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Always Acyclic Distributed Path Computation
Saikat Ray, Roch Guérin, Kin-Wah Kwong, and Rute Sofia

Abstract—Distributed routing algorithms may give rise to
transient loops during path recomputation, which can pose
significant stability problems in high-speed networks. We present
a new algorithm, Distributed Path Computation with Intermediate
Variables (DIV), which can be combined with any distributed
routing algorithm to guarantee that the directed graph induced
by the routing decisions remains acyclic at all times. The key
contribution of DIV, besides its ability to operate with any
routing algorithm, is an update mechanism using simple message
exchanges between neighboring nodes that guarantees loop-
freedom at all times. DIV provably outperforms existing loop-
prevention algorithms in several key metrics such as frequency
of synchronous updates and the ability to maintain paths during
transitions. Simulation results quantifying these gains in the
context of shortest path routing are presented. In addition, DIV’s
universal applicability is illustrated by studying its use with a
routing that operates according to a non-shortest path objective.
Specifically, the routing seeks robustness against failures by
maximizing the number of next-hops available at each node for
each destination.

Index Terms—Loop-free routing, Distance-vector routing.

I. I NTRODUCTION

Distributed path computation is a core functionality of
modern communication networks and is expected to remain
so, even though some recent proposals contemplate the use
of more centralized solutions [1]. Depending on the mode of
information dissemination, and subsequent computation using
the disseminated information, there are two broad classes of
algorithms: (i) link-state algorithms (also known as topology
broadcast) and (ii) distance-vector algorithms [2]. In both
approaches, nodes choose successor (next-hop) nodes for each
destination based only on local information, with the objective
that the chosen paths to the destination beefficient in an
appropriate sense—e.g., having the minimum cost. Because
end-to-end paths are formed by concatenating computational
results at individual nodes, achieving a global objective implies
consistencyacross nodes both in computation and in the
information on which those computations are based.

Inconsistent information at different nodes can have dire
consequences that extend beyond not achieving the desired
efficiency. Of particular significance is the possible formation
of transient routing loops1, which can severely impact network
performance, especially in networks with no or limited loop
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1In this paper, the term “routing” refers to the path computation process that
creates the tables used in forwarding packets, irrespective of the layer (layer
2 or layer 3) at which this forwarding takes place. Hence, routing loops are
simply loops in the resulting forwarding graph, regardlessof the layer where
they reside.

mitigation mechanisms,e.g.,no Time-to-Live (TTL) field in
packet headers or a TTL set to a large value. In the presence
of a routing loop, a packet caught in the loop comes back
to the same nodes repeatedly, thereby artificially increasing
the traffic load many folds on the affected links and nodes.
The problem is aggravated by broadcast packets, which not
only are always caught in any loop present in the network,
but also generate replicated packets on all network links. The
emergence of a routing loop then often triggers network-wide
congestion, which can lead to the dropping or delaying of the
very same control (update) packets that are needed to terminate
the loop; thereby creating a situation where a transient problem
has a lasting effect. Avoiding transient routing loops remains
a key requirement for path computation in both existing and
emerging network technologies,e.g., see [3–5] for recent
discussions.

Link-state algorithms, of which the OSPF [6] protocol is a
well-known embodiment, disseminate the state of each node’s
local links (their status and the node(s) they connect to) toall
other nodes in the network by means of reliable flooding. After
receiving link-state updates from the rest of the nodes, each
node independently computes a path to every destination. The
period of potential information inconsistency across nodes is
small (a few 10’s of milli-seconds per node for typical present
day networks [7]), so that routing loops, if any, are very short-
lived. On the flip side, link-state algorithms can have quitehigh
overhead in terms of communication (broadcasting updates),
storage (maintaining a full network map), and computation
(a change anywhere in the network triggers computations at
all nodes). These are some of the reasons for investigating
alternatives as embodied in distance-vector algorithms, which
are the focus of this paper.

Distance-vector algorithms couple information dissemina-
tion and computation. Information disseminated by a node
now consists of the results of its own partial path computations
(e.g.,its current estimate of its cost to a given destination) that
it distributes to its neighbors, which in turn perform theirown
computations before further propagating any updated results
to their own neighbors. The Distributed Bellman-Ford (DBF)
algorithm is a well-known example of a widely used distance-
vector algorithm (cf. RIP [8], EIGRP [9]) that computes a
shortest path tree from a given node to all other nodes.
Coupling information dissemination and computation can re-
duce storage requirements (only routing information is stored),
communication overhead (no relaying of flooded packets), and
computations (a local change needs not propagate beyond
the affected neighborhood). Thus, distance-vector algorithms
avoid several of the disadvantages of link-state algorithms,
which can make them attractive, especially in situations of
frequent local topology changes and/or when high control
overhead is undesirable.

The down side of coupling information dissemination and
computation is that information dissemination is gated by
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computation speed since a node cannot send updates before
finishing its current computations. This can in turn extend
periods when nodes have inconsistent information, which, as
discussed earlier and illustrated in Section V, can lead to more
frequent and longer lasting routing loops. In addition, coupling
information dissemination and computation can also result
in slower convergence. This is because each node depends
on the (partial) computation results of its neighbors, which
can introduce cyclic dependencies that increase the number
of steps needed to reach a final, correct result. Indeed, when
destinations become unreachable, a distance-vector algorithm
may not even converge in a finite number of steps. This is
known as thecounting-to-infinityproblem, which is absent
from link-state algorithms where nodes compute paths inde-
pendently. (In practice, when the cost-to-destination reaches a
maximum value, the destination is declared unreachable and
the computation is terminated.)

Thus, we see that realizing the benefits of distance-vector
based solutions, even in environments where they might be a
natural fit, calls for developing approaches to overcome these
problems. Such a realization is not new. Since the 70’s, several
works [10–15] have targeted this goal in the context of shortest
path computations. We review and contrast the most significant
of these prior works in Section II, but the problem remains
timely. Our research was triggered by a renewed interest in
devising light-weight, loop-free path computation solutions for
large-scale Ethernet networks. Specifically, we were consider-
ing extending the scalability of Ethernet networks throughthe
introduction of distributed shortest path algorithms in lieu of
the existing distributed spanning tree algorithm (see [3, 16] for
similarly motivated efforts). Link-state based solutionshave
been proposed [17, 18] to improve Ethernet networks, although
not necessarily for the sake of scalability, and a distance-vector
solution seemed an attractive alternative.

In this paper, we introduce the Distributed Path Computa-
tion with IntermediateVariables(DIV) algorithm that enables
our goals of distributed, light-weight, loop-free path compu-
tation. DIV is not by itself a routing algorithm; rather, it can
run on top of any routing algorithm to provide loop-freedom.
DIV generalizes theLoop Free Invariant(LFI) based algo-
rithms [14, 15] and outperforms previous solutions including
known LFI andDiffusing Computationbased algorithms, such
as theDiffusing Update Algorithm[13]. The main advantages
of DIV are as follows:

1) Separation of Routing and Loop prevention: DIV sepa-
rates routing algorithms from the task of transient loop
prevention. Emancipating routing decisions from the
task of loop-prevention simplifies routing algorithms. In
addition, DIV is not restricted to shortest path compu-
tations; it can be integrated with other distributed path
computation algorithms. We illustrate this in Section IV,
where we explore a routing algorithm that attempts to
increase therobustnessof the network in terms of being
able to re-route packetsimmediately(i.e., without the
need for any route update) without causing a loop after
a link or node failure.

2) Reduced Overhead: When applied to shortest path com-
putations, DIV triggers synchronous updates less fre-
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Fig. 1. A simple example of counting-to-infinity problem.

quently as well as reduces the propagation radius of
synchronous updates (cf. Theorem III.5), where syn-
chronous updates are time and resource consuming
updates that might need to propagate to all upstream2

nodes before the originator is in a position to update
its path. In fact, synchronous updates may altogether
be removed if counting-to-infinity is not a significant
issue (e.g.,mitigated using a TTL); cf. Section III-B3c,
alternate mode.

