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Always Acyclic Distributed Path Computation

Saikat Ray, Roch Guérin, Kin-Wah Kwong, and Rute Sofia

Abstract—Distributed routing algorithms may give rise to
transient loops during path recomputation, which can pose
significant stability problems in high-speed networks. We pesent
a new algorithm, Distributed Path Computation with Intermediate
Variables (DIV), which can be combined with any distributed
routing algorithm to guarantee that the directed graph induced
by the routing decisions remains acyclic at all times. The ke
contribution of DIV, besides its ability to operate with any
routing algorithm, is an update mechanism using simple mesge

exchanges between neighboring nodes that guarantees loop

freedom at all times. DIV provably outperforms existing logp-
prevention algorithms in several key metrics such as frequacy
of synchronous updates and the ability to maintain paths duing
transitions. Simulation results quantifying these gains m the
context of shortest path routing are presented. In addition DIV’s
universal applicability is illustrated by studying its use with a
routing that operates according to a non-shortest path objetive.
Specifically, the routing seeks robustness against failuse by
maximizing the number of next-hops available at each node fo
each destination.

Index Terms—Loop-free routing, Distance-vector routing.

|. INTRODUCTION

mitigation mechanisms.g.,no Time-to-Live (TTL) field in
packet headers or a TTL set to a large value. In the presence
of a routing loop, a packet caught in the loop comes back
to the same nodes repeatedly, thereby artificially increasi
the traffic load many folds on the affected links and nodes.
The problem is aggravated by broadcast packets, which not
only are always caught in any loop present in the network,
but also generate replicated packets on all network linke T

emergence of a routing loop then often triggers networkewid
congestion, which can lead to the dropping or delaying of the
very same control (update) packets that are needed to tatenin
the loop; thereby creating a situation where a transieriilpro
has a lasting effect. Avoiding transient routing loops raémea

a key requirement for path computation in both existing and
emerging network technologie®.g., see [3-5] for recent
discussions.

Link-state algorithms, of which the OSPF [6] protocol is a
well-known embodiment, disseminate the state of each sode’
local links (their status and the node(s) they connect t@llto
other nodes in the network by means of reliable flooding. Afte
receiving link-state updates from the rest of the nodesh eac

Ddlstnbuted path gomputatlorll IS Z core funct:;)nallty % ode independently computes a path to every destinatios. Th
modern cohmmuhnlcatlon networks an IIS expecte lto rehmeﬂgriod of potential information inconsistency across roibe
so, even though some recent proposals contemplate the 4sg 3 few 10's of milli-seconds per node for typical prese

pf more _centr_alized_ so_lutions [1]. Depending on the r_]jode ﬁfay networks [7]), so that routing loops, if any, are veryrsho
information dissemination, and subsequent computatieTgus i &4. on the flip side, link-state algorithms can have ghitgh

the disseminated information, there are two broad claskes

algorithms: (i) link-state algorithms (also known as taypt

broadcast) and (ii) distance-vector algorithms [2]. Intbo
approaches, nodes choose successor (next-hop) nodeslior

destination based only on local information, with the obyec
that the chosen paths to the destination dfécient in an

oYerhead in terms of communication (broadcasting updates)
storage (maintaining a full network map), and computation

téa change anywhere in the network triggers computations at

ft nodes). These are some of the reasons for investigating
alternatives as embodied in distance-vector algorithnisghwv
are the focus of this paper.

appropriate sensee-g., having the minimum cost. Because Distance-vector algorithms couple information dissemina

end-to-end paths are formed by concatenating computzhtioggn and computation.

results at individual nodes, achieving a global objectmplies

consistencyacross nodes both in computation and in th

information on which those computations are based.

Inconsistent information at different nodes can have di@J
consequences that extend beyond not achieving the desi[rc?

efficiency. Of particular significance is the possible fotiom

Information disseminated by a node
now consists of the results of its own partial path compaoresi
Fe.g.,its current estimate of its cost to a given destination) that
it distributes to its neighbors, which in turn perform theiwn
putations before further propagating any updated tesul
eir own neighbors. The Distributed Bellman-Ford (DBF)
algorithm is a well-known example of a widely used distance-

of transient routing Iqoﬂsy\/hich can sevgrelyimpapt petworkvec,[Or algorithm (cf. RIP [8], EIGRP [9]) that computes a
performance, especially in networks with no or limited Iooehortest path tree from a given node to all other nodes.
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1In this paper, the term “routing” refers to the path comgataprocess that
creates the tables used in forwarding packets, irresgeofithe layer (layer
2 or layer 3) at which this forwarding takes place. Hencefinguloops are
simply loops in the resulting forwarding graph, regardletshe layer where
they reside.

Coupling information dissemination and computation can re
duce storage requirements (only routing information isesti
communication overhead (no relaying of flooded packets), an
computations (a local change needs not propagate beyond
the affected neighborhood). Thus, distance-vector alyos
avoid several of the disadvantages of link-state algomthm
which can make them attractive, especially in situations of
frequent local topology changes and/or when high control
overhead is undesirable.

The down side of coupling information dissemination and
computation is that information dissemination is gated by



computation speed since a node cannot send updates before
finishing its current computations. This can in turn extend
periods when nodes have inconsistent information, whish, a
discussed earlier and illustrated in Section V, can leaddcem
frequent and longer lasting routing loops. In addition, g
information dissemination and computation can also result
in slower convergence. This is because each node depends
on the (partial) computation results of its neighbors, \hic (a) Original (b) Node D is
can introduce cyclic dependencies that increase the number topology. down.

of steps needed to reach a final, correct result. Indeed, Whg1 1 A simple example of counting-to-infinity problem.
destinations become unreachable, a distance-vectorithigor
may not even converge in a finite number of steps. This is
known as thecounting-to-infinityproblem, which is absent
from link-state algorithms where nodes compute paths inde-
pendently. (In practice, when the cost-to-destinatiorchea a
maximum value, the destination is declared unreachable and
the computation is terminated.)

Thus, we see that realizing the benefits of distance-vector
based solutions, even in environments where they might be a
natural fit, calls for developing approaches to overcomeehe
problems. Such a realization is not new. Since the 70’s rabve 3)
works [10-15] have targeted this goal in the context of sstrt
path computations. We review and contrast the most significa
of these prior works in Section Il, but the problem remains
timely. Our research was triggered by a renewed interest in
devising light-weight, loop-free path computation saut for 4)
large-scale Ethernet networks. Specifically, we were carsi
ing extending the scalability of Ethernet networks throtigg
introduction of distributed shortest path algorithms ieuliof
the existing distributed spanning tree algorithm (see ¢3far
similarly motivated efforts). Link-state based solutidmave 5)
been proposed [17, 18] to improve Ethernet networks, athou
not necessarily for the sake of scalability, and a distaremor
solution seemed an attractive alternative.

