Table 1, Entries 1-3). Experimental molecular weights correlated well with theoretical values and narrow 

PDIs were obtained. 
1
H{

1
H} NMR spectra of the resulting PLA showed 88% isotactic enchainment of lactide 

monomer (Figure S1), the highest isospecificity reported for salen complexes with an ethylene bridge. 

Furthermore, increasing the [M]/[Al] ratio produced the corresponding PLA of higher molecular weight 

(Figure S2). Previous reports have shown that Al-salen complexes may mediate the ROP of rac-lactide by an 

“immortal” mechanism through the addition of excess alcohol to serve as a chain-transfer agent.
17-20

 This 

immortal mechanism was first proposed by Inoue et al. using Al-porphyrin systems for epoxides and -

lactones.
21

 While several different systems have been shown to operate quite efficiently under this immortal 

mechanism,
22

 Al-salen and salan systems operating under an immortal mechanism have not been fully studied 

with regards to the upper limits of monomer and catalyst loadings before control over the polymerization was 

lost. To this end, Al-salen and salan systems 1, 2 and 5 were further examined in depth as mediators of 

immortal ROP of rac-lactide (Table 1). 

 

Table 1. Ring-opening polymerization of rac-lactide utilizing 5 and 6.
 

Entry Complex
a 

[M]:[Al]:[BnOH] Time 

(h) 

Mn
b 

Mn,th
c 

PDI
b 

% 

Conv.
d 

Pm/Pr
e
 

1 5 100:1:1 12 6100 7000 1.07 49 0.88(m) 

2 5 250:1:1 18 26200 28200 1.04 78 0.89(m) 

3 5 500:1:1 24 33600 40400 1.04 56 0.88(m) 

4 6 100:1:1 24 --- --- --- < 5 --- 

5 1 500:1:2 24 28300 31200 1.14 87 --- 

6 1 500:1:5 24 15600 14400 1.20 99 --- 

7 1 500:1:10 24 7400 6900 1.16 94 --- 

8 1 1000:1:10 24 17900 12400 1.06 85 0.86(m) 

9 2 500:1:2 24 11400 15600 1.03 43 --- 

10 2 500:1:5 24 3800 4600 1.04 31 --- 

11 2 500:1:10 24 2900 2900 1.05 39 --- 

12 2 1000:1:10 24 7300 8100 1.03 56 0.76(r) 

13 5 500:1:2 24 20100 30400 1.09 84 --- 

14 5 500:1:5 24 7300 12400 1.02 86 --- 

15 5 500:1:10 24 5000 6900 1.07 95 --- 

16 5 1000:1:10 24 4800 5700 1.07 39 0.88(m) 
a
 Polymerizations were conducted in 3 mL of toluene and 0.058 mmol of Al complex at 70°C using benzyl 

alcohol to generate the active alkoxide and function as the chain transfer agent where applicable. 
b 
Calculated 



Page 8 of 17 

by SEC(GPC) using polystyrene standards with a conversion factor of 0.58 for PLA. 
c
 Calculated by 

([M]/[Al]) × MW(monomer) × (% conv.) + MW(endgroup). 
d
 Determined by gravimetric analysis after drying 

under vacuum to constant weight. 
e
 Probability of a meso or racemic linkage determined by examination of 

the methine region of selective 
1
H{

1
H} NMR spectra. 

 

In the immortal ROP of rac-lactide mediated by 1, 2 and 5 using benzyl alcohol as the chain transfer agent, 

experimental molecular weights agreed well with theoretical molecular weights when the ratio of benzyl 

alcohol was increased from 2 to 10 with respect to a constant [M]/[Al] ratio of 500. Moderate conversion was 

observed in 2, while 1 and 5 showed much higher conversion after 24 hours at 70°C in 3 mL of toluene. No 

significant loss of control was observed, as shown by the lack of broadening in PDIs. Increasing the initial 

monomer feed to 1000 relative to a 10:1 ratio of benzyl alcohol:complex to test the behavior of the system at 

higher loadings resulted in well controlled behavior, a similar observation for a related aluminum-based salen 

complex under these conditions.
20

 A slight decrease in tacticity was observed for each of the Al-salen 

complexes 1
14

 and 5, but a more significant decrease was observed for Al-salan complex 2 where a Pr of 0.94 

was measured for living conditions.
14

 It was observed that after 1000 mol equivalents of monomer were added 

to the initial polymerization mixture that no polymerization was observed upon workup, likely due to the high 

concentration of monomer coordinating to the aluminum center which would effectively render the complex 

inactive. Thus up to these loadings, benzyl alcohol serves as an excellent chain transfer agent for this system, 

and supports previously mentioned reports that these systems would serve as effective complexes in immortal 

ROP of rac-lactide.  