3) Maintaining a path: A node can potentially switch to a
new successor without forming a loop provably more
quickly (cf. Section III-B3c, alternate mode) in DIV.
This is particularly useful in situations where the original
path is lost due to a link failure.

4) Convergence Time: When a node receives multiple over-
lapping cost updates3 from its neighbor, DIV allows
the node to process and respond to the updates in an
arbitrary manner, thus enabling an additional dimension
for optimization (cf. Theorem III.2).

5) Robustness: DIV can tolerate arbitrary packet reordering
and losses without sacrificing correctness. (cf. Theo-
rem III.3).

The rules and update mechanism of DIV and their correctness
proofs are rather simple, which hopefully will also facilitate
correct and efficient implementations.

The rest of this paper is organized as follows. We survey
important related works in Section II. DIV is described in Sec-
tion III along with its properties. The applicability of DIVto
robust routing is investigated in Section IV. Section V presents
comparative simulation results to quantify various measures of
performance, and conclusions are drawn in Section VI.

II. BACKGROUND

A. Routing Loops and Counting-to-Infinity

We begin our discussion with a simple classical example
of a routing loop and counting-to-infinity which illustrates
that these problems can occur quite frequently as they neither
require complex topologies nor an unlikely sequence of events.

Consider the network shown in Fig. 1(a). In this figure, the
nodes compute a shortest path to the destinationD. The cost of
each link is shown next to the link and the cost-to-destination
of the nodes are shown in parenthesis next to the node. We

2Upstream nodes of a nodex for a given destinationz are the nodes whose
path toz includesx.

3Two updates are overlapping if the latter appears before thealgorithm has
converged in response to the first.
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assume that nodes usepoison reverse; i.e., each node reports
an infinite cost-to-destination to its successor node [19].Thus,
nodeC believes that nodeA can reach the destination at a cost
of 3 whereas nodeB cannot reach the destination since node
B reported a distance of infinity to nodeC.

Now suppose that the link between nodesC and D goes
down, as shown in Fig. 1(b). NodeC detects this change and
attempts to find a new successor. According to the information
nodeC has at that moment, nodeA is its best successor. So
nodeC chooses nodeA as its successor, reports a distance of
infinity to nodeA and distance of 6 to nodeB. As Fig. 1(b)
shows, a routing loop has been created due to nodeC ’s choice
of successor.

To see how counting-to-infinity takes place in this example,
note that due to poison reverse, nodeB believes that the des-
tination is unreachable through nodeA. Thus when it receives
the update fromC containingC ’s new cost-to-destination as
6, nodeB simply changes its own cost-to-destination to 7
keeping nodeC as its successor, reports unreachability to
nodeC and its new cost, 7, to nodeA. This way, each node
increases its cost toD by a finite amount each time. So, unless
a maximum diameter of the graph is assumed (e.g.,it is 16 in
RIP) and the destination declared unreachable once the cost
reaches that value, the computation never ends.

This simple example illustrates how easily a routing loop
and counting-to-infinity can occur unless special care is taken
(cf. Section V and [20]). Note that simple solutions such
as Split Horizon or Poison Reversedo not help in this
example [19]. Thus, several previous works have proposed
more comprehensive solutions to the routing loop problem;
next we survey some of the most salient ones among them.

B. Previous Works

1) The Common Structure:Most previous distance-vector
type algorithms free from transient loops follow a common
structure: Nodes exchange update-messages to notify their
neighbors of any change in their own cost-to-destination (for
any destination). If the cost-to-destination decreases ata node,
the algorithms allow updating its neighbors in an arbitrary
manner; these updates are calledlocal (asynchronous) updates.
However, after an increase in the cost-to-destination of a node,
these algorithms require that the node potentially update all its
upstream nodesbefore changing its current successor; these
aresynchronousupdates. The algorithms differ in handling the
situations where during the propagation of a node’s cost-to-
destination update to its upstream nodes, its cost-to-destination
changes.

Note that the primary challenge in avoiding transient loops
lies in handling inconsistencies in the information stored
across different nodes. Otherwise, simple approaches can guar-
antee loop-free operations at each step [10]. In this context,
approaches that are “in-between” link-state and distance vector
and avoid counting-to-infinity are also possible;e.g., [21]
achieves this by having nodes learn the penultimate nodes in
the shortest paths to each destination from its neighbors.

The algorithm proposed in [11] follows the above broad
structure and is one of the earliest work in guaranteeing loop-
free operations with inconsistent information. For handling

multiple overlapping updates, it relies on unbounded sequence
numbers that mark update epochs. An improvement to this al-
gorithm is presented in [12]. For handling multiple overlapping
updates, [12] maintainsbit vectorsat each node.

2) Diffusing Update Algorithm (DUAL):DUAL, a part of
CISCO’s widely used EIGRP protocol, is perhaps the best
known algorithm. In DUAL, each node maintains, for each
destination, a set of neighbors called thefeasible successor
set. The feasible successor set is computed using afeasibil-
ity condition involving feasible distancesat a node. Several
feasibility conditions are proposed in [13] that are all tightly
coupled to the computation of a shortest path. For example,
Source Node Condition(SNC) uses the feasible successor set
to be the set of all neighbors whose current cost-to-destination
is less than the minimum cost-to-destination seen so far by
the node. Note that the definition of a feasible successor set
depend on an origin of time, which is defined as the time when
the node freshly computes the feasible successor set after it
contains no preferred successor.

A node can choose any neighbor in the feasible successor
set to be the successor (next-hop) without causing a routing
loop regardless of how other nodes in the network choose their
successors, as long as they also comply with this rule. Thus,
the importance of the notion of feasible successor set lies in
the fact that it allows nodes to switch neighbors immediately
in response to a cost-increase without creating transient loops,
and without the need for notifying any of its neighbors.

If the neighbor through which the cost-to-destination of
the node is minimum is in the feasible successor set, then
that neighbor is chosen as the successor. If the current fea-
sible successor set does not include the best successor, the
node initiates a synchronous update procedure, known as a
diffusing computation(cf. [22]). The node sends queries to all
its neighbors with its cost-to-destination through the current
successor. From this point onwards the node does not change
its successor until the diffusing computation terminates.Each
neighbor replies to the query by sending their own cost-to-
destination if they themselves have a feasible successor after
they update the set following the new information received
from the initiator node. Otherwise, they themselves send out
queries and wait for the replies before replying to the original
query. One easily sees that the queries propagate upstream in a
recursive manner and are equivalent to notifying all upstream
nodes about the new status of the originator node. Finally if
there are multiple overlapping updates—i.e., if a new link-cost
change occurs when a node is waiting for replies to a previous
query—the node uses afinite state machineto process these
multiple updates sequentially.

3) Loop Free Invariance(LFI) Algorithms: A pair of in-
variances, based on the cost-to-destination of a node and its
neighbors, calledLoop Free Invariances(LFI) are introduced
in [14] and it is shown that if nodes maintain these invariances,
then no transient loops can form (cf. Section III-B2). Update
mechanisms are required to maintain the LFI conditions: [14]
introducesMultiple-path Partial-topology Dissemination Al-
gorithm (MPDA) that uses a link-state type approach whereas
[15] introducesMultipath Distance Vector Algorithm(MDVA)
that uses a distance vector type approach. Similar to DUAL,
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MDVA uses a diffusing update approach to increase its cost-
to-destination, thus it also handles multiple overlappingcost-
changes sequentially.