In this paper, we introduce theif€dributed Path Computa-
tion with Intermediatevariables(DIV) algorithm that enables
our goals of distributed, light-weight, loop-free path qmm
tation. DIV is not by itself a routing algorithm; rather, it can.
run on top of any routing algorithm to provide loop-freedo
DIV generalizes thd.oop Free Invariant(LFI) based algo-
rithms [14,15] and outperforms previous solutions inahadi
known LFI andDiffusing Computatiorbased algorithms, such
as theDiffusing Update Algorithnj13]. The main advantages
of DIV are as follows:

1) Separation of Routing and Loop preventidiV sepa-

rates routing algorithms from the task of transient loofs- Routing Loops and Counting-to-Infinity

prevention. Emancipating routing decisions from the We begin our discussion with a simple classical example
task of loop-prevention simplifies routing algorithms. Irof a routing loop and counting-to-infinity which illustrate
addition, DIV is not restricted to shortest path compuhat these problems can occur quite frequently as theyereith
tations; it can be integrated with other distributed patlfequire complex topologies nor an unlikely sequence of&sven
computation algorithms. We illustrate this in Section IV, Consider the network shown in Fig. 1(a). In this figure, the
where we explore a routing algorithm that attempts twodes compute a shortest path to the destindbiofhe cost of
increase theobustnes®f the network in terms of being each link is shown next to the link and the cost-to-destimati
able to re-route packetsnmediately(i.e., without the of the nodes are shown in parenthesis next to the node. We

need for any route update) without causing a loop after
a link or node failure 2Upstream nodes of a nodefor a given destinatior are the nodes whose
) . path toz includes:z.
2) Reduced OverheadVhen applled to shortest path COM- s1y0 updates are overlapping if the latter appears beforalg@ithm has

putations, DIV triggers synchronous updates less fresnverged in response to the first.

quently as well as reduces the propagation radius of
synchronous updates (cf. Theorem I11.5), where syn-
chronous updates are time and resource consuming
updates that might need to propagate to all upstfeam
nodes before the originator is in a position to update
its path. In fact, synchronous updates may altogether
be removed if counting-to-infinity is not a significant
issue €.g.,mitigated using a TTL); cf. Section IlI-B3c,
alternate mode.

Maintaining a path A node can potentially switch to a
new successor without forming a loop provably more
quickly (cf. Section IlI-B3c, alternate mode) in DIV.
This is particularly useful in situations where the oridina
path is lost due to a link failure.

Convergence Timé&Vhen a node receives multiple over-
lapping cost updatésfrom its neighbor, DIV allows
the node to process and respond to the updates in an
arbitrary manner, thus enabling an additional dimension
for optimization (cf. Theorem I111.2).

Robustnes®DIV can tolerate arbitrary packet reordering
and losses without sacrificing correctness. (cf. Theo-
rem I11.3).

The rules and update mechanism of DIV and their correctness
proofs are rather simple, which hopefully will also faciti¢
correct and efficient implementations.

The rest of this paper is organized as follows. We survey
mportant related works in Section Il. DIV is described ircSe
ion 11l along with its properties. The applicability of DIYo
robust routing is investigated in Section IV. Section V gres
comparative simulation results to quantify various meesof
performance, and conclusions are drawn in Section VI.

Il. BACKGROUND



assume that nodes upeison reversgi.e., each node reports multiple overlapping updates, it relies on unbounded secgie
an infinite cost-to-destination to its successor node [IBlis, numbers that mark update epochs. An improvement to this al-
nodeC believes that nodd can reach the destination at a cosgorithm is presented in [12]. For handling multiple ovepamm
of 3 whereas nodé# cannot reach the destination since nodepdates, [12] maintainkit vectorsat each node.
B reported a distance of infinity to node. 2) Diffusing Update Algorithm (DUAL)DUAL, a part of
Now suppose that the link between nodésand D goes CISCO’s widely used EIGRP protocol, is perhaps the best
down, as shown in Fig. 1(b). Nod€ detects this change andknown algorithm. In DUAL, each node maintains, for each
attempts to find a new successor. According to the informatidestination, a set of neighbors called teasible successor
nodeC has at that moment, nod# is its best successor. Soset The feasible successor set is computed usirigaaibil-
nodeC chooses nodél as its successor, reports a distance dfy condition involving feasible distanceat a node. Several
infinity to node A and distance of 6 to nodB. As Fig. 1(b) feasibility conditions are proposed in [13] that are alhtig
shows, a routing loop has been created due to i8slehoice coupled to the computation of a shortest path. For example,
of successor. Source Node Conditio(SNC) uses the feasible successor set
To see how counting-to-infinity takes place in this examplés be the set of all neighbors whose current cost-to-degtima
note that due to poison reverse, naiébelieves that the des-is lessthan the minimum cost-to-destination seen so far by
tination is unreachable through node Thus when it receives the node. Note that the definition of a feasible successor set
the update fronC' containingC’s new cost-to-destination asdepend on an origin of time, which is defined as the time when
6, node B simply changes its own cost-to-destination to the node freshly computes the feasible successor set after i
keeping nodeC' as its successor, reports unreachability toontains no preferred successor.
nodeC and its new cost, 7, to nodé. This way, each node A node can choose any neighbor in the feasible successor
increases its cost t® by a finite amount each time. So, unlesset to be the successor (next-hop) without causing a routing
a maximum diameter of the graph is assumegd (it is 16 in  loop regardless of how other nodes in the network choose thei
RIP) and the destination declared unreachable once the eastcessors, as long as they also comply with this rule. Thus,
reaches that value, the computation never ends. the importance of the notion of feasible successor set fies i
This simple example illustrates how easily a routing loothe fact that it allows nodes to switch neighbors immedyatel
and counting-to-infinity can occur unless special carekena in response to a cost-increase without creating transiemis,
(cf. Section V and [20]). Note that simple solutions suclnd without the need for notifying any of its neighbors.
as Split Horizon or Poison Reversedo not help in this  If the neighbor through which the cost-to-destination of
example [19]. Thus, several previous works have proposg@ node is minimum is in the feasible successor set, then
more comprehensive solutions to the routing loop problentiat neighbor is chosen as the successor. If the current fea-
next we survey some of the most salient ones among thensible successor set does not include the best successor, the
node initiates a synchronous update procedure, known as a
B. Previous Works diffusing computatiorfcf. [22]). The node sends queries to all
1) The Common StructureMost previous distance-vectorits neighbors with its cost-to-destination through thereot
type algorithms free from transient loops follow a commosuccessor. From this point onwards the node does not change
structure: Nodes exchange update-messages to notify thitsisuccessor until the diffusing computation terminakesch
neighbors of any change in their own cost-to-destination (fneighbor replies to the query by sending their own cost-to-
any destination). If the cost-to-destination decreasesnatde, destination if they themselves have a feasible successer af
the algorithms allow updating its neighbors in an arbitrarfney update the set following the new information received
manner; these updates are callechl (asynchronous) updates.from the initiator node. Otherwise, they themselves serid ou
However, after an increase in the cost-to-destination afden queries and wait for the replies before replying to the owdi
these algorithms require that the node potentially updatesa query. One easily sees that the queries propagate upstnesam i
upstream nodebefore changing its current successor; theseecursive manner and are equivalent to notifying all upsire
aresynchronousipdates. The algorithms differ in handling thenodes about the new status of the originator node. Finally if
situations where during the propagation of a node’s cost-tiliere are multiple overlapping updateses if a new link-cost
destination update to its upstream nodes, its cost-tdrdgistn change occurs when a node is waiting for replies to a previous
changes. query—the node uses finite state machinéo process these
Note that the primary challenge in avoiding transient loopsultiple updates sequentially.
lies in handling inconsistencies in the information stored 3) Loop Free InvariancéLFIl) Algorithms: A pair of in-
across different nodes. Otherwise, simple approachesuaan gvariances, based on the cost-to-destination of a node and it
antee loop-free operations at each step [10]. In this contemeighbors, called.oop Free Invariance$LFI) are introduced
approaches that are “in-between” link-state and distarceov in [14] and it is shown that if nodes maintain these invaresic
and avoid counting-to-infinity are also possible,g., [21] then no transient loops can form (cf. Section I1I-B2). Urdat
achieves this by having nodes learn the penultimate nodesnechanisms are required to maintain the LFI conditions} [14
the shortest paths to each destination from its neighbors. introducesMultiple-path Partial-topology Dissemination Al-
The algorithm proposed in [11] follows the above broadorithm (MPDA) that uses a link-state type approach whereas
structure and is one of the earliest work in guaranteeing-lod15] introducesMultipath Distance Vector AlgorithriMDVA)
free operations with inconsistent information. For hamglli that uses a distance vector type approach. Similar to DUAL,



