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Abstract

The sequential use of signaling pathways is essential for the guidance of pluripotent progen-

itors into diverse cell fates. Here, we show that Shp2 exclusively mediates FGF but not

PDGF signaling in the neural crest to control lacrimal gland development. In addition to pre-

venting p53-independent apoptosis and promoting the migration of Sox10-expressing neu-

ral crests, Shp2 is also required for expression of the homeodomain transcription factor

Alx4, which directly controls Fgf10 expression in the periocular mesenchyme that is neces-

sary for lacrimal gland induction. We show that Alx4 binds an Fgf10 intronic element con-

served in terrestrial but not aquatic animals, underlying the evolutionary emergence of the

lacrimal gland system in response to an airy environment. Inactivation of ALX4/Alx4 causes

lacrimal gland aplasia in both human and mouse. These results reveal a key role of Alx4 in

mediating FGF-Shp2-FGF signaling in the neural crest for lacrimal gland development.

Author summary

The dry eye disease caused by lacrimal gland dysgenesis is one of the most common ocular

ailments. In this study, we show that Shp2 mediates the sequential use of FGF signaling in

lacrimal gland development. Our study identifies Alx4 as a novel target of Shp2 signaling

and a causal gene for lacrimal gland aplasia in humans. Given this result, there may also

be a potential role for Alx4 in guiding pluripotent stem cells to produce lacrimal gland tis-

sue. Finally, our data reveals an Alx4-Fgf10 regulatory unit broadly conserved in the

diverse array of terrestrial animals from humans to reptiles, but not in aquatic animals

such as amphibians and fish, which sheds light on how the lacrimal gland arose as an evo-

lutionary innovation of terrestrial animals to adapt to their newfound exposure to an airy

environment.
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Introduction

The lacrimal gland plays an essential role in protecting the ocular surface by secreting the

aqueous components of the tear film. Defects associated with the lacrimal gland are the main

cause of dry eye disease, which is highly prevalent in the geriatric population [1]. Left

untreated, dry eye disease may progress from eye irritation and corneal scarring to eventual

vision loss. However, lacrimal gland dysfunction is currently incurable and the common treat-

ment option for the resulting dry eye pathology is the application of artificial tears that pro-

vides only temporary relief. Recent studies have shown that engraftment of lacrimal gland

germ can restore lacrimation in animal models, but the procurement of lacrimal gland cells

remains an unresolved challenge [2]. A better fundamental understanding of lacrimal gland

development may inform cell-based therapies to repair or regenerate the lacrimal gland, which

holds great promise for the treatment of dry eye disease [3].

The neural crest is a multipotent stem cell population that gives rise to many diverse tissues,

including craniofacial bones and cartilage, smooth muscle, neurons and ganglia of the periph-

eral nervous system, adipose cells and melanocytes [4, 5]. Upon induction at the neural plate

border, the neural crest undergoes an epithelial-to-mesenchymal transition to delaminate

from the dorsal neural tube. These cells then migrate to different regions of the embryo and

differentiate into distinct cell types, guided by both their origins along the anterior-posterior

axis and the signaling cues they are exposed to in their immediate environment [6]. Once at

their destination, neural crest cells closely interact with their host organs, influencing their pat-

terning and morphogenesis [7]. The cranial neural crest cells originating from the midbrain

are the source of the periocular mesenchyme, which expresses the chemoattractive signal of

Fgf10 to regulate lacrimal gland development [8, 9]. By binding to Fgfr2b and heparan sul-

phate proteoglycan co-receptors, Fgf10 induces the invasion and branching of the lacrimal

gland epithelium [8, 10, 11]. This essential role of Fgf10 in branching morphogenesis is con-

served in glandular organs that include the lung, prostate, and pancreas. Nonetheless, the con-

trol of Fgf10 expression in the neural crest derived tissues remains unknown.

In this study, we showed that FGF signaling mediated by the protein phosphatase Shp2 is

required for the proper patterning and differentiation of the neural crest-derived mesenchyme

to produce Fgf10. Genetic evidence further demonstrates that Shp2 is recruited by Frs2 to acti-

vate Ras-MAPK signaling downstream to Fgfr1 and Fgfr2 but not to Pdgfrα in the neural

crest. By differential gene expression analysis, we identified the homeodomain transcription

factor Alx4 as the key effector of Shp2 signaling to control the expression of Fgf10 in the perio-

cular mesenchyme. Importantly, the Alx4 binding sequence in the Fgf10gene locus is con-

served in land species from human to lizard, but not in aquatic animals such as frog and fish,

which provides a new genetic insight into how the lacrimal gland arose as an evolutionary

innovation of terrestrial animals to adapt to the dry environment. Alx4 conditional knockouts

disrupted lacrimal gland development in mouse models and a homozygous ALX4mutation

causes lacrimal gland aplasia in human. Our results reveal a FGF-Shp2-Alx4-Fgf10 axis in reg-

ulating neural crest and lacrimal gland development.