4) Comparative Merits of Previous Algorithms:The Jaffe-
Moss algorithm [12] improves upon the earlier Merlin-Segall
algorithm [11], however, with one potential problem that the
bit-vectors it maintains to handle multiple overlapping updates
can be exceedingly large for large dynamic networks. DUAL
avoids large bit-vectors by not processing multiple overlapping
updates simultaneously, rather processing them in a sequential
manner by maintaining a finite state machine at each node. In
terms of performance, DUAL supersedes the other two. The
primary contribution of LFI based algorithms such as MDVA
or MPDA is a unified framework applicable to both link-state
and distance-vector type approaches and multipath routing.
However, in DUAL with, say, SNC, many link-cost changes
do not violate the feasibility condition, and therefore do not
trigger synchronized updates—an important advantage over
MDVA or MPDA. Because of the importance of this metric,
we consider DUAL the benchmark against which to compare
new solutions, and compare DIV with DUAL in Section V.

DIV combines advantages of both DUAL and LFI. DIV
generalizes the LFI conditions, is not restricted to shortest
path computations and, as LFI-based algorithms, allows for
multipath routing. In addition, DIV allows for using a fea-
sibility condition that is strictly more relaxed than that of
DUAL, hence triggering synchronous updates less frequently
than DUAL (and consequently, than MPDA or MDVA) as
well as limiting the propagation of any triggered synchronous
updates. The update mechanism of DIV is simple and substan-
tially different from that of previous algorithms, and allows
arbitrary packet reordering/losses. Moreover, unlike DUAL
or LFI algorithms, DIV handles multiple overlapping cost-
changessimultaneouslywithout additional efforts resulting in
potentially faster convergence. Finally, DIV allows an alternate
synchronous update mode (in distance vector computations)
where a synchronous update goes only one hop, similar to
MPDA (note though that MPDA is link-state based), which
allows nodes to switch to a new successor faster without
creating loops.

III. DIV

A. Overview

DIV lays down a set of rules on existing routing algorithms
to ensure their loop-free operation at each instant. This rule-
set is not predicated on shortest path computation, so DIV can
be used with other path computation algorithms as well.

For each destination, DIV assigns avalue to each node
in the network. To simplify our discussion and notation, we
fix a particular destination and from now on, speak ofthe
value of a node. The values can be arbitrary—hence the
independence of DIV from any underlying path computation
algorithm. However, usually the value of a node will be
related to the underlying objective function that the routing
algorithm attempts to optimize and the network topology.
Some typical value assignments are as follows: (i) in shortest
path computations, the value of a node could be its cost-
to-destination; (ii) as done in DUAL, the value could be

the minimum cost-to-destination seen by the node from time
t = 0; (iii) as done in TORA [23], the value could be the
heightof this node; (iv) as illustrated in Section IV, the value
could be related to the number of next-hop neighbors for
the destination, etc. We, however, impose one restriction on
the value assignment: a node that does not have a path to a
destination must assign a value of “infinity” (the maximum
possible value) to itself. Intuitively, this restriction prevents
other nodes from using it as a successor which is sensible
since it does not have a path to the destination in the first place.
This restriction turns out to be crucial for avoiding counting-
to-infinity problems in shortest path environments.

The basic idea of DIV is that it allows a node to choose one
of its neighbor as a successor only if the value of that neighbor
is less than its own value: this is called thedecreasing value
property of DIV. This ensures that no routing loop can ever
form.

The hard part is enforcing the decreasing value property. In
particular, as the network topology changes, if the values of the
nodes are held fixed, then the routing protocol may not be able
to choose appropriate successors;e.g.,if a neighbor happens to
be the only path to a destination, but with a higher value, then
the node will not be able to reach that destination. Thus, node
values must be updated in accordance to topological changes.
However, how does a node then know thecurrent value of
one of its neighbors to ensure the decreasing value property?
Clearly, each node must update its neighbors about its own
current value by means of update messages. Since update
messages are asynchronous, information at various nodes may
be inconsistent and may lead to the formation of loops. This
is where the non-triviality of DIV lies: it lays down specific
update rules that guarantee that loops are not formed at any
time even if the information at different nodes is inconsistent.
DIV accomplishes this task by maintaining several interme-
diate variables that hold a replica of the value of a node
at its neighbors and vice versa, and exchanging messages
between neighboring nodes. Similar to (but not identical with)
DUAL, the update mechanism sends update messages and for
some of them, requires an acknowledgment from the neighbor.
Depending on the rules for sending acknowledgments, DIV
can be operated in one of the following two modes: (i) the
normal mode, and (ii) the alternate mode. In the normal
mode, a neighbor can hold on to sending an acknowledgment
until it’s own value is adjusted appropriately. In the alternate
mode, on the other hand, the neighbor immediately sends the
acknowledgment, but could temporarily lose all paths (to that
particular destination). As we discuss later on, each mode
embodies a different trade-off.

B. Description of DIV

There are four aspects to DIV: (i) the variables stored at the
nodes, (ii) two ordering invariances that each node maintains,
(iii) the rules for updating the variables, and (iv) two semantics
for handling non-ideal message deliveries (such as packet loss
or reordering). A separate instance of DIV is run for each
destination, and we focus on a particular destination, which at
a node is, therefore, associated with a given value.
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1) The Intermediate Variables:Suppose that a nodex is a
neighbor of nodey. These two nodes maintain intermediate
variables to track each other’s values. There are three aspects
to each of these variables: whose value is this? who believes
in that value? and where is it stored? Accordingly, we define
V (x; y|x) to be the value of nodex as known (believed) by
nodey stored in nodex; similarly V (y; x|x) denotes value of
nodey as known by nodex stored in nodex.

Thus, assuming nodex hasn neighbors,{y1, y2, . . . , yn},
it stores, for each destination:

1) its own value,V (x; x|x);
2) the values of its neighbors as known to itself,V (yi; x|x)

[yi ∈ {y1, y2, . . . , yn}],
3) and the value of itself as known to its neighbors

V (x; yi|x) [yi ∈ {y1, y2, . . . , yn}].
That is, 2n + 1 values for each destination. The variables
V (yi; x|x) and V (x; yi|x) are called intermediate variables
since they endeavor to reflect the valuesV (yi; yi|yi) and
V (x; x|x), respectively. In steady state, DIV ensures that
V (x; x|x) = V (x; yi|x) = V (x; yi|yi).

2) The Invariances:As stated in the overview of DIV (cf.
Section III-A), the fundamental idea of DIV is to ensure that
a successor node always has a smaller value. However, a
node may not know what the most recent value of one of its
neighbors is due to inconsistency in information. Thus, DIV
requires each node to maintain at all times the following two
invariances based on its set oflocally stored variables.

Invariance 1 The value of a node is not allowed to be more
than the value the node thinks is known to its neighbors. That
is,

V (x; x|x) ≤ V (x; yi|x) for each neighboryi. (1)

Invariance 2 A nodex can choose one of its neighborsy as
a successor only if the value ofy is less than the value ofx
as known by nodex; i.e., if nodey is the successor of node
x, then

V (x; x|x) > V (y; x|x). (2)

Thus, due to Invariance 2, a nodex can choose a succes-
sor only from its feasible successor set{yi|V (x; x|x) >
V (yi; x|x)}. The two invariances reduce to the LFI conditions
if the value of a node is chosen to be its current cost-to-
destination.

3) Update Messages and Corresponding Rules:There are
two operations that a node needs to perform in response to
network changes: (i) decreasing its value and (ii) increasing its
value. Both operations need notifying neighboring nodes about
the new value of the node. DIV uses two corresponding update
messages, Update::Dec and Update::Inc, and acknowledgment
(ACK) messages in response to Update::Inc (no ACKs are
needed for Update::Dec). Both Update::Dec and Update::Inc
contain the new value, (the destination), and a sequence
number4. The ACKs contain the sequence number and the
value (and the destination) of the corresponding Update::Inc
message.

4For simplicity, sequence numbers are assumed to be large enough so that
sequence number rollover is not an issue.