MDVA uses a diffusing update approach to increase its cosfre minimum cost-to-destination seen by the node from time
to-destination, thus it also handles multiple overlappingt- ¢ = 0; (iii) as done in TORA [23], the value could be the
changes sequentially. heightof this node; (iv) as illustrated in Section 1V, the value
4) Comparative Merits of Previous Algorithm3he Jaffe- could be related to the number of next-hop neighbors for
Moss algorithm [12] improves upon the earlier Merlin-S¢égathe destination, etc. We, however, impose one restriction o
algorithm [11], however, with one potential problem that ththe value assignment: a node that does not have a path to a
bit-vectors it maintains to handle multiple overlappinglafes destination must assign a value of “infinity” (the maximum
can be exceedingly large for large dynamic networks. DUApossible value) to itself. Intuitively, this restrictiorrgvents
avoids large bit-vectors by not processing multiple oygslag other nodes from using it as a successor which is sensible
updates simultaneously, rather processing them in a séglersince it does not have a path to the destination in the firsepla
manner by maintaining a finite state machine at each node.Tlhis restriction turns out to be crucial for avoiding coumgti
terms of performance, DUAL supersedes the other two. Th&infinity problems in shortest path environments.
primary contribution of LFI based algorithms such as MDVA The basic idea of DIV is that it allows a node to choose one
or MPDA is a unified framework applicable to both link-statef its neighbor as a successor only if the value of that nesghb
and distance-vector type approaches and multipath rautifgless than its own value: this is called tHecreasing value
However, in DUAL with, say, SNC, many link-cost changeproperty of DIV. This ensures that no routing loop can ever
do not violate the feasibility condition, and therefore dmt n form.
trigger synchronized updates—an important advantage overrhe hard part is enforcing the decreasing value property. In
MDVA or MPDA. Because of the importance of this metricparticular, as the network topology changes, if the valdidise
we consider DUAL the benchmark against which to compargdes are held fixed, then the routing protocol may not be able
new solutions, and compare DIV with DUAL in Section V. to choose appropriate successets; if a neighbor happens to
DIV combines advantages of both DUAL and LFI. DIVpe the only path to a destination, but with a higher valuen the
generalizes the LFI conditions, is not restricted to shebrtethe node will not be able to reach that destination. Thusenod
path computations and, as LFl-based algorithms, allows f@flues must be updated in accordance to topological changes
multipath routing. In addition, DIV allows for using a fea-However, how does a node then know therrent value of
sibility condition that is strictly more relaxed than that oone of its neighbors to ensure the decreasing value préperty
DUAL, hence triggering synchronous updates less frequenttiearly, each node must update its neighbors about its own
than DUAL (and consequently, than MPDA or MDVA) ascurrent value by means of update messages. Since update
well as limiting the propagation of any triggered synchne®io messages are asynchronous, information at various nodes ma
updates. The update mechanism of DIV is simple and subst@e-inconsistent and may lead to the formation of loops. This
tially different from that of previous algorithms, and aill® s where the non-triviality of DIV lies: it lays down specific
arbitrary packet reordering/losses. Moreover, unlike RUAypdate rules that guarantee that loops are not formed at any
or LFI algorithms, DIV handles multiple overlapping costtime even if the information at different nodes is incoresist
changessimultaneouslyvithout additional efforts resulting in DIV accomplishes this task by maintaining several interme-
potentially faster convergence. Finally, DIV allows areattate diate variables that hold a replica of the value of a node
synchronous update mode (in distance vector computatiogs)its neighbors and vice versa, and exchanging messages
where a synchronous update goes only one hop, similargétween neighboring nodes. Similar to (but not identicahyvi
MPDA (note though that MPDA is link-state based), whiclbUAL, the update mechanism sends update messages and for
allows nodes to switch to a new successor faster withossme of them, requires an acknowledgment from the neighbor.
creating loops. Depending on the rules for sending acknowledgments, DIV
can be operated in one of the following two modes: (i) the
. DIV ..
. normal mode and (ii) the alternate mode In the normal
A. Overview mode, a neighbor can hold on to sending an acknowledgment
DIV lays down a set of rules on existing routing algorithmsintil it's own value is adjusted appropriately. In the aitate
to ensure their loop-free operation at each instant. TH&s- rumode, on the other hand, the neighbor immediately sends the
set is not predicated on shortest path computation, so DivV cacknowledgment, but could temporarily lose all paths (&t th
be used with other path computation algorithms as well.  particular destination). As we discuss later on, each mode
For each destination, DIV assignsvalue to each node embodies a different trade-off.
in the network. To simplify our discussion and notation, we
fix a particular destination and from now on, speaktioé
value of a node. The values can be arbitrary—hence te
independence of DIV from any underlying path computation There are four aspects to DIV: (i) the variables stored at the
algorithm. However, usually the value of a node will be&odes, (ii) two ordering invariances that each node maistai
related to the underlying objective function that the rogti (iii) the rules for updating the variables, and (iv) two setties
algorithm attempts to optimize and the network topologyor handling non-ideal message deliveries (such as paokst |
Some typical value assignments are as follows: (i) in sksbrter reordering). A separate instance of DIV is run for each
path computations, the value of a node could be its costestination, and we focus on a particular destination, kvhic
to-destination; (i) as done in DUAL, the value could be& node is, therefore, associated with a given value.

Description of DIV



1) The Intermediate VariablesSuppose that a nodeis a

DIV lays down precise rules for exchanging and handling

neighbor of nodey. These two nodes maintain intermediatéhese messages which we now describe.

variables to track each other’s values. There are threectsspe

a) Decreasing Value:Decreasing value is the simpler

to each of these variables: whose value is this? who beliexsgseration among the two. The following rules are used to
in that value? and where is it stored? Accordingly, we defirdecrease the value of a noddo a new valueVj:

V(z;y|x) to be the value of node as known (believed) by
nodey stored in node:; similarly V' (y; z|z) denotes value of
nodey as known by node: stored in node:.

Thus, assuming node hasn neighbors{y, vz, ...
it stores, for each destination:

1) its own valueV (z; z|x);

2) the values of its neighbors as known to itsé&lfy;; z|x)

[yL S {yhy% o 7yn}]y

7y7b}1

3) and the value of itself as known to its neighbors

o Node z first simultaneously decreases the variables

V(z;z|x) and the values/(z;y;|x) Vi = 1,2,...,n,

to 1o,

Node z then sends an Update::Dec message to all its
neighbors that contains the new valug

Each neighboyy; of x that receives an Update::Dec mes-
sage containing, as the new value updatés(z; y;|y;)

to V5.

b) Increasing Value:Increasing value is potentially a

Vi(z;yilz) [yi € {91,920, yn}]- more complex operation, however, conceptually it is simply
That is, 2n + 1 values for each destination. The variablegn jnverse operation: in the decrease operation a node first
V(yi;x|x) and V(z;y;|x) are called intermediate variablesjecreases its value and then notifies its neighbors: in the
since they endeavor to reflect the valu®y;;yilyi) and increase operation, a node first notifies its neighbors (aaitsw
V(w;x|x), respectively. In steady state, DIV ensures thab, their acknowledgments) and then increases its value. In
Vi(zsz|z) = V(z;yilr) = V(w;yilyi)- particular, a node: uses the following rules to increase its

2) The InvariancesAs stated in the overview of DIV (cf. gjye tov;:

Section 1lI-A), the fundamental idea of DIV is to ensure that . Node z first sends an Updatexinc message to all its

a successor node always has a smaller value. However, a neighbors v

node may not know what the most recent value of one of its. Each neiéhbory- of z that receives an Update:inc

neighbors is due to inconsistency in information. Thus, DIV message sends ;m acknowledgment message (ACk) when

requires each node to maintain at all times the following two it is able to do so according to the rules explained in

invariances based on its setlotally stored variables details below (Section 111-B3c). Wheg is ready to send

the ACK, it first modifiesV (z; y;|y;), changes successor

if necessary (since the feasible successor set may change),

and then sends the ACK to; the ACK contains the se-

quence number of the corresponding Update::Inc message

and the new value oF (z; y;|y;). Note that in this case it

is essential that nodg changes successor, if necessary,

beforesending the ACK.

