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AE2 = alveolar epithelial cell type II; BAL = bronchoalveolar lavage; GM-CSF = granulocyte-macrophage colony-stimulating factor; ICAM = intercellular
cell-adhesion molecule; KGF = keratinocyte growth factor; MCP-1 = monocyte chemotactic polypeptide-1; RANTES = regulated on activation, normal
T cell expressed and secreted; SP = surfactant protein; TGF = transforming growth factor; TNF = tumour necrosis factor; VCAM = vascular cell-
adhesion molecule.
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Introduction
As early as 1954, CC Macklin had postulated some of the
most important functions of the great pneumocyte, ie the
pneumocyte type II or alveolar epithelial type II (AE2) cell
(Fig. 1) [1]. Macklin presumed that these cells secrete
material that provides low surface tension, enhances
clearance of inhaled particles, is bacteriostatic, and helps
prevent transudation of interstitial fluid into the alveolus.
He further reported that these cells proliferate after lung
injury by osmium tetroxide fumes [1]. By 1977, enough
data had been collected to stimulate Mason and Williams
[2] to formulate the concept of the AE2 cell as a “defender
of the alveolus”. It was established that the main functions
were synthesis and secretion of surface-active material,
hyperplasia in reaction to alveolar epithelial injury, and
serving as the progenitor for AE1 cells, which form the
epithelial component of the thin air–blood barrier. Never-

theless, several “postulated” functions were listed, for
example, secretion of other substances, modulation of the
alveolar hypophase, and adaptation in response to lung
injury [2]. In the following 23 years, an increasing number
of studies revealed many more details concerning the role
of the AE2 cell in surfactant delivery and alveolar epithelial
repair (see Supplementary Table 1) and a considerable
number of supplementary functions have been established
(see Supplementary Table 2). This review covers most
aspects of current knowledge of AE2 cell functions.

The AE2 cell as the source of alveolar
surfactant
Composition of surfactant

Although the presence of a surface-active agent in the
mammalian lung was postulated by von Neergaard as
early as 1929 [3], it was the work of Pattle [4] and
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Clements [5] that opened a new scientific field (for
review of historical aspects, see [6]). This surface-active
agent, termed surfactant, was characterised in numerous
biochemical studies of bronchoalveolar lavage (BAL)
material and is now known to be composed of ≈90%
(mass) lipids (with ≈80–90% phospholipids) and of
≈10% proteins. Its composition may deviate greatly in
pathologic states (for review, see eg [7]). Unlike most
other lipid-rich components of cells and organs, the sur-
factant lipids are characterised by an unusually high level
of saturated fatty acid chains, such as the predominant
dipalmitoylphosphatidylcholines, which contribute sub-
stantially to the unique properties of pulmonary surfactant
(for review, see eg [8]). The protein fraction comprises a
highly variable amount of serum proteins (50–90% of
protein) [7] and four apoproteins that are associated with
surfactant and contribute to its specific functions [9].
Since the 1988 consensus-conference, the surfactant
proteins (SPs) have been termed SP-A, -B, -C, and -D
[10]. With the progress of cell and molecular biology
many aspects of the proteins’ structures, genes, and reg-
ulation have been established (for comprehensive
overview, see [11]). Surfactant protein gene polymor-
phisms, already demonstrated for SP-A, SP-B, and SP-D,
has just begun to be studied, and may reveal potential
new genetic markers or even susceptibility factors for
lung diseases such as chronic obstructive pulmonary
disease, acute respiratory distress syndrome, or alveolar
proteinosis [12–15].

Distribution of surfactant

Cryoscanning electron microscopy of frozen tissue demon-
strated surfactant to cover extended areas of alveolar
surface as a continuous, thin layer. For methodological
reasons, however, this approach was restricted to the out-
ermost subpleural alveoli, and is not applicable to central
regions [16]. While chemical fixation allows for the stereo-
logical analysis of a collection of tissue samples that are
representative of the whole lung, this approach resulted in
preservation of surfactant over a fraction of only about 15%
of the total alveolar surface despite the use of lipid-stabilis-
ing tissue processing [17]. Although definite proof of a
continuous covering of total alveolar surface is still lacking,
this is a reasonable and widely accepted assumption.

Surfactant-like lipid material and SP-A, SP-B, and SP-D
have been detected in association with mammalian tissues
outside the lung (for reviews, see [18,19]). Surfactant is
clearly not restricted to mammals, but is widely distributed
within vertebrates [20,21]. Its composition has been
largely conserved during vertebrate phylogenesis [20,21],
as indicated by studies of the Australian lungfish Neocera-
todus forsteri, which evolved about 300 million years ago
[22]. Although nothing is known about the presence of
surfactant in the vertebrates’ closest relatives, the tuni-
cates and acrania, surfactant-like material was demon-
strated in the gas mantle of the air-breathing snail Helix
aspersa [23]. Thus, it remains to be examined if surfactant
has independently evolved more than once with the evolu-

Figure 1

Human lung AE2 cells. (a) Scanning electron micrograph of human lung. Two AE2 cells (P2) are seen to protrude above the largely smooth
alveolar epithelial surface. A pore of Kohn (K) and the cell–cell junction (arrowheads) between two AE1 cells are denoted. (b) Transmission
electron micrograph of human AE2 cell displaying typical ultrastructural features, such as lamellar bodies (Lb) and apical microvilli (arrows). 
Nu = nucleus.

(a) (b)
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tion of gas-containing organs, or if surfactant is a very
ancient anti-adhesive material that was developed near the
base of the phylogenetic tree.