DIV lays down precise rules for exchanging and handling
these messages which we now describe.

a) Decreasing Value:Decreasing value is the simpler
operation among the two. The following rules are used to
decrease the value of a nodex to a new valueV0:

• Node x first simultaneously decreases the variables
V (x; x|x) and the valuesV (x; yi|x) ∀i = 1, 2, . . . , n,
to V0,

• Node x then sends an Update::Dec message to all its
neighbors that contains the new valueV0.

• Each neighboryi of x that receives an Update::Dec mes-
sage containingV0 as the new value updatesV (x; yi|yi)
to V0.

b) Increasing Value: Increasing value is potentially a
more complex operation, however, conceptually it is simply
an inverse operation: in the decrease operation a node first
decreases its value and then notifies its neighbors; in the
increase operation, a node first notifies its neighbors (and waits
for their acknowledgments) and then increases its value. In
particular, a nodex uses the following rules to increase its
value toV1:

• Node x first sends an Update::Inc message to all its
neighbors.

• Each neighboryi of x that receives an Update::Inc
message sends an acknowledgment message (ACK) when
it is able to do so according to the rules explained in
details below (Section III-B3c). Whenyi is ready to send
the ACK, it first modifiesV (x; yi|yi), changes successor
if necessary (since the feasible successor set may change),
and then sends the ACK tox; the ACK contains the se-
quence number of the corresponding Update::Inc message
and the new value ofV (x; yi|yi). Note that in this case it
is essential that nodeyi changes successor, if necessary,
beforesending the ACK.

• When nodex receives an ACK from its neighboryi,
it modifies V (x; yi|x) to V1. At any time, nodex
can choose any valueV (x; x|x) ≤ V (x; yi|x), ∀i =
1, 2, . . . , n.

c) Rules for Sending Acknowledgment: The Two Modes:
We now describe how a node decides whether it can send an
ACK in response to an Update::Inc message. There are two
possibilities: each possibility leads to a distinct behavior of
the algorithm, which we refer to as modes.

Suppose that nodeyi received an Update::Inc message from
nodex. Recall that nodeyi must increaseV (x; yi|yi) before
sending an ACK. However, increasingV (x; yi|yi) may remove
node x from the feasible successor set at nodeyi. If node
x is the only preferred node in the feasible successor set
of nodeyi, then nodeyi may lose its path ifV (x; yi|yi) is
increased without first increasingV (yi; yi|yi). In such a case
node yi has two options: (i) first increaseV (yi; yi|yi) and
then increaseV (x; yi|yi) and send the ACK to nodex, or (ii)
increaseV (x; yi|yi), send ACK to nodex and then increase
V (yi; yi|yi). If a node uses option (i), we say that DIV is
operating in itsnormal mode; if a node uses option (ii), we
say that DIV is operating inalternate mode.

In the normal mode (i.e., using option (i)), update requests
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propagate to upstream nodes in the same manner as in DUAL
and other previous works. If nodex is not the sole desirable
successor of nodeyi, then nodeyi will immediately respond
to nodex’s Update::Inc message. Otherwise, nodeyi wants
to increase its own value before sending an ACK. Node
yi issues its own Update::Inc message toall its neighbors,
including nodex. The set of neighbors of nodeyi that do not
depend on nodeyi for reaching the destinationbased on their
current values(which includes nodex), would immediately
respond to nodeyi with an ACK. When nodeyi receives
ACKs (in response to nodeyi’s Update::Inc message) from
all its neighbors, it will send ACK to nodex (as a response to
nodex’s Update::Inc message). This process terminates due
to acyclicity of the successor graph; when the nodeyi is a
“leaf” node (i.e., a node that is not a downstream node for
any node), all its neighbors will immediately respond with an
ACK.

At this point, we pause to briefly discuss a few basic aspects
of “protocol machinery” associated with waiting for ACKs
at a node. We assume the existence of a separate “liveness”
protocol operating between neighbors and used to detect
link/node failures. When waiting for ACKs from neighbors,
nodex maintains a list of pending ACKs for each Update::Inc
message it is keeping track of. Nodes are removed from the list
either upon receipt of the intended ACK or upon notification
of the failure of the liveness protocol to the node. A timer
is associated with pending ACKs and retransmission of the
Update::Inc message is performed when the timer expires.
After a given number of unsuccessful retransmission attempts,
the node declares its session to the neighbor failed irrespective
of the current status of the liveness protocol, and proceedsto
re-initialize it. By following these simple rules, we can ensure
that the transmission of ACKs proceeds unimpeded even in
the presence of losses and node/link failures.

Turning next to the alternate mode (i.e., using option (ii)),
we trade simpler and faster processing of ACKs for the risk of
having nodeyi without a successor for a period of time (until
it is allowed to increase its value). At a first glance, this may
seem unwise. However, if nodex originated the value-increase
request in the first place because the link to its successor was
down (as opposed to only a finite cost change), then the old
path does not exist and the normal mode has no advantage
over the alternate mode in terms of maintaininga path. In
fact, in the alternate mode, the downstream nodes get ACKs
from their neighbors more quickly and thus can switch earlier
to a new successor (which hopefully has a valid path) than in
the normal mode.

It is not necessary for all nodes to use the same mode (either
normal or alternate); each node can make an independent
selection. In particular, the following scheme can be used to
choose the best mode: we include a bit in the Update::Inc
message that indicates whether the request is in response toa
loss of old path. Then an intuitive strategy is that nodes usethe
normal mode if the old path exists, and use the alternate mode
if the old path does not exist. However, the normal mode does
have one significant advantage over the alternate mode: the
counting-to-infinity problem cannot arise in the normal mode
whereas there is no such guarantee in the alternate mode. Thus

the previous strategy is perhaps useful only in the cases where
counting-to-infinity is not a significant problem or a mitigation
mechanism is in place.

d) Semantics for Handling Message Reordering:So far
we have been working under the implicit assumption that all
update messages and ACKs come to a node in order and
without any loss. In practice both loss and reordering are
possible. Thus it is important to ensure the correctness of DIV
under possible packet reordering or packet losses.

Towards this goal, we maintain the following two semantics
that account for non-zero delays between origination of a
message at the sender and its reception at the receiver and
possible reordering of messages and ACKs.

Semantic 1 A node ignores an update message that comes
out-of-order (i.e., after a message that was sent later).

Semantic 2 A node ignores outstanding ACKs after issuing
an Update::Dec message.

These semantics are enforced using the embedded sequence
numbers in the update messages (recall that an ACK includes
the sequence number of the Update::Inc that triggered it).

C. Properties of DIV

The two main properties of DIV are: (i) it prevents loops
at every instant, and (ii) it prevents counting-to-infinityin the
normal mode. In this section, we prove these properties. Note
that even in the specific case where the value of a node is set to
its current cost-to-destination, the proofs of DIV’s properties
cannot be obtained from those for the LFI conditions since
DIV operates without any assumption on packet reordering,
delay or losses.

1) Loop-free Operation at Every Instant:The following is
the key proposition based on which our result follows.

Proposition 1 For any two neighboring nodesx and y, we
always have

V (x; y|x) ≤ V (x; y|y) (3)

Proof: The proof is by contradiction. Suppose at time
t = 0 condition (3) is satisfied and at timet = t4 condition
(3) is violated for the first time.I.e., at time t = t4, we have
V (x; y|x) = V1 and V (x; y|y) = V0 with V1 > V0. Thus, at
time t4 eitherV (x; y|y) decreases orV (x; y|x) increases. We
consider these two cases separately.