When nodex receives an ACK from its neighbay;,

it modifies V(z;y;|z) to Vi. At any time, nodex

) can choose any valu® (z;z|z) < V(z;yi|z),Vi =
1,2,...,n.

Thus, due to Invariance 2, a nodecan choose a succes-  ¢) Ryles for Sending Acknowledgment: The Two Modes:

sor only from its feasible successor sefy;|V (z;z[z) > e now describe how a node decides whether it can send an

V(yi; z|x)}. The two invariances reduce to the LFI conditiongck in response to an Update::inc message. There are two

if the value of a node is chosen to be its current cost-tgygsipilities: each possibility leads to a distinct bebawf

destination. _ the algorithm, which we refer to as modes.

3) Update Messages and Corresponding Rulébere are  g5n0se that nodg received an Update::Inc message from
two operations that a node needs to perform in responseye .. Recall that nodey; must increasé’ (z; ;|y:) before
network changes: (i) decreasing its value and (ii) increpgs sending an ACK. However, increasii; y;|y;) may remove
value. Both operations need notifying neighboring nqdemab node z from the feasible successor set at nage If node
the new value of the node. DIV uses two corresponding updai€is the only preferred node in the feasible successor set
messages, Update_::Dec and Update::Inc, and acknowledgrqﬁqqodeyi’ then nodey; may lose its path iV’ (z; y;|y:) is
(ACK) messages in response to Update:inc (no ACKS aj-reased without first increasirig(y;; y;|y:). In such a case
needed for Update::Dec). Both Update::Dec and Update::Ingqe yi has two options: (i) first increase (y:;vily:) and

contain the new value, (the destination), and a sequenge, increasé’ (z;;]y:) and send the ACK to node, or (ii)

numbef. The ACKs contain the sequence number and ﬂi‘ﬁcreasev(a:;yi|yi), send ACK to noder and then increase

value (and the destination) of the corresponding Update::lv(yi;y”yi). If a node uses option (i), we say that DIV is
message. operating in itsnormal modeif a node uses option (ii), we

4For simplicity, sequence numbers are assumed to be largegeren that  SAY that DIV is operat_lng 'mlj[emate_ mo‘?'e
sequence number rollover is not an issue. In the normal modeif., using option (i)), update requests

Invariance 1 The value of a node is not allowed to be more
than the value the node thinks is known to its neighbors. That
is,

V(z;zlx) < V(x;y;lx) for each neighboty;. Q)

Invariance 2 A nodex can choose one of its neighbaysas
a successor only if the value ¢fis less than the value of
as known by node; i.e., if nodey is the successor of node *°
x, then
V(z;z|x) > V(y; z|x).



propagate to upstream nodes in the same manner as in DUAE previous strategy is perhaps useful only in the casesewhe
and other previous works. If nodeis not the sole desirable counting-to-infinity is not a significant problem or a mitigen
successor of nodg;, then nodey; will immediately respond mechanism is in place.
to nodex’s Update::Inc message. Otherwise, nagewants d) Semantics for Handling Message Reorderif&p far
to increase its own value before sending an ACK. Nodee have been working under the implicit assumption that all
y; issues its own Update::Inc messageatb its neighbors, update messages and ACKs come to a node in order and
including nodex. The set of neighbors of nodg that do not without any loss. In practice both loss and reordering are
depend on nodg; for reaching the destinatidmased on their possible. Thus it is important to ensure the correctnesdéf D
current values(which includes noder), would immediately under possible packet reordering or packet losses.
respond to nodey; with an ACK. When nodey; receives  Towards this goal, we maintain the following two semantics
ACKs (in response to nodg;'s Update::Inc message) fromthat account for non-zero delays between origination of a
all its neighbors, it will send ACK to node (as a response to message at the sender and its reception at the receiver and
nodez's Update::Inc message). This process terminates dpessible reordering of messages and ACKs.
to acyclicity of the successor graph; when the nggdés a
“leaf” node (i.e., a node that is not a downstream node f&emantic 1 A node ignores an update message that comes
any node), all its neighbors will immediately respond with aout-of-order (.e., after a message that was sent later).
ACK.

At this point, we pause to briefly discuss a few basic aspe@emantic 2 A node ignores outstanding ACKs after issuing
of “protocol machinery” associated with waiting for ACKsan Update::Dec message.
at a node. We assume the existence of a separate “liveness”
protocol operating between neighbors and used to det
link/node failures. When waiting for ACKs from neighbors
nodex maintains a list of pending ACKs for each Update::In
message it is keeping track of. Nodes are removed from the lis
either upon receipt of the intended ACK or upon notificatio. Properties of DIV

of the failure of the liveness prOtOCO| to the node. A timer The two main properties of DIV are: (|) it prevents |00ps
is associated with pending ACKs and retransmission of tla@ every instant, and (||) it pre\/ents Counting_to_infin"my[he
Update::inc message is performed when the timer expirggrmal mode. In this section, we prove these propertiese Not
After a given number of unsuccessful retransmission attemphat even in the specific case where the value of a node is set to
the node declares its session to the neighbor failed iro#see jts current cost-to-destination, the proofs of DIV's prdjes
of the current status of the liveness protocol, and procé®dscannot be obtained from those for the LFI conditions since
re-initialize it. By following these simple rules, we canseme p|v operates without any assumption on packet reordering,
that the transmission of ACKs proceeds unimpeded evendglay or losses.
the presence of losses and node/link failures. 1) Loop-free Operation at Every InstanThe following is

Turning next to the alternate modee(, using option (i), the key proposition based on which our result follows.
we trade simpler and faster processing of ACKs for the risk of
having nodey; without a successor for a period of time (untiroposition 1 For any two neighboring nodes and y, we
it is allowed to increase its value). At a first glance, thisymaalways have
seem unwise. I—_|owever, if nodeorlglnatgd the yalue-lncrease V(zylz) < V(zyly) ©)
request in the first place because the link to its successsr wa
down (as opposed to only a finite cost change), then the old Proof: The proof is by contradiction. Suppose at time
path does not exist and the normal mode has no advantage 0 condition (3) is satisfied and at time= ¢4 condition
over the alternate mode in terms of maintainiagath. In (3) is violated for the first timel.e., at timet = ¢4, we have
fact, in the alternate mode, the downstream nodes get ACK$z;ylz) = Vi and V' (z;yly) = Vo with Vi > Vo, Thus, at
from their neighbors more quickly and thus can switch earlidme ¢4 eitherV (z;y|y) decreases ov' (z; y|x) increases. We
to a new successor (which hopefully has a valid path) thangansider these two cases separately.
the normal mode. Case (i):V(x;y|ly) decreases at timg, to V. Thus node