While Al-based salan complexes have not previously been employed in the ROP of rac--BL, bis-Al-salen 

complexes have been utilized,
23-25

 and have generally shown that ROP of rac--BL only produced low 

molecular weight oligomers even after prolonged polymerization times. Contrasting these reports, we have 

found that Al-salen and salan complexes 1, 2 and 5 are excellent catalysts for the ROP of rac--BL. Narrow 

PDIs <1.15 were observed for 1 and 5, but while calculated molecular weights correlated well to theoretical 

molecular weights for 1, increasing the [M]/[Al] for 5 did not produce PHB of the corresponding increased 

molecular weight (Table 2, Entries 15 and 16). The control over molecular weight and PDIs for 1 and 2 was 

greater than for similar aluminum “half” salen complexes.12
 When 2 was utilized for ROP of rac--BL narrow 

PDIs of <1.05 were observed, and an increase in [M]/[Al] gave PHB of the corresponding increased molecular 

weight (Table 2). While polymerizations mediated by 1 at 120°C were marked by faster rates and a significant 

increase in PDI, identical conditions when employing 2 displayed no loss of control (Table 2, Entries 3 and 

12). Upon investigation of the methylene and the carbonyl region in 
13

C{
1
H} NMR spectra of the isolated 

PHB, confirmed no stereocontrol was observed regardless of solvent or temperature, 1, 2 and 5 produce solely 

atactic PHB. A living polymerization character was observed for 1, 2 and 5 through kinetic experiments 

obtained via 
1
H NMR spectroscopy at 70°C in benzene-d6. Pseudo-first order reaction kinetics with respect to 
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monomer were observed in plots of ln([M]0/[M]t) versus time, however, a slight delay of approximately 15 

minutes was introduced due to the time required to heat the polymerization to 70°C prior to the collection of 

spectra. Additionally, a plot of Mn versus percent conversion revealed a linear relationship with excellent 

agreement between measured and theoretical values (Figure 2, S3 and S4). Signals in the 
1
H NMR spectrum 

corresponding to a benzyl ester endgroup were observed at 5.2 ppm for each of the complexes, with no 

evidence of carboxyl or crotonate endgroups. These results suggest that the ROP of rac--BL by 1, 2 and 5 

proceeded by a standard coordination-insertion mechanism with 2 exhibiting the greatest reported control over 

molecular weight and PDIs shown by an Al-based complex for living ROP of rac--BL. 

 

Table 2. Polymerization of rac--BL.
a
 

Entry Complex [M]/[Al] Solvent Temp. 

(°C) 

Time 

(h) 

Mn
b
 Mn,th

c
 PDI

b
 % conv.

d,e
 

1 1 100 Neat 70 3 5900 5100 1.08 58 

2 1 100 Toluene 70 6 5100 5100 1.06 58 

3 1 100 Toluene 120 6 7400 7100 1.35 82 

4 1 250 Toluene 70 18 16600 20300 1.14 94 

5 1 500 Toluene 70 36 25800 35400 1.09 82 

6 2 100 Neat 25 24 6200 6400 1.03 73 

7 2 100 Toluene 25 48 6400 4800 1.03 58 

8 2 100 THF 25 48 6400 6600 1.03 75 

9 2 100 Neat 70 3 6100 6300 1.04 72 

10 2 100 Toluene 70 6 8600 8600 1.03 99 

11 2 100 THF 70 6 8200 7800 1.03 89 

12 2 100 Toluene 120 2 7400 8300 1.05 94 

13 2 250 Toluene 70 10 19600 17500 1.03 81 

14 2 500 Toluene 70 20 35700 38800 1.04 90 

15 5 100 Toluene 70 12 2400 3600 1.05 28 

16 5 250 Toluene 70 18 8800 4900 1.04 41 
a
 Polymerizations were conducted with 0.058 mmol of Al complex in 3 mL of solvent where applicable using 

benzyl alcohol to generate the active alkoxide. 
b
 Calculated by SEC(GPC) using polystyrene standards with a 

conversion factor of 0.68 for PHB.
26

 
c
 Calculated by ([M]/[Al]) × MW(rac--BL) × (% conv.) + 

MW(endgroup). 
d
 All PHB isolated possessed an atactic microstructure confirmed by 