Case (i):V (x; y|y) decreases at timet4 to V0. Thus node
y receives an Update::Dec message from nodex at time t4.
As shown in Fig. 2(a), suppose that this message originated at
nodex at timet0. Therefore, at timet0, we haveV (x; y|x) =
V0. But as per our assumption,V (x; y|x) = V1 > V0 at
time t4. Thus, nodex must receive an ACK from nodey that
increasesV (x; y|x) during the period(t0, t4) (cf. Fig. 2(a)).
Supposet2 denotes the time when nodex sent the update
message that triggered this ACK. We then have two cases:

• t2 < t0 < t4: In this case, the Update::Inc message that
triggered the ACK was outstanding att0; the time when
nodex sent an Update::Dec message. Thus nodex would
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Fig. 2. Two cases of possible message exchanges between two neighboring
nodes which would violate Eq. (3). Both cases are shown to be contradictory.

disregard this ACK due to Semantic 2, and therefore not
increaseV (x; y|x).

• t0 < t2 < t4: In this case, the Update::Inc message that
triggered the ACK was sent by nodex after the Up-
date::Dec message, but nodey received the Update::Inc
message before the Update::Dec message;i.e., the Up-
date::Dec message arrived nodey out of order and thus
nodey would disregard the Update::Dec message due to
Semantic 1, and therefore not decreaseV (x; y|y).

We therefore have a contradiction in both the cases.
Case (ii):V (x; y|x) increases at timet4 to V1. Thus nodex

receives an ACK from nodey at timet4. As shown in Fig. 2(b),
suppose that this ACK originated at nodey at time t2. Thus,
we haveV (x; y|y) = V1 at time t2. But by assumption,
V (x; y|y) = V0 at time t4. Thus, nodey must receive an
Update::Dec message during the period(t2, t4), say at time
t3. Suppose that nodex originated this Update::Dec message
at timet1 (cf. Fig. 2(b)). Moreover, suppose nodex originated
at time t0 the Update::Inc message that triggered the ACK it
receives from nodey at timet4. As before, we then have two
possibilities:

• t0 < t1 < t4: In this case, the Update::Inc message that
triggered the ACK was outstanding att1; the time when
nodex sent an Update::Dec message. Thus nodex would
disregard this ACK due to Semantic 2, and not increase
V (x; y|x) to V1 at time t4.

• t1 < t0 < t4: In this case, the Update::Inc message that
triggered the ACK was sent by nodex after the Up-
date::Dec message, but nodey received the Update::Inc
message before the Update::Dec message;i.e., the Up-
date::Dec message arrived nodey out of order and thus
nodey would disregard the Update::Dec message due to
Semantic 1, and not decreaseV (x; y|y) to V0 at timet3.

We therefore again have a contradiction in both the cases.
Thus we have shown that both case (i) and case (ii) lead to

contradictions. Hence, we conclude that it is not possible to
violate Eq. (3).

Using Proposition 1, we now prove that DIV guarantees that
at every instant, the successor graph (i.e., the graph formed by
connecting each node to its successor by a directed edge) is
acyclic.

Theorem III.1 The successor graph created following DIV’s
update algorithm is an acyclic graph at each instant.
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Fig. 3. A possible loop in the successor graph.

Proof: The proof is again by contradiction. Suppose at
some instant of time there is a loop in the successor graph,
as shown in Fig. 3. Since the number of nodes in this loop
is finite, there is a node in this loop whose value is smaller
than or equal to the value of its successor. Without any loss
of generality, letAn be this node and letA1 be its successor.
Thus,

V (A1; A1|A1) ≥ V (An; An|An). (4)

But since nodeA1 maintains the first invariance, we have

V (A1; A1|A1) ≤ V (A1; An|A1). (5)

Also since nodeAn maintains the second invariance, we have

V (An; An|An) > V (A1; An|An). (6)

But equations (4), (5) and (6) together imply that
V (A1; An|A1) > V (A1; An|An), which contradicts Propo-
sition 1.

2) Multiple Overlapping Updates and Packet Losses:This
is an attractive feature of DIV, which unlike earlier algo-
rithms [11–15] can handle multiple updates without additional
efforts. A node can send multiple Update::Inc or Update::Dec
messages in any order; a neighbor can postpone sending an
ACK for an arbitrary time—e.g.,it can use a hold-down time—
and when replying with an ACK, it can chooses to respond
to only a subset of pending ACKs—even just one: none of
these actions would cause a routing loop. We summarize this
important property in the following theorem.

Theorem III.2 The correctness of DIV remains valid under
arbitrary policies for handling multiple overlapping updates.

This gives tremendous flexibility to a node in choosing various
policies for replying with ACKs to optimize different criteria.

Proof: Only Semantics 1 and 2 are used to prove
Proposition 1, and the proof of Theorem III.1 relies only on
Proposition 1 and Invariances 1 and 2. Thus, it is sufficient
to ensure that the Semantics and the Invariances remain valid
under multiple overlapping updates.

However, it is easily seen that the Semantics are satisfied
by each node by using the sequence numbers of the messages,
and the invariances depend only on the locally stored variables.
Thus they are never violated.

Finally, DIV can also handle an arbitrary sequence of lost
packets in the sense that its correctness is never jeopardized.
If an Update::Dec message sent by nodex to neighbory is
lost, thenV (x; y|x) is lowered (byx), but not V (x; y|y);
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Fig. 4. Proof of avoidance of counting-to-infinity.

i.e., we haveV (x; y|x) < V (x; y|y). But this still satisfies
Proposition 1, hence does not jeopardize DIV’s correctness.

If an Update::Inc message sent by nodex to neighbor
y is lost, then nodex cannot increase its value, but the
invariances remains valid. Finally, if an ACK is lost, then
V (x; y|y) is increased (byy), but notV (x; y|x); i.e., we have
V (x; y|x) < V (x; y|y). Again, this satisfies Proposition 1 and
DIV remains correct. We have already shown that Semantics 1
and 2 handle arbitrary reordering and delay of messages.
Thus, we summarize these features in the following important
property of DIV:

Theorem III.3 The correctness of DIV remains valid under
arbitrary sequence of loss, reordering or delay of messages.

3) Counting-to-Infinity:Shortest path algorithms represent
a very important class of routing algorithms. When used with
distance-vector style shortest path computation, DIV, in the
normal mode, preventscounting-to-infinity.

Suppose a given destination becomes unreachable. With any
shortest-path computation algorithm,eventually the cost-to-
destination estimate of all nodes separated from the destination
would reach∞. However, if nodes increment their cost-to-
destination estimates by a finite amount at each step, then the
true cost-to-destination values are not reached in a finite num-
ber of steps. This is the counting-to-infinity problem which
slows down routing convergence. We show that counting-to-
infinity cannot happen when DIV is used in the normal mode.

We assume that before the destination becomes unreachable,
the network was in a steady state and link costs do not change.
DIV is used in normal mode. The value of each node is its
estimate of minimum cost-to-destination.

With DIV, the successor graph of a given destination in-
duced by the forwarding decisions is aDirected Acyclic Graph
(DAG) (or a collection of DAGs if a network partition occurs)
at every instant. If a node is allowed to have only one successor
that offers the minimum cost-to-destination, then the successor
graph will in fact be a tree (or a forest). However, there may
be more than one neighboring nodes that offer the minimum
cost-to-destination, and we allow the node to treat all of them
as successors.

Let a root node in the DAG be a node withno successor
(for a destination). In the steady state, only the destination is
a root. Furthermore, in the normal mode of DIV, a non-root
node becomes a root node only after a network partition,e.g.,
a link or a node failure, disconnects if from its last successor.

In particular, when the value of a node’s only successor’s
becomes∞, although the node increases then its own value
to ∞, it still maintains the old successor, and hence doesnot
become a root.

Assume now that after a network partition,k nodes become
roots, as shown in Fig. 4 (k = 2; nodesA andB are the roots).
Following the network partition, nodes proceed to change
(increase) their values in response to this event and subsequent
updates.

Claim 1 An increment in the value of a node corresponds to
an increase in the value of aroot node.