It is not necessary for all nodes to use the same mode (eitlieieceives an Update::Dec message from nods time .
normal or alternate); each node can make an independ@ftshown in Fig. 2(a), suppose that this message origindted a
selection. In particular, the following scheme can be used fodex at timet,. Therefore, at timeg, we haveV (z; y|z) =
choose the best mode: we include a bit in the Update::Ifo. But as per our assumptio/(z;ylz) = Vi > Vp at
message that indicates whether the request is in respormse tine t4. Thus, noder must receive an ACK from nodg that
loss of old path. Then an intuitive strategy is that nodesthise increases/ (x;y|z) during the periodio,t4) (cf. Fig. 2(a)).
normal mode if the old path exists, and use the alternate moaléPposet, denotes the time when node sent the update
if the old path does not exist. However, the normal mode doB¥ssage that triggered this ACK. We then have two cases:
have one significant advantage over the alternate mode: the t; < ty < t4: In this case, the Update::Inc message that
counting-to-infinity problem cannot arise in the normal raod triggered the ACK was outstanding &f; the time when
whereas there is no such guarantee in the alternate mode. Thu nodex sent an Update::Dec message. Thus nodeuld

se semantics are enforced using the embedded sequence
numbers in the update messages (recall that an ACK includes
I:he sequence number of the Update::Inc that triggered it).



N 7R
Yy T Y T /\4,4,/‘ (A’/\

Update::Dec 1t

@
Update::Deg e t @)
) \ g /
;

ty -
tg e T — A pu
e t4 Sty %) ()
tf ACK L4 ACK /
7/
. -~ Gy’
Time Time & -

@) (b)

Fig. 2. Two cases of possible message exchanges betweereigitbaring
nodes which would violate Eqg. (3). Both cases are shown tcob&adictory. Proof: The proof is again by contradiction. Suppose at
some instant of time there is a loop in the successor graph,
disregard this ACK due to Semantic 2, and therefore n@s shown in Fig. 3. Since the number of nodes in this loop
increaseV (z; y|x). is finite, there is a node in this loop whose value is smaller
o 1o < t2 < t4: In this case, the Update::Inc message thdtan or equal to the value of its successor. Without any loss
triggered the ACK was sent by node after the Up- of generality, letA,, be this node and lett; be its successor.
date::Dec message, but nogeeceived the Update::Inc Thus,
message before the Update::Dec message;the Up- V(A1; AL|Ay) > V(A AplAn). (4)
date::Dec message arrived nog@®ut of order and thus . L o )
nodey would disregard the Update::Dec message due Byt since noded; maintains the first invariance, we have

Semantic 1, and therefore not decre®3e:; y|y). V(A3 A1|Ay) < V(A Ag|Ay). (5)

We therefore have a contradiction in both the cases.

Case (ii):V (z; y|x) increases at time, to V4. Thus noder
receives an ACK from nodgat timet,. As shown in Fig. 2(b), V(Ap; AnlAn) > V(Ar; Ay Ay). (6)
suppose that this ACK originated at nogeat timet,. Thus, ) )
we haveV(z;yly) = Vi at time ¢,. But by assumption, But equations (4), (5) and (6)_ together. imply that
V(z;yly) = V, at time t4. Thus, nodey must receive an V(A1; An|Ar) > V(As; An|An), which contradicts Propo-
Update::Dec message during the periogl¢,), say at time Sition 1. _ u
t5. Suppose that node originated this Update::Dec message 2) Multiple Overlapping Updates and Packet Loss@$us
attimet; (cf. Fig. 2(b)). Moreover, suppose nodeoriginated 'S an attractive feature of DI\_/, which unI|k_e earlier g!go-
at timet, the Update::Inc message that triggered the ACK fithms [11-15] can handle multiple updates without addéio

receives from node at timet,. As before, we then have two efforts. A node can send multiple Update::Inc or Updatec:De
possibilities: messages in any order; a neighbor can postpone sending an

éCK for an arbitrary time—e.qg.,it can use a hold-down time—
and when replying with an ACK, it can chooses to respond
to only a subset of pending ACKs—even just one: none of
géese actions would cause a routing loop. We summarize this
important property in the following theorem.

Fig. 3. A possible loop in the successor graph.

Also since noded,, maintains the second invariance, we have

o ty < 11 < ty4: In this case, the Update::Inc message th
triggered the ACK was outstanding @t the time when
nodez sent an Update::Dec message. Thus nodeuld
disregard this ACK due to Semantic 2, and not increa
V(z;y|z) to V; at timet,.

t t t4: In this case, the Update::Inc message th . .
*f1<lto<ti4 P 98 tah orem 112 The correctness of DIV remains valid under

triggered the ACK was sent by node after the Up- : . . . :
date::Dec message, but noglgeceived the Update::inc arbitrary policies for handling multiple overlapping uptis.

message before the Update::Dec message;the Up- Thjs gives tremendous flexibility to a node in choosing vasio
date::Dec message arrived nogleut of order and thus policies for replying with ACKs to optimize different critie.
nodey would disregard the Update::Dec message due to  proof: Only Semantics 1 and 2 are used to prove
Semantic 1, and not decreaBex; y|y) to Vo at timets.  proposition 1, and the proof of Theorem 111.1 relies only on
We therefore again have a contradiction in both the cases.Proposition 1 and Invariances 1 and 2. Thus, it is sufficient
Thus we have shown that both case (i) and case (ii) leadttoensure that the Semantics and the Invariances remauh vali
contradictions. Hence, we conclude that it is not possible tinder multiple overlapping updates.
violate Eg. (3). [ ] However, it is easily seen that the Semantics are satisfied
Using Proposition 1, we now prove that DIV guarantees thby each node by using the sequence numbers of the messages,
at every instant, the successor grapé. (the graph formed by and the invariances depend only on the locally stored viasab
connecting each node to its successor by a directed edgeJlhsis they are never violated. ]
acyclic. Finally, DIV can also handle an arbitrary sequence of lost
packets in the sense that its correctness is never jeopdrdiz
Theorem IlIl.1 The successor graph created following DIV'df an Update::Dec message sent by nadé neighbory is
update algorithm is an acyclic graph at each instant. lost, thenV (x;y|z) is lowered (byz), but not V(z;y|y);



In particular, when the value of a node’s only successor’s
becomesx, although the node increases then its own value
to oo, it still maintains the old successor, and hence duss
become a root.

Assume now that after a network partitidhnodes become
roots, as shown in Fig. &(= 2; nodesA andB are the roots).
Following the network partition, nodes proceed to change
(increase) their values in response to this event and subséq
updates.

Fig. 4. Proof of avoidance of counting-to-infinity. Cla?m 1 An !ncrement in the value of a node corresponds to
an increase in the value of @ot node.

i.e., we haveV (z;ylz) < V(x;yly). But this still satisfies Proof: Suppose that node,, increases its value. This can
Proposition 1, hence does not jeopardize DIV’s correctnesappen only when the last successorgf z,,_; increased its

If an Update:iinc message sent by nodeto neighbor gjye, which in turn must mean that, , the last successor
y is lost, then noder cannot increase its value, but they ;. increased its value, and so on. Since there is no loop
invariances remains valid. Finally, if an ACK is lost, thenn the successor graph, the chain of implications must end at
V(z;yly) is increased (by), but notV (z; y[z); i.e.,we have 4 oot node;ry, which must increase its value. n
V(z;ylx) < V(z;yly). Again, this satisfies Proposition 1 and
DIV remains correct. We have already shown that Semantics dmma 1 If after a network partitionk nodes become roots;
and 2 handle arbitrary reordering and delay of messag@sdes in the network can increment their value at nidgnes.