13
C{

1
H} NMR 

spectroscopy. 
e
 Determined by gravimetric analysis after drying under vacuum to constant weight. 
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Figure 2. Plot of ln([M]0/[M]t) vs time (min) (top) and Mn vs percent conversion (bottom) (solid line = Mn,th) 

for ROP of rac--BL by 2 at 70°C in benzene-d6 with [M]/[Al] =100. 

 

Following our study using 1, 2 and 5 for living ROP of rac--BL, we sought to investigate the versatility of 

these complexes by introducing an excess of benzyl alcohol, and entering an immortal ROP mechanism. 

Experimental molecular weights agreed with theoretical molecular weights when the ratio of benzyl alcohol 

was increased from 2 to 50 with respect to a constant [M]/[Al] ratio of 500 for 1 and 2 (Table 3). Monomer 

conversion of >80% was observed after 24 hours at 70°C in toluene. No significant loss of control was 

observed in comparison to polymerizations conducted under living conditions, as shown by the lack of 

broadening in PDIs. Thus, benzyl alcohol serves as an efficient chain transfer agent for this system at these 

loadings. However, when the monomer loading was increased to 1000 mol eq., no polymerization was 

observed due to similar reasons mentioned in the immortal ROP of rac-lactide. 1 gave similar control to 2 in 

the immortal ROP of rac--BL with PDIs of <1.09, but was significantly slower to reach comparable 

conversion of monomer. Additionally, a plot of molecular weight versus [rac--BL]/[BnOH] ratio showed a 

linear increase with a slope that correlated well to the molecular weight of the monomer at lower ratios of 

[rac--BL]/[BnOH], with some deviation observed at higher ratios (Figure 3 and S5). Slight deviation was 

when 1 was employed compared to 2. These results represent the greatest control and highest ratio of chain-

transfer agent:complex achieved in an immortal type ROP of rac--BL with an Al-based complex.
27,28
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Table 3. Immortal ring opening polymerization of rac--BL by 1 and 2.
a 

Entry Complex [M]:[Al]:[BnOH] Mn
b
 Mn,th

c
 PDI

b
 % conv.

d
 

1 1 500:1:2 8100 8700 1.07 40 

2 1 500:1:5 4540 6000 1.06 70 

3 1 500:1:10 2100 2500 1.08 57 

4 1 500:1:25 1100 1400 1.07 75 

5 1 500:1:35 800 700 1.09 50 

6 1 500:1:50 900 600 1.08 61 

7 2 500:1:2 16300 19800 1.05 92 

8 2 500:1:5 7500 7400 1.03 85 

9 2 500:1:10 3200 3600 1.11 82 

10 2 500:1:25 1600 1500 1.08 84 

11 2 500:1:35 1200 1300 1.05 98 

12 2 500:1:50 800 1000 1.10 98 

13 2 1000:1:50 1500 1800 1.04 99 

14 5 500:1:2 --- --- --- < 5 
a
 All polymerizations were conducted with 0.058 mmol of Al complex in 3 mL of toluene at 70°C for 24 h 

using benzyl alcohol to generate the active alkoxide and function as the chain transfer agent. 
b
 Determined by 

SEC (GPC) using polystyrene standards with a conversion factor of 0.68 for PHB and 0.58 for PLA. 
c
 

Calculated by ([M]/[Al]) × MW(monomer) × (% conv.) + MW(endgroup). 
d
 Determined by gravimetric 

analysis after drying under vacuum to constant weight. 

 

 

Figure 3. Plot of Mn vs [rac--BL]/[BnOH] for immortal ROP of rac--BL at 70°C in toluene utilizing 2. 