Proof: Suppose that nodexm increases its value. This can
happen only when the last successor ofxm, xm−1 increased its
value, which in turn must mean thatxm−2, the last successor
of xm−1 increased its value, and so on. Since there is no loop
in the successor graph, the chain of implications must end at
a root node,x0, which must increase its value.

Lemma 1 If after a network partition,k nodes become roots;
nodes in the network can increment their value at mostk times.

Proof: Let a root-incrementevent be the event that a root
node increments its value. Claim 1 implies that the number
of occurrences of value-increase events at any node cannot
exceed the total number of root increment events. We bound
the number of root-increment events.

Consider a root nodez. Since in DIV, a node with no
feasible successors (a root) increments its value (cost-to-
destination estimate) to∞, a root node starts by issuing to all
of its neighbors Update::Inc messages carrying its new value
of ∞. Neighbors that do not rely onz as their successor or
have another feasible successor will immediately send ACKs,
while others will originate their own Update::Inc messages.
As discussed in Section III-B3c, this eventually results in
nodez receiving ACKs from all its neighbors, and therefore
increasing its own value to∞, i.e., experiencing a root-
increment event. There are two possible situations for node
z at this point: (i) all its neighbors have an infinite value; (ii)
one or more of its neighbors have a finite value. Case (i) is
the simpler and more favorable one in that all nodes in the
connected component to which nodez belongs, converged to
realizing that the destination is unreachable after receiving the
Update::Inc message from nodez. In other words, all nodes
in the connected component of nodez increased their value
only once.

Case (ii) is more complex and the one we focus on next. In
case (ii), because of the existence of one or more neighbors
with a finite value, root nodez can then choose any of these
neighbors as its successor, and decrease its value to some finite
number (since the shortest path estimate will become finite).
However, at that point,z is no longera root node; by choosing
a successor,z merges with another DAG. Further, recall that
in the absence of additional failures a non-root node never
becomes a root node in the normal mode of DIV. As a result, in
case (ii) the root-increment event that root nodez experienced
(when it was able to update its value to∞), was followed by
a decrease by one in the number of root nodes. Thus, in the
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Fig. 5. Counting-to-infinity without loops.

absence of additional failures, each root-increment eventeither
ensures that nodes go through only one value increment (case
(i)), or it reduces the number of root nodes in the successor
graph by one (case (ii)). Since there werek root nodes at
the beginning, there can at most bek root-increment events.
The case of additional failures (following the first one) can
be handled based again on the discussion of Section III-B3c,
i.e.,nodes expecting ACKs from a failed/unreachable neighbor
will remove the node from the list of pending ACKs, and if
the failure creates another root node, the value ofk is simply
incremented to reflect the change. Hence, the lemma follows.

Finally, since a node can increment its value at most a finite
number of times, we have

Theorem III.4 Counting to infinity does not occur in DIV in
the normal mode.

Remark: Guaranteeing an acyclic successor graph at every
instant is not sufficient for preventing counting-to-infinity5.
Fig. 5 illustrates an example where DIV in alternate mode
is used6. Recall that in the alternate mode, upon receiving
an Update::Inc message a node immediately replies with an
ACK even though it may not have any other path to switch to.
Fig. 5(a) shows the initial configuration; the shortest-path costs
to the destination nodeC are indicated in the parentheses,
where∞ indicates no path. When the link to the destination
goes down, nodeB detects it, and issues an Update::Inc
message toA to set its value to 3. NodeA, upon receiving this
Update::Inc, sends ACK immediately. This ACK increments
the value of nodeB to 3, but leaves nodeA without any path.
Then nodeA issues an Update::Inc message to nodeB to
increase its (A’s) value to 4. Upon receiving this Update::Inc
message, nodeB immediately sends an ACK, that leaves node
B without path, but increments nodeA’s value to 4. And the
cycle continues. Note that the successor graph at every time
is acyclic, a fact that did not prevent counting-to-infinity. The
crucial feature of the normal mode is that it does not allow

5This remark applies to all loop-freedom algorithms, not only DIV.
6Counting-to-infinity can be avoided in this very simple example by using

poison reverse, but the conclusion drawn from the example remains true.

a node to become pathless unless there is a failure. It is this
property that was used in proving Lemma 1.

Recall that a node can choose to use the normal mode or
the alternate mode at will on aper updatebasis (i.e., for one
update it might choose the normal mode and for the next, it
might use the alternate mode) without causing transient loops.
A simple generalization of Lemma 1 shows that if nodes use
the alternate mode at mostM times (for some finiteM ), then
counting-to-infinity does not occur.

4) Frequency of Synchronous Updates: A Comparison with
DUAL: A synchronous update occurs when a node notifies all
its upstream neighbors about its impending change of status.
In the case of DUAL, the change of status is an increase in its
feasible distance; in DIV in normal mode, the change of status
is an increase in its value. This similarity calls for askingwhich
algorithm produces fewer synchronous updates under identical
situations? This is an important question since synchronous
updates are time and resource consuming and nodes are left
with a non-optimal path—in the worst case, no path at all—
for some period. We show that DIV improves on DUAL in
this regard by issuing fewer synchronous updates.

For comparison, we need to fix a feasibility condition for
DUAL and an equivalent value assignment for DIV. Due to
space constraint, we prove the claim only for SNC in DUAL
and the equivalent value assignment in DIV as the minimum
cost-to-destination seen by a node from timet = 0 (we
suppress the phrase “from timet = 0” from now on).

Claim 2 Supposex and y are neighbors. If SNC is true atx
throughy, then with DIVx can choosey as a successor.

Proof: We need to show that SNC being true atx through
y implies V (x; x|x) > V (y; y|y). From the definition of
SNC (cf. Section II-B2), since SNC is satisfied, we have the
minimum cost-to-destination ofx, V (x; x|x), is more than the
current cost-to-destination ofy. However, the current cost-to-
destination ofy is clearly as large as the minimum cost-to-
destination ofy, V (y; y|y); i.e., V (x; x|x) > V (y; y|y).

However, the other direction is clearly not true. For example,
suppose thatV (x; x|x) = 2, V (y; y|y) = 1 and the current
cost-to-destination ofy is 3. Then SNC is not satisfied, but
with DIV, x can still choosey as its successor. Since the
condition of DIV is strictly more relaxed than SNC, and a
synchronous update is issued only when the condition of DIV
(or SNC for DUAL) is not satisfied, we have

Theorem III.5 DIV issues synchronous updates less fre-
quently than DUAL under SNC.

Note that this cannot be remedied simply by replacing SNC
in DUAL with the conditions of DIV since without DIV’s
update mechanisms, these are not sufficient to guarantee loop-
free operation.

IV. ROUTING UNDER GENERAL COST FUNCTIONS

One of the important advantages of DIV is that it is not tied
to a particular cost function when computing a routing. We
illustrate the benefits of this decoupling using a cost function
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that instead of the standard shortest path distance function,
seeks to maximize the number of next-hops available at all
nodes for each destination. The availability of multiple next-
hops ensures that the failure of any one link or neighbor does
not impede a node’s ability to continue forwarding traffic to
a destination. A failure results in the loss of at most one next
hop to a destination, so that the node can continue forwarding
packets on the remaining ones without waiting for new paths
to be computed. In other words, the routing isrobust to local
failures. This may be an appropriate objective in settings where
end-to-end latency is small and bandwidth plentiful,e.g., as
in the previously mentioned large-scale Ethernet networks
spanning entire metropolitan areas, which provided some of
the early motivations for developing DIV.

We note that mechanisms to increase routing robustness,
i.e., the ability to continue forwarding packets in the presence
of failures while avoiding transient loops, is a topic that has
and continues to receive significant attention in the academic
community and in the industry through various standardization
efforts, e.g., [24]. For example, a variety of schemes have
been proposed,e.g.,[28–32], that offer “fast local re-routing”
through pre-configured, backup forwarding strategies thatare
to be used when a failure is detected. This wealth of propos-
als targeting routing robustness to failures demonstratesthe
importance of the topic, and further motivates exploring how
such an objective can be realized using DIV. In the rest of
this section, we detail one possible approach and highlightthe
benefits of using DIV in that context.