Thus, we summarize these features in the following impartan _
property of DIV Proof: Let aroot-incrementvent be the event that a root

node increments its value. Claim 1 implies that the number

Theorem 111.3 The correctness of DIV remains valid undeff occurrences of value-increase events at any node cannot

arbitrary sequence of loss, reordering or delay of message§*ceed the total number of root increment events. We bound
the number of root-increment events.

3) Counting-to-Infinity: Shortest path algorithms represent Consider a root node. Since in DIV, a node with no
a very important class of routing algorithms. When used witieasible successors (a root) increments its value (cest-to
distance-vector style shortest path computation, DIV,ha t destination estimate) teo, a root node starts by issuing to all
normal mode, prevenisounting-to-infinity of its neighbors Update::Inc messages carrying its newevalu
Suppose a given destination becomes unreachable. With afiyso. Neighbors that do not rely om as their successor or
shortest-path computation algorithrayentuallythe cost-to- have another feasible successor will immediately send ACKs
destination estimate of all nodes separated from the dg&tin while others will originate their own Update::Inc messages
would reachoco. However, if nodes increment their cost-toAs discussed in Section 11I-B3c, this eventually results in
destination estimates by a finite amount at each step, tleen tlode > receiving ACKs from all its neighbors, and therefore
true cost-to-destination values are not reached in a finite-n increasing its own value tax, i.e., experiencing a root-
ber of steps. This is the counting-to-infinity problem whiclincrement event. There are two possible situations for node
slows down routing convergence. We show that counting-te-at this point: (i) all its neighbors have an infinite value) (i
infinity cannot happen when DIV is used in the normal modene or more of its neighbors have a finite value. Case (i) is
We assume that before the destination becomes unreachahlke,simpler and more favorable one in that all nodes in the
the network was in a steady state and link costs do not changennected component to which nodéelongs, converged to
DIV is used in normal mode. The value of each node is itgalizing that the destination is unreachable after récgithe
estimate of minimum cost-to-destination. Update::Inc message from node In other words, all nodes
With DIV, the successor graph of a given destination inn the connected component of nodencreased their value
duced by the forwarding decisions i&ected Acyclic Graph only once.
(DAG) (or a collection of DAGs if a network partition occurs) Case (ii) is more complex and the one we focus on next. In
at every instant. If a node is allowed to have only one successase (ii), because of the existence of one or more neighbors
that offers the minimum cost-to-destination, then the sasor with a finite value, root node can then choose any of these
graph will in fact be a tree (or a forest). However, there mayeighbors as its successor, and decrease its value to sdtae fin
be more than one neighboring nodes that offer the minimumumber (since the shortest path estimate will become finite)
cost-to-destination, and we allow the node to treat all efth However, at that point; is no longera root node; by choosing
as successors. a successor; merges with another DAG. Further, recall that
Let aroot node in the DAG be a node witho successor in the absence of additional failures a non-root node never
(for a destination). In the steady state, only the destimais becomes a root node in the normal mode of DIV. As a result, in
a root. Furthermore, in the normal mode of DIV, a non-roatase (ii) the root-increment event that root nadexperienced
node becomes a root node only after a network partigog.,, (when it was able to update its value 4o), was followed by
a link or a node failure, disconnects if from its last sucoess a decrease by one in the number of root nodes. Thus, in the



A(2) B(1) A(2) B(inf) a node to become pathless unless there is a failure. It is this
® o ®e—0O property that was used in proving Lemma 1.
Recall that a node can choose to use the normal mode or

([ o the alternate mode at will on ger updatebasis (i.e., for one
C C update it might choose the normal mode and for the next, it
(a) Initial topology. (b) Link failure. might use the alternate mode) without causing transiemtdoo
. A simple generalization of Lemma 1 shows that if nodes use
A(inf) B(3) A(4) B(inf) the alternate mode at moat times (for some finitel/), then
o ) ) counting-to-infinity does not occur.
)( 4) Frequency of Synchronous Updates: A Comparison with
o P DUAL: A synchronous update occurs when a node notifies all
C C its upstream neighbors about its impending change of status
(c) First update. (d) Second update. In the case of DUAL, the change of status is an increase in its

feasible distance; in DIV in normal mode, the change of statu
Fig. 5. Counting-to-infinity without loops. is an increase in its value. This similarity calls for askimigich

algorithm produces fewer synchronous updates under ointi
absence of additional failures, each root-increment esiéiner ~ Situations? This is an important question since synchrenou
ensures that nodes go through only one value increment (ceipgates are time and resource consuming and nodes are left
(i), or it reduces the number of root nodes in the successtith a non-optimal path—in the worst case, no path at al—
graph by one (case (ii)). Since there wéreroot nodes at for some period. We show that DIV improves on DUAL in
the beginning, there can at most beoot-increment events. this regard by issuing fewer synchronous updates.
The case of additional failures (following the first one) can For comparison, we need to fix a feasibility condition for
be handled based again on the discussion of Section I1I-B3JAL and an equivalent value assignment for DIV. Due to
i.e.,nodes expecting ACKs from a failed/unreachable neighb®pace constraint, we prove the claim only for SNC in DUAL
will remove the node from the list of pending ACKs, and ind the equivalent value assignment in DIV as the minimum
the failure creates another root node, the valué &f simply —Ccost-to-destination seen by a node from time= 0 (we
incremented to reflect the change. Hence, the lemma follovgglppress the phrase “from tinte= 0” from now on).

n

Finally, since a node can increment its value at most a fingdaim 2 Supposer andy are neighbors. If SNC is true at
number of times, we have throughy, then with DIV2 can choose; as a successor.

Proof: We need to show that SNC being truerahrough

Theorem 1114 Counting to infinity does not occur in DIV iny, implies V (z;z|z) > V(y;yly). From the definition of
the normal mode. SNC (cf. Section 11-B2), since SNC is satisfied, we have the

minimum cost-to-destination af, V'(x; z|z), is more than the
Remark: Guaranteeing an acyclic successor graph at evefyrrent cost-to-destination of. However, the current cost-to-
instant is not sufficient for preventing counting-to-infifti  destination ofy is clearly as large as the minimum cost-to-
Fig. 5 illustrates an example where DIV in alternate modgestination ofy, V (y; y|y); i.e., V(z;z|z) > V(y;yly). m
is used. Recall that in the alternate mode, upon receiving However, the other direction is clearly not true. For exampl
an Update::Inc message a node immediately replies with &ippose that/ (z; z|z) = 2, V(y;yly) = 1 and the current
ACK even though it may not have any other path to switch tgost-to-destination of is 3. Then SNC is not satisfied, but
Fig. 5(a) shows the initial configuration; the shortestapaists \ith DIV, z can still choosey as its successor. Since the
to the destination nod€’ are indicated in the parenthesesgondition of DIV is strictly more relaxed than SNC, and a

whereoo indicates no path When the link to the deStinatiOQynchronous update is issued 0n|y when the condition of DIV
goes down, nodeB detects it, and issues an Update:Ingor SNC for DUAL) is not satisfied, we have

message tol to set its value to 3. Nodd, upon receiving this

Update::Inc, sends ACK immediately. This ACK increment$heorem 111.5 DIV issues synchronous updates less fre-
the value of node3 to 3, but leaves nodd without any path. qguently than DUAL under SNC.