Functions of surfactant

Regulation of surface tension

The phylogenetic original function of surfactant in verte-
brates can be deduced from studies of non-mammalian
vertebrates such as fish, lungfish, amphibia, and reptiles
(for reviews, see [18,21]). It has been proposed to be that
of an ‘anti-glue’ to prevent adhesion of the surfaces of
gas-containing organs, such as swim bladder and lungs,
which might occur during collapse. There are some indica-
tions that surfactant acts as an anti-oedema factor in non-
mammalian lungs, too [21]. In mammals its primary
function is to regulate alveolar surface tension in relation
to alveolar size, which is an important clue to efficient ven-
tilation and alveolar stability (for reviews, see [19,24]).
According to the equation of Young and Laplace, the
actual surface tension is much lower in small alveoles than
would be expected from pure geometry. Because neigh-
bouring alveoles communicate with each other via alveolar
ducts and pores of Kohn (Fig. 1a), their surface tensions
must be different (if they are different in size) in order to
prevent the collapse of small alveoles in favour of large
ones. Mechanical coupling of alveoles via the interstitial
tissue of the septum acts as an additional mechanism to
prevent alveolar collapse [25]. However, absence or inac-
tivation of surfactant alone results in alveolar collapse at
end-expiration and in atelectasis [26].

Although regulation of surface tension can be considered
as the primary function of pulmonary surfactant in
mammals, this is only one of a number of different func-
tions [24]. Some critical aspects of current points of view
have recently been discussed in detail [19].

Alveolar fluid balance

Surfactant has long been postulated to prevent the forma-
tion of alveolar oedema through the effect of surface
tension acting as an additional force to direct net fluid flow
across the air–blood barrier [1,27]. The maintenance of
fluid homeostasis in the alveolus is considered to repre-
sent one of its phylogenetically ancient functions [18]. A
comprehensive discussion of the mechanism of surface-
tension-dependent alveolar fluid balance predicted by dif-
ferent surfactant models is given by Hills [19].

In order to be effective in keeping the alveolar space free
of excess fluid, ions and serum proteins, the AE2 cell is
equipped with a number of membrane-bound water chan-
nels and ion pumps as well as an albumin-binding
immunoglobulin receptor (for review, see [28]; Supple-
mentary Table 2). However, instead of removing fluid com-
pletely, a very thin aqueous film is preserved, termed the
hypophase, covering the alveolar surface. The hypophase

is delimited at the alveolar face by the surfactant lining
layer and at the septal face by the alveolar epithelium. It
was estimated to comprise ≈0.37 ± 0.15 ml/kg body
weight in sheep [29]. The hypophase can be considered
as a reaction milieu for extracellular biochemical
processes as well as a ‘medium’ for intra-alveolar cells
such as alveolar macrophages. AE2 cells are thought to
control various properties of this extracellular aqueous
milieu, for example pH [30] and [Ca2+] [31]. Since many
biochemical processes, such as the extracellular transfor-
mation of surfactant (see below), depend on the actual pH
and [Ca2+], regulation of these parameters is important for
controlling what happens in the alveolus. Furthermore,
within a certain distance, any factor secreted into this con-
tinuous film is likely to reach other cells within the alveolus.

Host defence

Another function of alveolar surfactant postulated by
Macklin [1], host defence, has attracted major scientific
interest in recent years (for reviews, see [32,33]). This
function of surfactant relies on the nature of SP-A and SP-
D as collectins. Both proteins are able to bind to the
surface of various pathogens, thus acting as opsonins to
facilitate their elimination by alveolar macrophages
[32–34]. Moreover, AE2 cells are able to secrete several
other products that are involved in host defence, such as
the bacteriolytic lysozyme [35,36]. In rat lungs, lysozyme
was detected in lamellar bodies of AE2 cells [36],
whereas in humans it was identified in serous submucosal
glands but not in alveolar AE2 cells [35].

Surfactant cycle

Originating from an intracellular source, the surfactant
coat of the alveolar walls is an extracellular and all but
homogeneous material, which can be recovered by BAL. It
is synthesised by the AE2 cells and released upon appro-
priate stimuli by exocytosis from special intracellular
storage organelles termed lamellar bodies. Once released
into the alveolar space, freshly secreted lamellar body
material undergoes several steps of transformation that
are necessary to establish the surface-active lining layer.
Cyclic compression and expansion during ventilation
result in a fraction of spent surfactant that will largely be
recycled by the AE2 cells. Thus, single constituents of sur-
factant may run through several cycles before being
removed by alveolar macrophages and replaced by de
novo synthesis (for comprehensive review, see [11]).

Synthesis

Although the bronchiolar Clara cells synthesise and
release the mature proteins SP-A, SP-B, and SP-D
(Fig. 2a) [37,38], the AE2 cell is the only type of pul-
monary cell that produces all the surfactant components
(phospholipids [Fig. 3] as well as all four surfactant pro-
teins). The mature 3.5–3.7 kDa small SP-C (Fig. 2b) is
thought to be released by AE2 cells only [39,40].
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The lamellar bodies of AE2 cells have long been recog-
nised as storage granules from which surfactant is
released into the alveolus [41,42]. The biochemical com-
position of this intracellular storage form is largely identical
to the composition of the extracellular material obtained by
BAL [43]. The stored phospholipids are bound by a limit-
ing membrane (Fig. 3), which is characterised both by
typical lysosomal/endosomal [44] as well as by specific
integral membrane proteins [45] probably involved in intra-
cellular trafficking. The lamellar body membrane is further
equipped with transport proteins for regulation of internal
acidic pH and high [Ca2+] [46]. High levels of Ca2+ inter-
spersed between the stacks of phospholipids were
demonstrated by microanalytical techniques [31].

The pathway of lipid and protein synthesis has been
traced by means of electron microscopic autoradiography
[47] to involve the organelles of the classical pathway, ie
rough endoplasmic reticulum, Golgi apparatus, multivesic-
ular bodies, and lamellar bodies. Immunoelectron micros-

copy confirmed this pathway for SP-B and SP-C, and by
means of double- and triple-labelling, the different steps of
processing and maturation of SP-B and SP-C were
localised to specific intracellular structures [40,48–50].
Although the synthetic pathway of both SP-A and SP-D
also involves endoplasmic reticulum and Golgi apparatus,
mature SP-D is barely detectable in lamellar bodies [38]. It
is thought that SP-D is released via a constitutive pathway
[34], and a subpopulation of lamellar bodies has been pro-
posed to be involved in recycling of SP-D [51].