A. Robust Routing with DIV

Recall that with DIV a value is assigned (per destination)
to each node and a node is allowed to choose a neighbor
as a successor only if the value of the neighbor is less than
the node’s own value. DIV is designed to allow updates to
these values, while preserving loop-free routing. However, the
values themselves are not specified by DIV; as far as DIV
is concerned, these values can be arbitrary. Therefore, values
could be chosen to realize some measure of robustness in
the resulting routing scheme. Indeed, computing a routing
is equivalent to assigning the values: Each value assignment
across nodes induces a DAG by defining an edge from
neighboring nodex to nodey if and only if V (x) > V (y).
Conversely, each routing decision, upon convergence, naturally
induces a value assignment: The successor graph induced by
the routing decisions, which is a DAG, has a topological sort,
i.e., using the order of a node in the topological sort as its
value.

Routing by means of value assignment naturally lends to
local robustness. For a given nodex with a set of neighboring
nodesN (x), any node from thefeasible successor set

S(x) = {y ∈ N (x)|V (x) > V (y)}

can be chosen as a successor, and the choice can be made on
a packet by packet basiswithout creating loops. Thus, when
S(x) has multiple members, the failure of one of them does
not disrupt packet forwarding which can proceed using the

remaining ones7. This is realized without the need for any
routing update. Hence, for robustness purposes, it is desirable
to increase the feasible successor sets of nodes. However, these
sets are not independent; for every neighboring nodesx andy,
eitherx ∈ S(y) or y ∈ S(x). IncreasingS(x) by incorporating
y would reduceS(y); thus a trade-off exists. We explore one
possible global metric that captures this trade-off, and develop
an algorithm that can be used with DIV to optimize this metric
in a distributed manner.

B. Robustness Oriented Value Assignment Algorithm: DIV-R

We model the network as a graphG = (N, E) with node
set N and edge setE. For convenience, we defineN by
removing the destination node fromN . The essential idea is
to increase the size of the feasible successor (next-hop) set at
each node. The obvious choice of a global objective function:
∑

x∈N S(x), fails since the sum, which is the sum of all
directed edges, is always equal to|E|. (Note that this implies
that under a value-based routing, the average number of next-
hops per node is always|E|/N ). Therefore, we propose the
following function:

Obj 1: F =
∏

x∈N

|S(x)| (7)

Obj 1 is the product of the number of 1-hop paths (the
size of the feasible successor set) at the nodes, and we seek
to maximize Obj 1 by choosing appropriate node values.
We conjecture that this optimization problem is NP-hard,
although we do not have a proof yet. Note thatObj 1 only
requires nodes to exchange the size of their feasible successor
sets with 1-hop neighbors. Moreover, as we explain later, an
individual node can determine the effect of its own action
(in the sense of increasing or decreasing a value) without any
additional knowledge. ThusObj 1 is well suited for distributed
implementation, as allowed by DIV.

Intuitively, maximizing Obj 1 attempts to “equalize” the
feasible successor set sizes. The arithmetic mean-geometric
mean inequality gives

F ≤
(

1
|N |

∑

x∈N
|S(x)|

)|N |

= (|E|/|N |)|N |

where the maximization occurs atS(x) = |E|/|N | for all
x, although topological restrictions usually will not allow
achieving this optimum.

Other objective functions are clearly possible. For example,
Obj 2 below is another reasonable alternative: It considers the
sum of next-hops available to all the neighbors of a node and
seeks to maximize their own sum.

Obj 2: G =
∑

x∈N

∑

y∈S(x)

|S(y)|

Obj 2 has the disadvantage of requiring nodes to know the
values of all their 2-hop neighbors, but its more “global”
metric could possibly result in better solutions. However,our

7Clearly, failures do affect available resources, but the impact is lessened
by the availability of multiple alternatives. Note also that there is considerable
flexibility in which and how many of these alternatives are used — from all
of them being continuously used to using only one at a time.
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focus here is not on providing a comprehensive investigation
of robust routing solutions, but instead on demonstrating the
benefits afforded by DIV’s ability to operate with a broad
range of cost or objective functions. Hence, we focus onObj 1,
and describe next how a node can determine if an action on its
part would increase or decreaseObj 1. Such a determination
will then drive the updates that nodes send to each other using
DIV to ultimately converge to an optimized robust routing
solution (in the sense ofObj 1).

Observe thatS(x) depends only on the ordering of the val-
ues in the set{V (y) : y ∈ N (x) ∪ x}. Let V (y1) < V (y2) <
· · · < V (x) < · · · < V (y|N (x)|) (yi ∈ N (x)) and letrank(x)
be the rank ofV (x) in this set. Supposerank(x) = a and
after nodex changesV (x), new rank(x) = b. Then, under
the assumption that no changes in other nodes are made, we
have the following: Forb > a

Fnew

Fold
(a, b)

= (|S(x)| + b − a) (|S(ya+1)| − 1) · · · (|S(yb)| − 1) /

(|S(x)||S(ya+1)| · · · |S(yb)|) . (8)

Similarly, for a > b,

Fnew

Fold
(a, b)

= (|S(x)| + b − a) (|S(ya−1)| + 1) · · · (|S(yb)| + 1) /

(|S(x)||S(ya−1)| · · · |S(yb)|) , (9)

where in both Eqs. (8) and (9),S(.) denotesSold(.), i.e., prior
to the change of value at nodex. Thus, a node determines
the change in the global objective function utilizing only local
information (assuming its neighbors provide nodex with their
own S(.) values).

Based on this, we propose a simple distributed heuristic,
DIV-R, that greedily seeks to maximizeObj 1. DIV-R pro-
ceeds as follows: If nodex decides to update its value, it starts
by sending messages to “lock” its 2-hop neighbors8. Then all
nodesy ∈ N (x), send|S(y)| to nodex, which determines
how to change its value so as to maximizeFnew/Fold using
Eqs. (8) and (9). Next, nodex notifies its neighbors of its
new value as per the operation of DIV. Note that in order for
this to successfully conclude and avoid possible deadlocks,
this requires that DIV be used in the alternate mode. Finally,
node x sends out messages to “unlock” the locked nodes.
We remark that there is no restriction on the order of value
updates among the nodes and the update frequency because
the underlying DIV mechanism guarantees that no loop can
ever form irrespective of the sequences of updates.

In Section V-B, we evaluate the performance of this algo-
rithm and compare it to that of a “shortest path” algorithm,
where link weights have been selected (off-line) so as to
optimizeObj 1. The comparison to a shortest path algorithm
is aimed at illustrating the benefits afforded by DIV’s ability
to accommodate more general objective functions.

8Locking the two-hop neighbors is necessary so as to ensure that |S(y)|,
y ∈ N (x), is kept constant when the heuristic is being executed. Notethat
this also assumes that nodex is itself not locked when it decides to update
its value.
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Fig. 6. Mean loop-retention time. No loops are found with DUAL or DIV.

V. PERFORMANCEEVALUATION

A. Performance of DIV in Shortest Path Routing

In this section, we consider three shortest paths algorithms,
DBF, DUAL (using SNC as its feasibility condition), and DIV
(using DBF to compute value updates), and compare their
performance in terms of loop avoidance9 and convergence
time. The simulations are performed on random graphs with
fixed average degree of 5, but in order to generate a reasonable
range of configurations, a number of other parameters are
varied. Networks with sizes ranging from 10 to 90 nodes
are explored in increments of 10 nodes. For each network-
size, 100 random graphs are generated. Link costs are drawn
from a bi-modal distribution: with probability 0.5 a link cost
is uniformly distributed in [0,1]; and with probability 0.5it is
uniformly distributed in [0,100]. For each graph, 100 random
link-cost changes are introduced, again drawn from the same
bi-modal distribution. All three algorithms are run on the same
graphs and sequences of changes. Processing time of each
message is random: it is 2 secs with probability 0.0001, 200 ms
with probability 0.05, and 10 ms otherwise.