Then nodeA issues an Update::Inc message to ndgléo

increase its 4’s) value to 4. Upon receiving this Update::Inc Note that this cannot be remedied simply by replacing SNC
message, nodB immediately sends an ACK, that leaves nod#® DUAL with the conditions of DIV since without DIV'’s

B without path, but increments nodés value to 4. And the update mechanisms, these are not sufficient to guarantpe loo
cycle continues. Note that the successor graph at every tifnge operation.

is acyclic, a fact that did not prevent counting-to-infinitihhe

crucial feature of the normal mode is that it does not allow |V. RouTING UNDER GENERAL COST FUNCTIONS

5This remark applies to all loop-freedom algorithms, noyoBIV. One of the important advantages of DIV is that it is not tied

8Counting-to-infinity can be avoided in this very simple exenby using 0 @ particular cost func“‘?n when computing a routing. We
poison reverse, but the conclusion drawn from the exampreaires true. illustrate the benefits of this decoupling using a cost fiomct
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that instead of the standard shortest path distance fumcticemaining ones This is realized without the need for any
seeks to maximize the number of next-hops available at edluting update. Hence, for robustness purposes, it isatgsir
nodes for each destination. The availability of multiplextae to increase the feasible successor sets of nodes. Howlesse, t
hops ensures that the failure of any one link or neighbor dossts are not independent; for every neighboring nadasdy,

not impede a node’s ability to continue forwarding traffic teitherz € S(y) ory € S(x). IncreasingS(z) by incorporating

a destination. A failure results in the loss of at most one nex would reduceS(y); thus a trade-off exists. We explore one
hop to a destination, so that the node can continue forwgrdipossible global metric that captures this trade-off, ancebigp
packets on the remaining ones without waiting for new patlas algorithm that can be used with DIV to optimize this metric
to be computed. In other words, the routingabustto local in a distributed manner.

failures. This may be an appropriate objective in settingene

gn?:o-end !aterlncy is Stma" ;'"I'd bandwlidtréﬂentii?g.,?\z E Robustness Oriented Value Assignment Algorithm: DIV-R
in the previously mentioned large-scale ernet networks — .
b y ¢ \We model the network as a gragh= (N, E) with node

spanning entire metropolitan areas, which provided some of — . .
the early motivations for developing DIV. set N and edge sefr. For convenience, we defin& by

. . . removing the destination node froid. The essential idea is

We note that mechanisms to increase routing robustness . .

. i ; ) . to increase the size of the feasible successor (next-ho) se

i.e., the ability to continue forwarding packets in the presence . : S .
. . - . . . each node. The obvious choice of a global objective function

of failures while avoiding transient loops, is a topic thaish S(z), fails since the sum, which is the sum of all

and continues to receive significant attention in the acaderﬁ:‘wEN ’ '

community and in the industry through various standardinat directed edges, is always equ_al|i€5|. (Note that this implies
. that under a value-based routing, the average number of next
efforts, e.g., [24]. For example, a variety of schemes hav

been proposed.g.,[28-32], that offer “fast local re-routing” ﬁops per node is alwaygf| /). Therefore, we propose the

through pre-configured, backup forwarding strategies &nat following function:

to be used when a failure is detected. This wealth of propos- Obj 1: F = H |S(z)]| (7)
als targeting routing robustness to failures demonstrtttes zEN

importance of the topic, and further motivates exploringvhoObj

h biecti b lized usi h 1 is the product of the number of 1-hop paths (the
such an objective can be realized using DIV. In the rest sze of the feasible successor set) at the nodes, and we seek

this sgction, we detail one possible approach and highlight to maximize Obj 1 by choosing appropriate node values.
benefits of using DIV in that context. We conjecture that this optimization problem is NP-hard,
although we do not have a proof yet. Note ti@ihj 1 only
A. Robust Routing with DIV require; nodes to gxchange the size of their feasiblle ssmces
sets with 1-hop neighbors. Moreover, as we explain later, an

Recall that with DIV a value is assigned (per destinationjdividual node can determine the effect of its own action
to each node and a node is allowed to choose a neighipigrthe sense of increasing or decreasing a value) withopyt an
as a successor only if the value of the neighbor is less thagditional knowledge. Thugbj 1 is well suited for distributed
the node’s own value. DIV is designed to allow updates §plementation, as allowed by DIV.
these values, while preserving loop-free routing. Howetv&r  |ntuitively, maximizing Obj 1 attempts to “equalize” the
values themselves are not specified by DIV; as far as DRéasible successor set sizes. The arithmetic mean-géometr
is concerned, these values can be arbitrary. Thereforeesalmean inequality gives
could be chosen to realize some measure of robustness in N
the resulting routing scheme. Indeed, computing a routing F< (ﬁz |s(m)|) — (|E|/|N|)|N‘
is equivalent to assigning the values: Each value assignhmen velN
across nodes induces a DAG by defining an edge frofffiere the maximization occurs &(z) = |E|/|N] for all
neighboring noder to nodey if and only if V(z) > V(y). although topological restrictions usually will not allow
Conversely, each routing decision, upon convergenceralgtu achieving this optimum.
induces a value assignment: The successor graph induced byther objective functions are clearly possible. For exampl
the routing decisions, which is a DAG, has a topological,so@bi 2 below is another reasonable alternative: It considers the
i.e., using the order of a node in the topological sort as /M of next-hops available to all the neighbors of a node and
value. seeks to maximize their own sum.

Routing by means of yalue aSS|gnment naturz_ally Ier_1ds to Obj 2: G = Z Z IS(y)|
local robustness. For a given nodeavith a set of neighboring

) zeEN yeS(x)
nodesN (x), any node from thefeasible successor set

Obj 2 has the disadvantage of requiring nodes to know the
S(z) ={y e N(@)|V(z) > V(y)} values of all their 2-hop neighbors, but its more “global”
metric could possibly result in better solutions. Howen,
can be chosen as a successor, and the choice can be made on
a packet by packet basigithout creating Ioops. Thus. when "Clearly, failures do affect available resources, but thpaat is lessened
S h ltipl b he fail i f h, d by the availability of multiple alternatives. Note alsothizere is considerable
(z) has multiple members, the failure of one of them dogg,iyility in which and how many of these alternatives aredis— from all

not disrupt packet forwarding which can proceed using th@them being continuously used to using only one at a time.
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focus here is not on providing a comprehensive investigatio —
of robust routing solutions, but instead on demonstratirey t I DBE ]
benefits afforded by DIV’s ability to operate with a broad — /% /. %
range of cost or objective functions. Hence, we focu©bi1, I % Lo M% |

and describe next how a node can determine if an action on its

w

g
o

N

Average loop retention time (sec)

part would increase or decrea®bj 1. Such a determination L5
will then drive the updates that nodes send to each othegusin 1t
DIV to ultimately converge to an optimized robust routing o5l
solution (in the sense dDbj 1).
Observe thatS(x) depends only on the ordering of the val- 010 20 30 20 50 60 70 80 90
ues inthe se{V(y):y e N(z) Uz}. Let V(y1) < V(y2) < Number of Nodes

e < V() <o < V(Y (v € N(x)) and letrank(z)
be the rank ofl/(z) in this set. Supposeank(xz) = a and
after nodex changesV (z), new rank(x) = b. Then, under

Fig. 6. Mean loop-retention time. No loops are found with DUAr DIV.