The problem of differentiating between newly synthesised
and recycled proteins is reflected in the controversy of
whether or not SP-A is present in lamellar bodies (for
review, see [52]). Although SP-A was detected in lamellar
bodies by immunoelectron microscopy [48] and lamellar
bodies have been reported to be enriched in SP-A
[53,54], other studies reported only a relatively low
amount of SP-A [55–57]. These contradictory data may
result from the fact that most of the SP-A released into the
alveolar hypophase is taken up again by the AE2 cell (see
also below). The captured SP-A is directed to the lamellar
bodies [57,58], while newly synthesised SP-A is likely to

Respiratory Research    Vol 2 No 1 Fehrenbach

Figure 2

Indirect immunofluorescence double labelling of rat parenchyma. 
(a) AE2 cells are stained for surfactant protein D (green) and
contrasted by labelling of AE1 cells with Lycopersicon esculentum
lectin (red). (b) AE2 cell double-labelled for surfactant protein C (red)
and adhesion molecule CD44v6 (green).

Figure 3

Transmission electron micrograph of canine lamellar body at high
power magnification. The densely packed stacks of phospholipid
membranes are bound by a single limiting membrane (arrowheads).



follow a constitutive pathway of secretion [59]. Re-secre-
tion of internalised SP-A may be very rapid, at least in
vitro, and may be achieved via a different pathway than the
one used by internalised lipids [60]. Little attention has
been given to potential species-specific differences, which
may be another source for controversial data.

Secretion

Surfactant material is released from its intracellular stores
by exocytosis upon various stimuli. A number of physiologic
and pharmacologic agents act via β-adrenergic receptors
(epinephrine, terbutaline, isoproterenol), P1-purinorecep-
tors (receptors of adenosine and its analogues) or
P2-purinoreceptors (ATP, UTP, ATP analogues; Supple-
mentary Table 1), while several membrane-permeable sub-
stances act intracellularly, such as cholera toxin, forskolin,
phorbol esters, and calcium ionophores (for review, see
[52]). A number of agents have been reported to stimulate
surfactant secretion, such as arachidonic acid, prosta-
glandins, histamine, and endothelin-1 [52]. Ventilation of
the alveolus is a major physiologic stimulus of surfactant
secretion and a single deep breath is considered to be
sufficient [61,62]. An elegant in vitro study indicated that
direct mechanical stretching of AE2 cells can trigger the
release of surfactant [63]. However, a recent real-time
study examining exocytosis in situ by means of vital stains
in isolated perfused rat lungs demonstrated that lung
expansion induced synchronous intracellular [Ca2+]-oscil-
lations in all alveolar cells and lamellar body exocytosis in
AE2 cells, with the exocytosis rate correlating with the fre-
quency of the oscillations [64]. The authors’ exciting con-
clusion is that AE1 cells may act as mechanotransducers
that translate the mechanical stimulus into an intracellular
Ca2+ signal, which is transmitted via gap junctions to the
AE2 cell to regulate surfactant secretion.

Three pathways of signal transduction are now known (for
a comprehensive review, see [52]). The first acts through
activation of adenylate cyclase, formation of cyclic AMP
and activation of cAMP-dependent protein kinase A. This
pathway is followed, for example, by agents binding to β-
adrenergic receptors or adenosine receptors A2b. The
second pathway acts through activation of protein kinase C
(PKC), either by direct interaction with permeable sub-
stances or indirectly as a consequence of the activation of
membrane receptors. Direct activation of PKC can be
achieved by 12-O-tetradecanoylphorbol-13-acetate (TPA)
and membrane permeable diacylglycerols (DAGs), while
ATP and UTP, for example, activate the PKC pathway after
binding to purine receptor P2Y2. The third known pathway
acts via an increase in intracellular Ca2+ levels, through
either the uptake of extracellular calcium (using ionophores,
for example), the transmission of calcium through gap junc-
tions from neighbouring AE1 cells, or the release of
calcium from intracellular stores. All of these may activate
the Ca2+-calmodulin dependent protein kinase. The release

of calcium from intracellular stores, for example, can be
induced by binding of ATP to purine receptor P2Y2 and
subsequent formation of inositol-3-phosphate.

Activation of one of these signal cascades results in an
increase in surfactant secretion by about two- to threefold
(adenylate cyclase, Ca2+-ionophores) or about fivefold
(TPA, PKC-activating agonists). Simultaneous activation of
several pathways using several agonists, by mastoparan or
ATP, which may activate all three pathways, results in a 5-
to 12-fold increase above basal secretion (see references
in [52]). Thus, an enormous redundancy is achieved
through the existence of these different pathways of signal
transduction and the great number of agonists, which
guarantees a high degree of safety in the regulation of sur-
factant release and underlines the great importance of sur-
factant delivery to the alveolus.

The final step of the secretory pathway is accomplished
via the classic mechanism of secretion by exocytosis,
which results in the release of surfactant material from
lamellar bodies into the alveolus. While it is well estab-
lished that cytoskeletal components, such as microtubules
[65] and actin filaments [66], are necessary for transport
of the granules to the cell membrane and release of their
contents, nothing is known about the mechanisms of
release of constitutively formed SP-A and SP-D. Fusion of
the lamellar body limiting membrane with the AE2 cell
plasma membrane is mediated by annexins [67]. Single
cell monitoring may provide new insights into the details of
how exocytosis is regulated [68]. Secreted surfactant
lipids as well as SP-A may inhibit subsequent surfactant
release by negative feedback mechanisms [69,70],
although this has not yet been proven in vivo.