Fig. 6 shows the average loop-retention time in seconds,
Tloop—the time from when a routing loop is detected to the
time when again no routing loop exists—given that a loop is
formed with DBF, as the size of the graphs are varied. As
expected, no loops were found with DUAL or DIV. As seen
in the figure, loops can be retained for a significant time. The
figure supports the need for loop-prevention algorithms such as
DUAL and DIV, by demonstrating that even in relatively small
networks, transient loops can last for non-negligible amounts
of time.

Fig. 7 shows average convergence time—the time from
when a link cost changes to the time when no more update
messages are exchanged—of all three algorithms as the size
of the graphs are varied. The vertical bars show the standard
deviations. Both DIV and DUAL converge faster than the
vanilla DBF; however, DIV performs better, especially for
larger graphs. This is because DIV’s conditions are satisfied
more easily, and hence a synchronous update can be performed
faster (recall that a node with a feasible neighbor will reply
immediately). This observation is supported by Table I where
we show the fraction of times the condition of DIV is satisfied

9Obviously, neither DUAL nor DIV should give rise to transient loops.
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Fig. 7. Mean convergence time.

Nodes 10 20 30 40 50 60 70 80 90
Fraction 0.717 0.784 0.823 0.843 0.846 0.832 0.843 0.846 0.840

TABLE I
FRACTION OF TIMESDIV IS SATISFIED GIVEN THAT SNC IS NOT.

given that SNC is not satisfied. As Table I shows, the fraction
becomes more than 80% for larger graphs.

B. Performance of DIV-R

In this section, we illustrate the benefits of using a value-
assignment based routing over a shortest path routing in terms
of optimizing a robustness-oriented metric, namely,Obj 1
(Eq. (7)). To ensure fairness, in shortest path computations,
link weights are selected so as to optimizeObj 1. However,
note that in addition to optimizingObj 1, the routing must also
satisfy the added constraint of being a shortest path based on
the computed link weights10.

We simulate two types of topologies in our comparison:
(i) random topologies and (ii) power-law topologies; both
with varying sizes and numbers of links. Random topologies
are generated by randomly connecting links to nodes with
equal probability. Power-law topologies are generated using
the preferential attachment model [33]. Connectivity is ensured
in all cases. For each combination of topology type and
network size, we generate 10 graph samples for which we
evaluate the performance of each algorithm.

In DIV-R, node values are initialized to the minimum hop
counts to the destinations. At each step, a random node exe-
cutes DIV-R, that emulates the distributed operation. Iterations
are stopped when no improvement is detected for any node.

The Shortest-Path-First (SPF) solution is computed using
a “blackbox optimization” approach as in [34]. Each set of
link weights,W , induces shortest paths and in turn evaluates
to a vector ~F (W ) of F -values (according to Eq. (7)), one
per destination. We consider a link weight settingW1 better
than another link weight settingW2 if ~F (W1) > ~F (W2)
lexicographically. In other words, the optimization searches
for link weights that maximize the smallestF -value across all
destinations. The search for an “optimal” set of link weights
is carried out for a total of 5000 iterations, where if~F fails
to improve for 100 consecutive iterations, 10% of the link

10It is precisely the need to use commonlink weightsacross destinations
that introduces dependencies that severely limits the ability of a solution to
yield good results forall destinations.
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Fig. 8. Distribution of number of next-hops across nodes anddestinations
(50-node networks).

weights are randomly perturbed in order to let the search
escape from local maxima. Link weights are selected from the
set{1, 2, . . . , 20} to balance computational complexity and the
quality of a solution.

TABLE II
COMPARING AVERAGE NUMBER OF NEXT-HOPSACROSSTOPOLOGIES.

Average degree 3 5 8 12
Network type RN PL RN PL RN PL RN PL

DIV-R 1.53 1.53 2.55 2.55 4.08 4.08 6.12 6.12
SPF 1.39 1.41 1.96 2.01 2.51 2.66 3.68 3.60

Our main comparison metric is the distribution (normalized
histogram) of the number of next-hops realized across all
nodes and destinations. The results are presented for a repre-
sentative 50-node network in Table II (average only) and Fig. 8
(full histogram) from which a number of basic conclusions
emerge. First, Table II illustrates for both random (RN) and
power-law (PL) topologies and varying average node degrees,
that imposing a shortest-path constraint does indeed result in a
lower average number of next hops available across nodes and
destinations. Moreover, the difference between DIV-R and an
SPF-based solution grows with the average node degree (other
experiments showed that it also grows with the network size,
although less rapidly). This is in part due to DIV-R’s greater
flexibility in exploiting all available neighbors unimpeded by
the shortest-path constraint. Note that some of this difference
could be recouped by relaxing the shortest-path constraint
of the SPF-based solution and allowing a node to use any
neighbor as its next-hop, provided that this does not resultin
the possible formation of loops. This is akin the “variance”
concept of the EIGRP proposal that allows the selection of
next-hops amongall nodes in the set of feasible successors
computed by the DUAL algorithm.

The more significant difference between the solutions pro-
duced by DIV-R and SPF lies in the underlyingdistributionsas
illustrated in Fig. 8, which reports the results for random and
power-law topologies with average node degrees of 5 and 8.
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The solution produced by DIV-R is much more concentrated
around its mean, which reflects its success in ensuring that
as few nodes as possible have below average connectivity for
all destinations. Qualitatively similar results were obtained for
different network sizes and node degrees. In addition, further
investigation of the results revealed that in many instances
where the DIV-R solution produced a number of next-hops
below the average, it was due to the constraint imposed by
actual degree of the node itself,i.e., further improvements were
not possible.

VI. CONCLUSION

Distance-vector routing algorithms offer a number of ad-
vantages over link-state algorithms,e.g., lower resource re-
quirements and often greater stability by keeping the impact
of changes local. However, the dependencies across nodes
that a distance-vector operation induces can also magnify the
impact and duration of inconsistent decisions across nodes
manifested through transient loops and the counting-to-infinity
problem described earlier. It is, therefore, important to devise
mechanisms to overcome these limitations without affecting
the intrinsic benefits of a distance-vector operation. In this
paper, we present a novel algorithm, Distributed Path Com-
putation withIntermediateVariables(DIV), that achieves this
by laying down a rule-set over existing routing algorithms and
defining an efficient update mechanism for enforcing those
rules; both are easy to implement. In addition, because DIV is
not integrated with shortest-path computations, it can be used
with any routing algorithm.

When used with shortest-path computation algorithms, DIV
was shown to perform better than current alternatives, such
as Diffusing Update Algorithm(DUAL) (and consequently
the protocols based on DUAL), both analytically and by
simulation along various metrics. Another significant advan-
tage of DIV is that it handles message losses and out-of-
sequence delivery, and allows nodes to adopt arbitrary policies
for handling multiple overlapping updates opening up the
possibility of various optimizations. Finally, the rule-set and
proof of correctness of DIV is relatively intuitive, which will
hopefully facilitate efficient (and correct) implementations.
The fact that DIV is not coupled to a shortest path compu-
tation, and in particular that it uses a per-destination node
potential (“value”), can be leveraged to enforce a broad range
of routing objectives. We illustrated this by proposing DIV-R,
an algorithm to assign the node values used by DIV, with
the view of optimizing the network’s “local repair” ability
in the event of node (or link) failures. We demonstrated the
effectiveness of DIV-R through simulations showing that it
significantly outperformed SPF-based routing in robustness.
Hence, highlighting the benefits and flexibility of DIV, which
we believe has applicability in many other environments.
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