Results

Lacrimal gland development requires FGF but not PDGF signaling in the
neural crest

FGF signaling is important for development of the neural crest derived craniofacial structures

[12–18]. Using the neural crest specificWnt1-Cre, we observed that conditional knockout of

Fgfr1 resulted in significant craniofacial abnormalities, whereas deletion of Fgfr2did not

Alx4 controls lacrimal gland development
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exhibit any obvious effect (Fig 1A, 1C and 1E, arrows). Lacrimal gland development begins

with the invasion of an epithelial bud from the conjunctiva into the periocular mesenchyme at

embryonic day 14.5 (E14.5) (Fig 1B, arrowhead). In Fgfr1and Fgfr2 single mutants, lacrimal

gland development was mostly unaffected (Fig 1D and 1F, arrowheads). Combined deletion of

both Fgfr1and Fgfr2, however, abrogated lacrimal gland budding (Fig 1G and 1H, arrows),

indicating that Fgfr1 and Fgfr2 can compensate for each other in the neural crest during lacri-

mal gland development. Fgfr1ΔFrs and Fgfr2LR alleles encode the mutants Fgfr1 and Fgfr2 that

lack the docking site for the adaptor protein Frs2 [16, 19]. Although Fgfr2LR homozygous mice

were viable and fertile, the craniofacial and lacrimal gland mutant phenotypes were observed

in both theWnt1-Cre;Fgfr1 f/ΔFrs;Fgfr2 f/f andWnt1-Cre;Fgfr1 f/f;Fgfr2 f/LRmutants (Fig 1I–1L,

arrows). The essential role of Frs2 in the neural crest for lacrimal gland development was fur-

ther demonstrated inWnt1-Cre;Frs2 f/fmutants, which displayed a less severe craniofacial phe-

notype than Fgfrmutants, but a similar cessation of lacrimal gland budding (Fig 1M and 1N,

arrows). Finally, lacrimal gland development was also aborted inWnt1-Cre;Frs2 f/2F animals,

Fig 1. The neural crest specific ablation of Fgfr and Frs2 disrupted lacrimal gland development. (A-N) Lacrimal gland budding occurred in Fgfr1 and
Fgfr2 single, but not in double, mutants (A-H, arrowheads). A mutation of the Frs2 binding site on Fgfr1 (Fgfr1ΔFrs) or Fgfr2 (Fgfr2L/R), or the deletion of Frs2
altogether resulted in the disruption of lacrimal gland development (I-N, arrowheads). Note that the severity of the craniofacial phenotype does not always
correlate with the defects present in the lacrimal gland (compare C, D, M and N). Arrow: craniofacial abnormalities. Arrowheads: lacrimal gland primordia. e:
eye. (O-P) Although Pdgfrawas expressed in the periocular mesenchyme (O, arrow), its deletion in the neural crest did not affect lacrimal gland budding (P,
arrow). (Q) Quantification of lacrimal gland phenotype.

https://doi.org/10.1371/journal.pgen.1007047.g001
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which carried mutations in two tyrosine residues of Frs2 (Frs22F) required for the binding of

the Shp2 protein phosphatase (S1 Fig, n = 6) [20]. In contrast, although Pdgfrαwas expressed

in the periocular mesenchyme and required for craniofacial development, its neural crest spe-

cific knockout failed to impair lacrimal gland development (Fig 1O–1Q, arrows). These results

demonstrated that lacrimal gland development specifically requires FGF-Frs2-Shp2 signaling

in the neural crest.

Neural crest Shp2 regulates Fgf10 expression in the periocular
mesenchyme for lacrimal gland development

To investigate the potential downstream targets of neural crest FGF signaling occurring during

lacrimal gland development, we next generatedWnt1-Cre;Shp2 f/fmutants, which failed to

develop a lacrimal gland as expected (Fig 2A and 2B, dotted lines, n = 6). Consistent with the

idea that the neural crest is the main contributor of the periocular mesenchyme, immunostain-

ing confirmed that Shp2 protein was depleted in the periocular mesenchyme, but preserved in

the ectoderm-derived conjunctival epithelium (Fig 2C and 2D, arrows and dotted lines).

Although the epithelial cells maintained Pax6 and E-cadherin staining, there was no increase

in Col2a1 expression, a hallmark of the nascent lacrimal gland bud (Fig 2E–2H, dotted lines).

By contrast, the periocular mesenchyme expression of Col2a1 was preserved, suggesting that

the identity of these neural crest-derived cells was unchanged. TheWnt1-Cre transgene was

recently reported to cause ectopic expression ofWnt1 in the midbrain-hindbrain boundary

[21]. To ensure that this complication did not compromise our results, we used another neural

crest-specific deletor, Sox10-Cre, to ablate Shp2, which also resulted in the dysgenesis of the lac-

rimal gland (S2A and S2B Fig, arrows). Altogether, these results show that Shp2 signaling in

the neural crest is required for lacrimal gland budding in a non-cell autonomous manner.