Transformation (conversion)

Once released into the alveolar aqueous hypophase, the
lamellar body material transforms into tubular myelin. This
is an amazingly regular phospholipid/SP-A assembly
(Fig. 4), which gives rise to the surface-active lining layer
from which, in turn, small vesicular forms derive that are
thought to represent spent surfactant (for review, see
[71]). These categories of surfactant subtypes were
defined by early ultrastructural studies and were consis-
tently seen in both chemically and cryofixed surfactant
[72,73]. By differential centrifugation of BAL material, sur-
factant is separated into large and small aggregates, while
equilibrium buoyant density gradient centrifugation sepa-
rates light, heavy and ultraheavy fractions. Correlative
studies showed that large aggregates and the ultraheavy
fraction correspond to tubular myelin and freshly secreted
lamellar bodies, while small aggregates and the light frac-
tion largely represent vesicular surfactant forms
[43,55,74]. However, neither do the individual subfrac-
tions represent a single ultrastructural subtype [74,75] nor
is there congruence of fractions obtained by differential
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centrifugation and equilibrium buoyant density gradient
centrifugation [76].

Being an extracellular process, transformation or conversion
of surfactant can be studied in vitro. Surfactant subtypes
can be reconstituted from individual components [55,77],
and surfactant conversion can be mimicked by surface area
cycling [74,78,79]. Thus, surfactant transformation was
demonstrated to depend on various characteristics of the
hypophase milieu, such as concentration of electrolytes
[80], in particular of Ca2+ [81], pH [82], and the presence
of surfactant proteins, especially of SP-A [83].

The first step of transformation of freshly secreted lamellar
body material into tubular myelin requires an increased
[Ca2+] (probably derived from lamellar bodies [31]) and
SP-A [84] which is finally observed at the corners of
tubular myelin lattices [36,85]. The presence of tubular
myelin is thought to be associated with the ability of sur-
factant lipids to rapidly adsorb to the lining layer at the
gas/liquid interface. This second step of conversion
appears to be promoted by SP-B (for review, see [71]).
Refinement of the lining layer is the next step that results
in an increase in its dipalmitoylphosphatidylcholine frac-
tion, thereby achieving minimal surface tension [86]. This
process is thought to involve both SP-B [87] and SP-C
(for review, see [71,86]). The final step of conversion, from
surface-active surfactant into inactive vesicular forms,
appears to depend on an AE2-cell-derived enzyme termed
convertase [88,89].

The balance between large aggregates and small aggre-
gates has turned out to be an important parameter in
assessing the functional integrity of alveolar surfactant
obtained by BAL (for review, see [90]). This is corrobo-
rated by quantitative ultrastructural studies. While normal
lungs showed little quantitative variation in the relative
amount of tubular myelin under different ventilation strate-
gies [91], tubular myelin was considerably decreased in
different lung injury models [17,92]. In the context of lung
injury, the ultrastructural approach offers the unique
opportunity to examine surfactant retained in situ [93],
which allows for the analysis of local surfactant inhomo-
geneities in relation to other structural changes [17].

Absence of tubular myelin was associated with reduced
intracellular labelling for SP-A and with severe respiratory
dysfunction in neonatal respiratory distress syndrome
[94]. Paradoxically, targeted SP-A deletion in mice had
minor effects on pulmonary function despite a severe
depletion of tubular myelin [95]. This discrepancy is still a
matter of debate.

Recycling

Today it is established that most of the secreted surfactant
— estimated at about 85% [24] — is taken up again,
metabolised and re-secreted by the AE2 cells. Re-uptake
and recycling have been demonstrated for surfactant
lipids [58] and all four surfactant proteins [51,58,96,97].
SP-A, SP-B, and SP-C have been reported to enhance
the uptake of phospholipids by AE2 cells in vitro; in the
case of SP-A at least, this may be a receptor-mediated
process [98,99]. SP-D, however, appeared to be ineffec-
tive in enhancing lipid uptake [51]. The significance of lipid
uptake enhanced by surfactant protein in vivo is still
unclear. The intracellular processes of metabolism and
recycling are essentially associated with multivesicular
bodies, which may exist as functionally heterogeneous
populations [58]. Electron microscopic autoradiography
[58] and confocal fluorescence microscopy [60] indicated
that internalised lipids and SP-A are rapidly re-secreted by
AE2 cells, probably along different pathways.

Degradation

The degradation of surfactant is accomplished by the alve-
olar macrophages with only minimal contribution, if any,
from AE2 cells. Phospholipids and SP-A appear to be
degraded along different pathways [100]. Failure of sur-
factant removal and degradation may be one reason for
alveolar proteinosis observed in transgenic mice lacking
granulocyte-macrophage colony-stimulating factor (GM-
CSF) [101].

AE2 cell as the stem cell of the alveolar
epithelium
The alveolar epithelium can be classified as a continuously
renewing tissue since it comprises a population of cells

Respiratory Research    Vol 2 No 1 Fehrenbach

Figure 4

Transmission electron micrograph of rat intra-alveolar surfactant with
the typical lattice-like appearance of tubular myelin, which is in close
contact with the alveolar lining layer (arrowheads). Vesicular surfactant
(small arrows) is seen near the apical surface of the alveolar epithelium.



(AE2) that are characterised by the almost unlimited poten-
tial to proliferate. Such a population of cells, capable of both
self-maintenance and terminal differentiation, is termed the
stem cell population of a tissue. In a continuously renewing
tissue, the stem cell population generates a greater progeny
than necessary. The excess cells are removed by cell loss to
avoid a steady increase in cell mass [102]. Consequently, in
the physiological situation, proliferation, terminal differentia-
tion, and cell loss must be in a balanced state which allows
for a dynamic regulation of the epithelial cell population. It is
still a matter of debate whether all AE2 cells or only a sub-
population act as the alveolar epithelial stem cell population
(for review, see [103]).

The time needed to replace all cells of a given population,
termed cell turnover time, is quite variable and depends on
the specific tissue, developmental stage or age, and path-
ogenic conditions. It has been reported to last only 2–10
days for bronchial epithelium of adult mammals, and 4–5
weeks for the alveolar epithelium [104]. Cell turnover time
may be much faster in case of injury, for example only
3 days in mice after hyperoxic alveolar epithelial damage
[105]. This difference is supported by the ≈10-fold
increase in alveolar surface covered by AE2 cells within
3 days of in vivo instillation of keratinocyte growth factor
(KGF), an AE2 cell mitogen [106,107].