Ratios of [rac--BL]/[BnOH] were corrected based upon the percent conversion of monomer. Deviation from 

ideal monomer molecular weight attributed to the data being collected over a significantly large range of 

chain-transfer agent loadings along with the high monomer loading. 

 

While aluminum salen
12,23,29-31

 and salan
32

 complexes had been previously employed in both homo and 

copolymerizations of -caprolactone, the complexes employed in this study had not been utilized in 

polymerizations of this monomer. When the ROP of -caprolactone was attempted using complexes 1, 2 and 
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5, they were unable to provide a significant degree of control over the molecular weight of the PCL, and 

exhibited substantially broadened PDIs (Table S1). Manipulation of the monomer concentration, temperature 

or solvent did not produce any noteworthy improvement in control over the molecular weight or PDI for any 

of the complexes. It was also observed that the polymerizations progressed at a surprisingly slow rate given 

the higher reactivity of -caprolactone monomer. 

With optimized protocols for the living and immortal ROP of rac--BL and rac-lactide, we surveyed the 

copolymerization of these monomers to establish if controlled copolymerization could be achieved. As a 

comparator, Sn(Oct)2, well known for its use in the production of high molecular weight PLA on an industrial 

scale,
33

 was used as the initial probe for the copolymerization of rac-lactide and rac--BL to serve as an 

additional benchmark to our studies utilizing the Al-salen and salan complexes. With Sn(Oct)2, only atactic 

PLA was isolated until polymerizations conducted at 120°C in neat monomer were employed. In this case, an 

atactic-PLA-co-atactic-PHB polymer was isolated with a high PDI of approximately 1.8. Using conditions of 

70°C in benzene-d6, no polymerization was observed as monitored by 
1
H NMR spectroscopy. Polymerizations 

were then conducted in neat monomer at 120°C and showed that 1, 2 and 5 produce poly(rac-LA-co-rac--

BL) copolymers. Poor control was observed using 1 and 5 as evidenced by the broad PDIs of > 1.5 

comparable to previous reports mentioned regarding tin,
9
 magnesium,

10
 group 4

11
 and aluminum

12
 complexes. 

However, utilizing the Al-salan complex 2 in the copolymerization gave excellent control and narrow PDIs 

(Table 4). 

 

Table 4. Copolymerization of rac--BL and rac-lactide by 2.
a 

Entry [LA]:[-BL] PLA:PHB
b 

Mn
c
 Mn,th

d
 PDI

c
 Tg (°C) 

1 1:1 (100:100) 3.5:1 20100 14900 1.09 32.0 

2 2:1 (100:50) 9:1 29400 16700 1.05 43.6 

3 4:1 (200:50 ) 19:1 18900 27000 1.07 35.5 

4 6:1 (300:50)  39:1 29400 23000 1.07 39.3 

5 1:2 (50:100)  1:1 15800 13600 1.07 17.7 

6 1:4 (50:200) 1:1.6 17100 23900 1.07 13.6 

7 1:6 (50:300) 1:2 14600 17300 1.05 11.4 
a
 Polymerizations were conducted neat at 120°C and with 0.035 mmol of Al complex using benzyl alcohol to 

generate the active alkoxide. 
b
 Calculated by 

1

H NMR by integration of methyl signals associated with each 

polymer unit. 
c
 Calculated by ([M]/[Al] x  MW(rac--BL) x (% conv.) ) + ([M]/[Al] x MW(rac-lactide) x (% 

conv.)) + MW(endgroups). 
d
 Calculated by SEC(GPC) / MALS in THF at 50°C. 

 

Further study of the copolymerization was carried out by manipulation of the initial polymerization feed ratios 

of rac--BL and rac-lactide. From an initial feed ratio of 100:100 (1:1), near complete conversion of rac-
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lactide was observed while rac--BL conversion was significantly lower. After precipitation, the resulting 

copolymer possessed a 3.5:1 ratio of PLA:PHB as observed by 
1
H NMR spectroscopy. Moreover, signals 

typical of highly heterotactic PLA were observed indicating the presence of long sequences of PLA in the 

copolymer. Further increasing the excess of rac-lactide in the initial feed of the polymerization to 300:50 (6:1) 

resulted in a copolymer possessing a 39:1 PLA:PHB ratio after precipitation. Again, in this case, a strong 

presence of heterotactic PLA was observed. Increasing the excess of rac--BL to 200:50 (4:1) saw a loss of 

the long PLA sequences, as evidenced by the greater representation of PHB in the copolymer (1:1.2) and the 

loss of characteristic signals in the 
1
H NMR spectrum for heterotactic PLA (Figure S6). A further excess of 