the assumption that no changes in other nodes are made, we V. PERFORMANCEEVALUATION
have the following: Fob > o A. Performance of DIV in Shortest Path Routing
Frew (a,b) In this section, we consider three shortest paths algosthm
Foid DBF, DUAL (using SNC as its feasibility condition), and DIV
= (5@ +b-a)(|S(ar)l = 1) (1Sw) = 1)/ (using DBF to compute value updates), and compare their
(1S@)IS War1)] - [S(yw)) - (8) performance in terms of loop avoidafdcand convergence

time. The simulations are performed on random graphs with

Similarly, for a > b, fixed average degree of 5, but in order to generate a reasonabl

Frew (a,b) range of configurations, a number of other parameters are

Fog varied. Networks with sizes ranging from 10 to 90 nodes
= (IS@)|+b—a)(SWe_1)+1)---(|S(ys)| +1)/  are explored in increments of 10 nodes. For each network-

(IS@)ISWa1)| -~ |S(ys)]) , 9) size, 100 random graphs are generated. Link costs are drawn

from a bi-modal distribution: with probability 0.5 a link sb
where in both Egs. (8) and (95,.) denotesSoq(.), i.e., prior is uniformly distributed in [0,1]; and with probability 0 is
to the change of value at node Thus, a node determinesuniformly distributed in [0,100]. For each graph, 100 ramdo
the change in the global objective function utilizing onbgél link-cost changes are introduced, again drawn from the same
information (assuming its neighbors provide nadwith their bi-modal distribution. All three algorithms are run on theere
own S(.) values). graphs and sequences of changes. Processing time of each
Based on this, we propose a simple distributed heuristimessage is random: it is 2 secs with probability 0.0001, 260 m
DIV-R, that greedily seeks to maximiz@bj 1. DIV-R pro- with probability 0.05, and 10 ms otherwise.
ceeds as follows: If node decides to update its value, it starts Fig. 6 shows the average loop-retention time in seconds,
by sending messages to “lock” its 2-hop neighBofhen all Tioop—the time from when a routing loop is detected to the
nodesy € N(z), send|S(y)| to nodex, which determines time when again no routing loop exists—given that a loop is
how to change its value so as to maximig.w/Foi USINg formed with DBF, as the size of the graphs are varied. As
Egs. (8) and (9). Next, node notifies its neighbors of its expected, no loops were found with DUAL or DIV. As seen
new value as per the operation of DIV. Note that in order fan the figure, loops can be retained for a significant time. The
this to successfully conclude and avoid possible dead|ockigure supports the need for loop-prevention algorithmé ssc
this requires that DIV be used in the alternate mode. FinallBJUAL and DIV, by demonstrating that even in relatively small
node x sends out messages to “unlock” the locked nodasetworks, transient loops can last for non-negligible anteu
We remark that there is no restriction on the order of valusf time.
updates among the nodes and the update frequency becausgy. 7 shows average convergence time—the time from
the underlying DIV mechanism guarantees that no loop c@jhen a link cost changes to the time when no more update
ever form irrespective of the sequences of updates. messages are exchanged—of all three algorithms as the size
In Section V-B, we evaluate the performance of this alg@f the graphs are varied. The vertical bars show the standard
rithm and compare it to that of a “shortest path” algorithnyeviations. Both DIV and DUAL converge faster than the
where link weights have been selected (off-line) so as {@nilla DBF; however, DIV performs better, especially for
optimize Obj 1. The comparison to a shortest path algorithnarger graphs. This is because DIV’s conditions are satisfie
is aimed at illustrating the benefits afforded by DIV's aili more easily, and hence a synchronous update can be performed
to accommodate more general objective functions. faster (recall that a node with a feasible neighbor will yepl
immediately). This observation is supported by Table | weher

®Locking the two-hop neighbors is necessary so as to ensatésiy)l, \ye show the fraction of times the condition of DIV is satisfied
y € N(z), is kept constant when the heuristic is being executed. hate
this also assumes that nodeis itself not locked when it decides to update

its value. 90bviously, neither DUAL nor DIV should give rise to transidoops.
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given that SNC is not satisfied. As Table | shows, the fraction
becomes more than 80% for larger graphs. Fig. 8. Distribution of number of next-hops across nodes @gstinations
(50-node networks).

weights are randomly perturbed in order to let the search

escape from local maxima. Link weights are selected from the
In this section, we illustrate the benefits of using a valuget{l, 2,...,20} to balance computational complexity and the

assignment based routing over a shortest path routingnmsterquality of a solution.

of optimizing a robustness-oriented metric, namelpj 1

(Eq. (7)). To ensure fairness, in shortest path computstion

link weights are selected so as to optimi2éj 1. However,

B. Performance of DIV-R

TABLE Il
COMPARING AVERAGE NUMBER OF NEXT-HOPSACROSSTOPOLOGIES

note that in addition to optimizin@bj 1, the routing must also Average degref 3 5 8 12
satisfy the added constraint of being a shortest path based o Netgﬁ;';type 1R213 1F’é-3 ZRSNS 2F’|5-5 :3818 4F’(|)-8 6R'1\12 6F’1-2
the computed link weightS. SPF [1.39] 1.41| 1.96| 2.01| 2.51] 2.66] 3.68] 3.60

We simulate two types of topologies in our comparison:

(i) random topologies and (i) power-law topologies; both o, main comparison metric is the distribution (normalized
with varying sizes and numbers of links. Random topologigssiogram) of the number of next-hops realized across all
are generated by randomly connecting links to nodes Wify o5 anqd destinations. The results are presented for @ repr
equal probability. Power-law topologies are generatedgisigeniaiive 50-node network in Table Il (average only) and &ig
the preferential attachment model [33]. Connectivity is®&®d (| histogram) from which a number of basic conclusions
in all cases. For each combination of topology type ang,erqe First, Table I illustrates for both random (RN) and
network size, we generate 10 graph samples for which W&\ er jaw (PL) topologies and varying average node degrees
evaluate the performance of each algorithm. that imposing a shortest-path constraint does indeedtriesal
In DIV-R, node values are initialized to the minimum hoR,yer average number of next hops available across nodes and
counts to the destinations. At each step, a random node exgziinations. Moreover, the difference between DIV-R and a
cutes DIV-R, that emul_ates the dlstrlbuted operationaltens  gpr_pased solution grows with the average node degree (othe
are stopped when no improvement is detected for any nodg, neriments showed that it also grows with the network size,
The Shortest-Path-First (SPF) solution is computed usiBgnough less rapidly). This is in part due to DIV-R’s greate
a *blackbox optimization” approach as in [34]. Each set gfgyipjlity in exploiting all available neighbors unimpedidy
link weights, IW/, induces shortest paths and in turn evaluaigse shortest-path constraint. Note that some of this diffee
to a vector /(W) of F-values (according to Eq. (7)), 0N€cqyid he recouped by relaxing the shortest-path constraint
per destination. We consider a link weight settiig better ¢ ine SPF-pased solution and allowing a node to use any

than another link weight settingV> if F(Wi) > F(W2) peighbor as its next-hop, provided that this does not résult
lexicographically In other words, the optimization searcheg,qo possible formation of loops. This is akin the “variance”
for link weights that maximize the smalleBtvalue across all ,ncept of the EIGRP proposal that allows the selection of
destinations. The search for an “optimal” set of link weghtyey; hops amongll nodes in the set of feasible successors
is carried out for a total of 5000 iterations, whereFif fails computed by the DUAL algorithm.

to improve for 100 consecutive iterations, 10% of the Iink The more significant difference between the solutions pro-
duced by DIV-R and SPF lies in the underlyidigtributionsas
illustrated in Fig. 8, which reports the results for randomd a
power-law topologies with average node degrees of 5 and 8.

101t is precisely the need to use commibimk weightsacross destinations
that introduces dependencies that severely limits thetyalnif a solution to
yield good results foall destinations.
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