Proliferation

The concept of the AE2 cell as a stem cell of the adult
alveolar epithelium was proposed by Kapanci and co-
workers [108], and is widely accepted today (for review,
see [103]). During ontogenesis, the AE2 cell may derive
from a precursor cell common to AE2 and Clara cells
[109]. In order to divide, the AE2 cell, like any other type
of cell, must enter the cell cycle to accomplish DNA repli-
cation and mitosis (Fig. 5). The cell cycle is tightly con-
trolled at several checkpoints that control the transition
from one phase (G1, S, G2, M) to the next, and it is linked
to programmed cell death, thus avoiding replication of
cells with genetic defects [110].

According to [3H]-thymidine labelling experiments, the
duration of the complete cell cycle is about 22 hours in
AE2 cells of adult mice [111], which is equivalent to the
duration in NO2-injured rat lungs [112]. In mice, duration
of cell cycle and of the individual phases appears to
depend largely on the developmental stage and the pres-
ence or absence of any noxious agents [113]. Notably, the
time frames observed in vitro were different from the in
vivo estimates (see Table 1 in [103]). The duration of the
S-phase (7–9 hours) appears to be largely independent of
species, developmental stage, presence of noxious
agents, and cell culture conditions. The duration of G2-
and M-phases appears to be most variable (1–12 hours)
[103]. The observation that in primary culture only a sub-
population of AE2 cells is capable of clonal proliferation

with several successive mitotic cycles indicates that AE2
cells are not a uniform population [114].

Differentiation

Nondevelopmental studies of AE2 cell differentiation gen-
erally use lung injury models to induce epithelial damage,
with the consequence of AE2 cell proliferation and subse-
quent repair to re-establish a functional air–blood barrier
(for reviews, see [115,116]). Recently, differentiation of
AE2 cells into AE1 cells has been shown to be involved in
the resolution of short-time hyperplasia of AE2 cells fol-
lowing airway instillation of KGF [107]. This approach may
be used as an alternative model in the study of adult AE2
cell differentiation.

In their fundamental ultrastructure/microautoradiography
study of the incorporation of [3H]-thymidine into proliferat-
ing cells of NO2-challenged rat lungs, Evans and co-
workers [117] reported that, 1 h after the radiographic
pulse, the population of labelled alveolar epithelial cells
(≈35% of total lung parenchymal cells) was composed of
88% AE2 cells, less than 1% AE1 cells, and 12% cells
that could not be unambiguously assigned to one or both
[117]. As has been emphasised by Uhal [103], this remark-
ably short time period after which a large proportion of AE2
cells were labelled is a strong argument against any small,
yet unknown, stem cell population other than AE2 cells.

The study of differentiation of AE2 cells into AE1 cells cru-
cially depends on the possibility to distinguish both cell
types. Today, the gold standard is still the complex of
ultrastructural criteria with the presence of lamellar bodies,
apical microvilli, cell–cell junctions, and cuboid shape,
which allows for the clearest distinction of the AE2 cells
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Figure 5

Indirect immunoperoxidase staining of rat lung for proliferation marker
Ki-67. One day after instillation of recombinant human KGF, many
epithelial cells at alveolar corners, the typical AE2 cell location, exhibit
nuclear staining. The cell in the centre is just about to complete mitosis.



and AE1 cell phenotypes [118,119]. A number of alterna-
tive methods have been validated, such as modified
Papanikolaou-staining [120], cell-type-specific lectins, and
immunohistochemical markers [119,121]. The expression
of markers, however, may depend on the developmental
stage [122] and can be affected by pathogenic processes
[123]. The situation is further complicated by the transient
appearance of an intermediate phenotype during differen-
tiation of AE2 cells into AE1 cells after lung damage [112]
as well as after KGF-induced hyperplasia [107]. The most
plausible explanation for this observation is that differentia-
tion of AE2 cells is accomplished by continuous transfor-
mation into AE1 cells via an intermediate cell type, a
concept that is widely accepted today [103].

Isolated AE2 cells cultured in vitro lose their specific fea-
tures within days and acquire AE1 cell characteristics
[124–126]. Although this process, which greatly depends
on the specific culture conditions [127], is frequently
termed transdifferentiation, one has to take into account
that it has not been shown to yield a terminally differenti-
ated AE1 cell. Interestingly, transdifferentiation in vitro is a
least partially reversible [125,128]. However, it is unknown
if reversibility of the differentiation of AE2 cells into AE1
cells is a potential regulatory mechanism in vivo.

Cell death

One important mechanism of cell removal that was recog-
nised almost a century ago [129] is programmed cell death
or apoptosis [130]. Although an exploding number of
studies revealed fundamental details of the inducers, path-
ways, and effectors of apoptosis in general (for reviews,
see eg [130,131]), relatively little is known about apoptosis
in the lung in particular (for reviews, see [132,133]).

AE2 cells are known to express the membrane receptor Fas
(CD95, APO-1), ligation of which may initiate the apoptotic
cascade [134]. This can be achieved by binding of Fas-
ligand or the Fas-stimulating antibodies. There is some evi-
dence that apoptosis of AE2 cells is an integral mechanism
of alveolar septal modelling in lung morphogenesis
[135,136]. The presence of many apoptotic cells during the
resolution phase after acute lung injury in humans [137] as
well as during epithelial restoration after KGF-induced AE2
cell hyperplasia in rats [138] indicates that apoptosis may
also be an integral part of alveolar epithelial repair. Notably,
apoptotic AE2 cells (Fig. 6) appeared to be removed not
only by alveolar macrophages but also by AE2 cell neigh-
bours [138]. Knowledge of AE2 cell apoptosis in adult lung
physiology and pathology is still rudimentary [133].