300:50 (6:1) rac--BL saw a 1:2 ratio of PLA:PHB in the copolymer after precipitation. Examination of the 

filtrates in each of the polymerization by 
1
H NMR spectroscopy showed no evidence of any PLA or PHB 

homopolymers, and therefore some inconsistencies in rac--BL conversion in comparison to the Mn of PHB 

observed in the copolymer were attributed to potential decomposition of the monomer under these harsh 

conditions. 
1
H NMR kinetic experiments were conducted to monitor the formation of PHB and PLA in 

toluene-d8 at 85°C when the copolymerization was mediated by 2 and 5 (Figure 4). The results show that there 

is a faster rate of rac-lactide insertion with respect to the rate of insertion for rac--BL. A slight induction 

period was observed for the ROP of rac-lactide in this case, as all of the lactide monomer was not dissolved 

until t = 30 minutes, and in conjunction with a 15 minute time from monomer addition to the collection of the 

first 
1
H NMR spectrum, gave rise to the non-zero intercepts of each of the linear regressions. These results 

support that in the copolymerization of rac--BL and rac-lactide there is a preference for incorporation of the 

rac-lactide monomer rather than rac--BL, even when the rate of homopolymerization of rac--BL is greater 

than that for rac-lactide. 

 

 

Figure 4. Plots of ln([M]0/[M]t) vs time (min) for the copolymerization of rac--BL and rac-lactide by 2 (left) 

and 5 (right) at 85°C in toluene-d8 with [rac--BL]:[rac-lactide]:[Al] of 50:50:1. 

 

Analysis of the phase transitions of these materials by differential scanning calorimetry (DSC) showed no 

phase separation between PLA and PHB segments of the copolymers even with the presence of lengthy 
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heterotactic PLA segments. The DSC thermograms show only a single glass transition temperature was 

observed by DSC ranging from 11.4°C for a poly(rac-LA-co-rac--BL) copolymer containing a 2:1 ratio of 

PHB:PLA to 43.6°C for a poly(rac-LA-co-rac--BL) copolymer containing 1:9 PHB:PLA. As expected, 

increased PLA content of the resulting copolymer increases the Tg while increased PHB content lowers the Tg. 

No melting or crystallization temperature was visible in any of the copolymer samples, confirming that each 

of the copolymers were amorphous in nature. 

 

Conclusions 

We have shown that aluminum-based salen and salan complexes can efficiently mediate the immortal ROP of 

rac-lactide up to 10 mol equivalents of benzyl alcohol chain transfer agent and up to 1000 mol equivalents of 

monomer before control is lost. Moreover, we have shown that these complexes are also able to form high 

molecular weight PHB by the ROP of rac--BL, where previous reports of the ROP of rac--BL aluminum 

salen complexes were only able to access low molecular weight oligomers. The aluminum salan complexes 

demonstrated particular efficacy at controlling the ROP of rac--BL under a variety of polymerization 

conditions. Each of the complexes operated under the expected living coordination-insertion mechanism. The 

complexes also facilitated the immortal ROP of rac--BL up to an excess of 50 mol equivalents of benzyl 

alcohol before the system became less behaved. When employed in the copolymerization of rac-lactide and 

rac--BL, the aluminum salen complexes were unable to provide control under the thermally demanding 

conditions, the aluminum salan complex allowed access to gradient poly(rac-LA-co-rac--BL) copolymers 

where a narrow polydispersities of < 1.1 was achieved – an unprecedented result that to the best of our 

knowledge. The copolymer composition strongly favoured the insertion of rac-lactide over rac--BL as 

previously observed in the literature, with long segments of PLA formed until a 4:1 excess of rac--BL:rac-

lactide was present in the initial monomer feed. The initial thermal studies of these materials showed a single 

Tg, indicating that no phase separation was occurring between the segments of PLA and PHB. 
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