The AE2 cell as an integrative unit of the
alveolus
The mammalian lung comprises more than 40 different cell
types [139]. AE2 cells have been estimated to constitute
about 60% of alveolar epithelial cells and about 15% of all
lung parenchymal cells, while they cover only about 5% of
the alveolar surface in adult mammals [140]. These esti-
mates relied on quantitative methods that can no longer
be considered adequate, and re-evaluation using modern
stereological methods [141] is much needed. In order to
act in a way that is beneficial to the whole alveolus, it is
essential for the AE2 cell to interact with its resident as
well as its mobile neighbour cells. Consequently, the AE2
cell expresses a number of molecules necessary for the
perception as well as the generation of signals involved in
cell–cell as well as in cell–matrix interactions. Cell–cell
interactions may be direct, ie via contact of the cell mem-
branes, or indirect, ie mediated via secreted and diffusible
signals (see Supplementary Table 2).

Interaction with resident cells

First of all, the AE2 cell is in direct contact with AE1 cells
and during proliferation with AE2 cell neighbours as well.
These lateral cell–cell contacts within the alveolar epithe-
lium are maintained by a cell junction complex that
includes gap junctions [142]. The basal cell membrane is
in close proximity to fibroblasts, in particular during the
canalicular phase of lung morphogenesis, while modelling
of the alveolar septum results in an increase in the spatial
relationship of the AE2 cells with capillary endothelial cells
of the adult lung [143].

Alveolar epithelial cells

The in situ study of Ashino and co-workers [64] presented
strong evidence of a direct interaction of AE1 and AE2
cells. Mechanical stimulation of AE1 cells is thought to
result in [Ca2+]i-oscillations (see above), which are trans-
mitted via interepithelial gap junctions to AE2 cells and
modulate exocytosis rate of lamellar bodies [64]. Direct
inhibitory interactions between AE1 and AE2 cells have
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Figure 6

Transmission electron micrograph of apoptotic AE2 cells (*) engulfed
by their AE2 cell neighbours at day 5 after intrabronchial instillation of
recombinant human KGF into rat lung in vivo. A = air space; 
Lb = lamellar bodies; Nu = nuclei of phagocytic AE2 cells.



been postulated to suppress AE2 cell proliferation [144].
Loss of AE1 cells during lung injury might then be the
trigger to release AE2 cells from growth inhibition.
Although E-cadherin, a candidate mediator of contact inhi-
bition [145], has been localised to the basolateral mem-
brane of adult human AE2 cells [146], experimental
evidence for contact inhibition of AE2 cell proliferation by
AE1 cells still remains to be presented.

The most intensely studied example of an indirect
AE2–AE2 cell interaction is probably the negative feed-
back loop by which SP-A, released into the alveolar
space, inhibits surfactant exocytosis in vitro [69]. Although
AE2 cells are equipped with membrane receptors for SP-
A [70], the in vivo relevance of this autocrine mechanism
by which AE2 cells may regulate their own action is still
not convincing (as pointed out recently [52]). Since mice
that are deficient for SP-A did not show any defect in sur-
factant secretion nor any respiratory deficiency [147],
there must be some alternative mechanism compensating
for the loss of a SP-A feedback loop, if present at all.

Another potential feedback mechanism that has been pos-
tulated is the inhibition of AE2 cell proliferation via AE2-
cell-derived transforming growth factor (TGF)-β in
bleomycin-induced experimental lung fibrosis [148]. A
number of growth factors are released by AE2 cells, which
might act in an autocrine way via the corresponding recep-
tors expressed by AE2 cells (see Supplementary Table 2).

Fibroblasts

The interaction of AE2 cells with fibroblasts is probably
the best studied reciprocal cell–cell relationship which is
relevant to the modelling of alveoles during lung morpho-
genesis (for review see, eg, [149]) as well as during
remodelling associated with alveolar repair following lung
injury (for review see, eg, [123,150]). Both direct and indi-
rect cell–cell interactions have been reported, in most
instances from studies of cells grown in culture. The
supernatant of fibroblast cultures can increase the prolifer-
ation rate of rat AE2 cells, while the AE2 cells have been
reported to secrete a factor that inhibits fibroblast prolifer-
ation [151]. In contrast, however, an increase in fibroblast
proliferation was seen if both cell populations grown in co-
culture were able to establish direct cell–cell contacts
[151]. In addition, AE2-cell-derived factors may affect
extracellular matrix formation by fibroblasts, such as stimu-
lation of collagen type I secretion by AE2-cell-derived
insulin-like growth factor (IGF) type 1 [152]. On the con-
trary, surfactant lipids may reduce collagen type I synthe-
sis, and provoke fibroblast apoptosis, an effect partially
reversed by SP-A [153].

Transmission electron microscopy has demonstrated the
existence of cell membrane protrusions termed foot
processes that traverse the epithelial basal membrane and

are likely to represent the structural basis for direct contacts
with fibroblasts and/or extracellular matrix [154]. Immuno-
electron microscopy indicated that CD44v6 (Fig. 2b) is
localised at the tips of these foot processes [123]. The
CD44 molecules constitute a family of integral membrane
glycoproteins that act as receptors of hyaluronan and osteo-
pontin, for example, and are well established as being
involved in epithelial cell migration and differentiation [155].

Endothelial cell

Little is known about the interaction of alveolar epithelial
and capillary endothelial cells. Pulmonary endothelial cell
conditioned medium was reported to stimulate foetal lung
epithelial cell growth [156]. Freshly isolated rat AE2 cells
grown on lung vascular endothelial cell-synthesised matrix
showed an increased rate of proliferation and a more rapid
transformation into an AE1-like phenotype than cells
grown on plastic or matrigel [157]. Since no other cell-
derived matrices were studied, the specificity of this effect
remains to be shown.

Endothelin-1 was observed to increase AE2 cell surfac-
tant secretion in vitro via a protein kinase C and Ca2+-
mediated pathway [158]. As a source of endothelin-1,
endothelial cells are therefore principally competent to act
in a paracrine manner on AE2 epithelial cells, which were
reported to express the endothelin receptor A [159]. One
has to take into account that AE2 cells themselves may
synthesise endothelin-1 and stimulate endogenous
prostaglandin E2 synthesis in an autocrine fashion [159].

Recently, a very special mechanism of indirect intercellular
communication between AE2 cells and endothelial cells
has been suggested based on in situ fluorescence
imaging studies in alveoli of isolated perfused lungs [160].
Stimulation of alveolar epithelial cells with tumour necrosis
factor (TNF)-α was reported to increase epithelial [Ca2+]i

and to activate epithelial cytoplasmic phospholipase A2,
and results in basolateral release of arachidonic acid. Free
arachidonic acid is thought to increase endothelial [Ca2+]i

and expression of P-selectin [160], which is known to be
crucial for initiation of leukocyte adherence. Thus, AE2
cells may act as transducers of an inflammatory signal
from the alveolus to the capillary bed to recruit granulo-
cytes to the site of inflammation.

Interaction with mobile cells

Alveolar macrophages

Among the multitude of secretory products synthesised
and released by alveolar macrophages (for reviews, see
[123,161]) there are some factors that act as mitogens for
AE2 cells, such as hepatocyte growth factor [162] and
heparin-binding epidermal growth factor-like protein [163].
Conversely, AE2 cells were shown to express the
chemokines RANTES and MCP-1, which chemotactically
attract macrophages [164], as well as GM-CSF
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[165,166], which in turn may stimulate macrophage
growth [167]. Furthermore, SP-A released from AE2 cells
may modulate macrophage functions such as, oxygen
radical release [168], and nitric oxide production [169].
One has to take into account, however, that there may be
species-specific differences [162,163].

Leukocytes

Interactions of AE2 cells with leukocytes have just come
into focus. AE2 cells may synthesise some cytokines
affecting leukocytes, such as interleukin (IL)-6 or IL-8 (see
Supplementary Table 2). Via these cytokines, AE2 cells
might be involved in the induction of differentiation of
basophil, eosinophil, and neutrophil granulocytes and
maintenance of inflammatory reactions. Recent data
support the idea that AE2 cells have an accessory func-
tion in T-lymphocyte activation [170]. This has been sug-
gested on the basis of the finding that the cells bear
receptors of MHC class II [171].

AE2 cells were reported to inhibit lymphocyte proliferation
in vitro without altering their activation state [172]. AE2-
cell-derived TGF-β [170] may indirectly inhibit T-cell prolif-
eration via blockade of activating factors, such as IL-2. In
contrast, GM-CSF released at the basolateral surface of
AE2 cells may increase the potential of dendritic cells to
induce T-cell proliferation [166].

Isolated human AE2 cells as well as the A549 cell lines
can be stimulated by TNF-α to secrete MCP-1 and
RANTES at their apical membrane and showed increased
expression of ICAM-1 and VCAM-1 [173]. These AE2 cell
reactions were associated with increased transepithelial
migration of monocytes in baso-apical direction. Direct
interaction of pneumocytes with migrating monocytes was
reported to be mediated by β2-integrins CD11b/CD18
and β1-integrins as well as by CD47 [173]. Adhesion of
stimulated neutrophils has been reported to result in
oxidant-independent death of AE2 cells [174], while in
turn one may speculate that AE2 cells may be involved in
initiating apoptosis of neutrophils, an important mecha-
nism for the resolution of inflammation [175].

Conclusion: the AE2 cell under pathological
conditions
The concept of the “defender of the alveolus” implies that
severe damage to or loss of AE2 cells results in a consider-
able vulnerability of the alveolus. The impairment of pul-
monary surfactant as a source of alveolar compromise is
probably the best-documented example of AE2-cell-related
pulmonary dysfunction (for a comprehensive review, see
[90]). Because intra-alveolar surfactant is highly suscepti-
ble to inactivation by serum proteins or reactive oxygen
species (for review, see [176]), very few studies presented
data indicating that the primary effect resulting in respira-
tory dysfunction was indeed a defect in AE2 cells [177].

It is still a matter of debate if hyperplastic AE2 cells, which
are frequently observed in pathologic states (for reviews,
see [144,178]) and which show altered expression pat-
terns of many components and products [123], are benefi-
cial or harmful to the alveolus. There are several indications
that hyperplasia of AE2 cells may be a cause of pulmonary
fibrosis (for review, see [179]). Unlike normal human AE2
cells, hyperplastic AE2 cells of fibrotic human lungs were
reported to produce TGF-β1 [180,181], platelet-derived
growth factor (PDGF) [182] as well as TNF-α [180], major
profibrotic factors. These findings are diametrically
opposed to the concept of AE2 cells as the defender of
the alveolus. On the contrary, AE2 cell hyperplasia induced
in rats in vivo by instillation of recombinant KGF protein or
by transfer of the gene encoding KGF did not result in
fibrosis [106,107,183]. Moreover, experimental induction
of AE2 cell apoptosis was shown to result in pulmonary
fibrosis [184]. Notably, apoptotic AE2 cells were enriched
in areas of active lesions in close proximity to myofibrob-
lasts in fibrotic human lung [185]. This again supports the
notion implicated by the defender concept that loss of AE2
cells has a detrimental effect for the alveolus.

Many studies have confirmed the beneficial effect of the
AE2 cell for the maintenance of a functional alveolar unit in
many aspects. Our knowledge of the cell–cell interactions
of AE2 cells still remains to be expanded. Even less is
known about the significance of AE2 cell apoptosis and of
AE2-cell-induced apoptosis of other cell types, and the
relationship to repair and/or pathogenesis. Although most
of the data collected to date support the concept of the
AE2 cell as a defender of the alveolus, the controversy
about the character of hyperplastic AE2 cells, however,
proscribes drawing a definite conclusion.
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Supplementary Table 1

Main functions: surfactant delivery and epithelial repair

Function/product Functional significance Reference

Surfactant
Synthesis
Components of surfactant

Phospholipids Surface activity [186]
Surfactant proteins

A Tubular myelin formation [71,187,188]
Defence [33]

B Absorption of lipid to monolayer [71,189]
C [86]
D Defence [34,190]

Components secreted together with surfactant
Lysozyme Defence [35,191]
Plasmalogens Protection against oxidation [192]
Cathepsin H

Maturation
Intracellular cathepsin H Processing of SP-B [194]

Processing of SP-C [50]

Secretion
Signal receptors

β-adrenergic receptors [195,196]
P1 purinoreceptors [197,198]
P2Y purinoreceptors [198,199]

Components of exocytosis apparatus
Microtubules [65]
Actin [66]
Annexin II [200]
Annexin IV [201]
Annexin VII (= Synexin) [202,203]

Extracellular transformation
α1-antitrypsin [2048]
Convertase Conversion of lipid monolayer into vesicles [88,89,205]

Recycling
Receptor of SP-A [206]
Lamellar body lysosomal enzymes 

Alkaline phosphatase Marker of type II cells [207]
α-glucosidase [208]
α-mannose [208]

Alveolar epithelial repair
Proliferation

Cyclin A [209]
Cyclins D1, D2 Proliferation, differentiation [210]
Cyclin dependent phosphokinases Proliferation, differentiation [210]
PTHRP Inhibition of proliferation [211]
Calmodulin Proliferation, differentiation [212,213]
Insulin-like growth factor (IGF)-binding protein 2 G1-arrest [214]

Differentiation
Retinoic acid receptor Inhibition of differentiation [215]
Aminopeptidase N [216]

Apoptosis
CD95 (receptor of Fas-ligand) [134]
Fas-ligand [138]
Bax Pro-apoptotic peptide [217]
Bcl-2 Anti-apoptotic peptide [138]
Caspase-3 Execution caspase [138]
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Supplementary Table 2

Supplementary functions: alveolar fluid balance, host defence, coagulation-fibrinolysis, cytokines, growth factors, cell–cell

interaction, extracellular matrix formation

Function/Product Related to Reference

Fluid and electrolyte balance

Water channels

Aquaporin 1 [218]

Aquaporin 5 [219]

Hg-insensitive channel (MIWC) [220]

Hg-sensitive channel (CHIP28) [221]

Ion channels

H+-channel [222]

Na+-channel [223]

Cl–-channel [224]

Ion pumps

H+-pump pH of hypophase fluid [30]

Cl–/HCO3-anion exchanger In vitro [225]

Na+/H+-ion exchanger [226]

Na+/K+-atpase Membrane potential [223,227,228]

Others

Protein clearance [229]

Carbanhydrase II [230]

Components of innate defence

Surfactant components

SP-A [32,33]

SP-D [34,190]

Lysozyme [35,191]

Antigen presentation

MHC class II Human (adult, foetal) [231,232]

IFN-stimulation [171]

HLA class I IFN-stimulation [233]

Fc-receptor Cell line A549, not present in vivo [234]

CD80, CD86 [234]

Complement complex

C2, C3, C4, C5 [235]

Antiproteases

α1-antitrypsin [236,237]

Elafin Cell line A549 [238]

Matrix metalloproteinase (MMP) [239]

MMP-inhibitors (TIMP) [239]

Oxidants

NAD(P)H-oxidase [240]

Superoxide anion, hydrogen peroxide [240]

Antioxidants

Glutathione [241]

γ-glutamyl transferase [242]

Plasmalogens Protection of surfactant [192]

Mn superoxide dismutase (SOD) In vitro [243]

Mn-, Cu-, Zi-SOD In vitro [244]

Metabolism of Xenobiotics

Cytochrome P-450 mono-oxygenase [245]

Coagulation/fibrinolysis

Fibrinogen [246]

Urokinase-type plasminogen activator (uPA) [247]

UPA receptor IL-1β stimulation [248]

Plasminogen activator inhibitor (PA-I) [247,249]

Tissue factor In bleomycin-induced injury [249,250]
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Supplementary Table 2 continued

Function/product Related to Reference

Cytokines/receptors [251]
Cytokines

GM-CSF In vitro [165]
IL-1β Upon interaction with particles [252]
IL-4 Human, interstitial lung disease [253]
IL-6 Upon interaction with particles [252]
IL-8 IL-1, TNF-α stimulation [254–256]
IL-11 In vitro [257]
Interferon-γ Human, interstitial lung disease [253]
MCP-1 In vitro [258]
RANTES After TNF-α stimulation [173]
Tumour necrosis factor (TNF)-α Hyperplastic type II cells [259,260]

Cytokine receptors
IL-2-receptor In vitro [261]
TNF-receptor In vitro [262]
Lymphotoxin-β-receptor Hyperplastic type II cells [263]

Growth factors/receptors
Growth factors

Epidermal growth factor (EGF) In vitro [264]
IGF-II [214]
Platelet derived growth factor (PDGF) Idiopathic lung fibrosis [182]
TGF-α [265]
TGF-β Hyperplastic type II cells [266]
TGF-β1 Hyperplastic type II cells [267]
TGF-β3 Normal type II cells [268]
Vascular endothelial growth factor (VEGF) [269]

Growth factor receptors
Basic fibroblast growth factor-receptor [270]
EGF-receptor [271]
Hepatocyte growth factor-receptor [162]
KGF-receptor During ontogenesis [272,273]
IGF-receptor-1 Early postnatal phase [274]
IGF-receptor-2 [214]

Components of cell–cell interaction
Gap junction proteins

Connexin 43 Electric, ionic coupling [142]
Adhesion molecules 

CD44s, CD44v [275]
Ep-Cam [146]
E-cadherin [276]
ICAM-1 After TNF-α stimulation [173,277]
VCAM-1 After TNF-α stimulation [173]

Integrins
α6 β1 In vitro [278]
α3 β1 In vitro [278]

Paracrine-acting molecules
Endothelin-1 Human [279]

Endothelin receptor A Rat cell line L2 [159]
Prostaglandin E-2 [280]
Prostacyclin [280]
Nitrogen oxide (NO) In vitro [281,282]

Constitutive NO synthase Human cell line A859 [283]
Inducible NO synthase In vitro, rat cell line L2 [281,284]

Components of extracellular matrix
Entactin Basal membrane, in vitro [285]
Laminin Basal membrane, in vitro [278]
Fibronectin In vitro [286,287]
Tenascin Early organogenesis [288]

Hyperplastic type II cells [289]
Proteoglycans In vitro [290]
Collagen type IV [291,292]
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