The initial budding of the lacrimal gland requires the inductive signal of Fgf10 that ema-

nates from the periocular mesenchyme. In E13.5 control embryos, Fgf10was found to exist in

a ring-type pattern along the presumptive eyelid surrounding the eye (Fig 2I, arrowheads),

with the strongest signal occuring in the mesenchyme adjacent to the future lacrimal gland

bud (Fig 2I and 2K, arrows). In bothWnt1-Cre;Shp2 f/f and Sox10-Cre;Shp2f/fmutants, however,

Fgf10was absent in the entire periocular mesenchyme (Fig 2J and 2L, arrows and arrowheads,

and S2C and S2D Fig). As a result, ERK phosphorylation was maintained in the adjacent retina

but abolished in the conjunctival epithelium (Fig 2M and 2N, dotted lines), suggesting a spe-

cific loss of FGF signaling in the lacrimal gland primordia. This evidence was further sup-

ported by the observed down regulation of FGF signaling response genes, Etv4 and Etv5, in the

presumptive lacrimal gland epithelium (Fig 2O–2R, dotted lines). Considering the essential

role of Fgf10 signaling in inducing lacrimal gland budding, we concluded that the absence of

Fgf10expression accounted for the lacrimal gland aplasia seen in neural crest Shp2mutants.

Ras-MAPK signaling and ETS transcription factors are downstream
effectors of Shp2

FGF signaling is known to activate the Ras family of small GTPases, which play important

roles in cell proliferation, migration and differentiation. Previous studies have identified multi-

ple downstream targets of Ras, including Raf kinases, type I phosphoinositide (PI) 3-kinases,

Ral guanine nucleotide exchange factors, the Rac exchange factor Tiam1, and phospholipase

C3 [22]. Among these molecules, Raf kinases activate the mitogen-activated protein kinase

(MAPK) cascade that culminates with the phosphorylation of Mek kinases (Mek1 and 2) and

their direct Erk kinase targets (Erk1 and 2) [23]. At E10.5, ETS transcription factors Etv1, 4

and 5 were strongly expressed in tissues known to have active FGF signaling (Fig 3A, arrows).

Alx4 controls lacrimal gland development
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In bothWnt1-Cre;Shp2 f/f andWnt1-Cre; Mek1f/f;Mek2-/- embryos, these expression patterns

were significantly down regulated in the cranial neural crest-derived mesenchyme in the mid-

brain, branchial arches and nose (Fig 3A, arrowheads), supporting the claim that Shp2 and

Mek operate in the same signaling cascade leading to Etv1, 4, and 5 expression. Furthermore,

lacrimal gland development was never initiated after the genetic removal ofMek1/2 in the neu-

ral crest (Fig 3B, arrowhead, n = 8). Interestingly, however, a small lacrimal gland protrusion

was seen inWnt1-Cre; Erk1-/-;Erk2f/f embryos, suggesting that Mek may have additional key

targets other than Erk (Fig 3B, arrowhead, n = 2) that participate in budding morphogenesis.

Furthermore, by taking advantage of a conditional allele of oncogenic Kras (LSL-KrasG12D), we

showed that constitutively active Ras signaling in the neural crest rescued the Shp2 deficiency

during lacrimal gland budding (Fig 3B, arrow, n = 10), supporting the downstream role of

Ras-MAPK activation in the FGF-Shp2 signaling cascade in the neural crest [24–27].

Fig 2. Lacrimal gland budding requires Shp2 in the neural crest. (A-H)Wnt1-Cremediated ablation of Shp2
in the neural crest resulted in the complete loss of Shp2 staining within the periocular mesenchyme (C and D,
arrows). This consequently lead to the abrogation of the lacrimal gland buds that are normally present at E14.5
(A-D, dotted lines). The lacrimal gland primordia in Shp2mutants still expressed Pax6 and E-cadherin (E-F,
dotted lines), but failed to upregulate Col1a1 expression (G-H, dotted lines). (I-R) At E13.5, Fgf10 is normally
expressed in the periocular mesenchyme to induce pERK, Etv4 and Etv5 in the lacrimal gland bud, but these
downstream targets were all down regulated in the Shp2mutants. Arrow: Fgf10 expression near to the future
lacrimal gland bud. Arrowhead: Fgf10 expression in the eyelid mesenchyme. The lacrimal gland primordia were
outlined with dotted lines.

https://doi.org/10.1371/journal.pgen.1007047.g002
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The faithful expression of Etv1, 4 and 5 in response to Ras-MAPK activity prompted us to

investigate the functional significance of these three transcription factors. Surprisingly, even

the combined inactivation of Etv1/4/5 in the neural crest lineage failed to perturb lacrimal

gland development (Fig 3C, n = 8), suggesting that these genes may be compensated by other

ETS domain transcription factors that share similar binding specificity. To overcome this

genetic redundancy, we used a Cre-inducible transgene (R26-EtvEnR) to express Etv4 fused

with the Engrailed repressor domain, which acts as a dominant negative ETS transcription fac-

tor [28].Wnt1-Cre; R26-EtvEnR embryos not only exhibited the previously observed craniofa-

cial defect (Fig 3D, arrow), but also showed reduced elongation of the lacrimal gland (Fig 3D,

arrowheads, n = 8). This result suggests that ETS domain transcription factors are downstream

effectors of FGF-Shp2-Ras-MAPK signaling in neural crest development.

Lacrimal gland aplasia is not due to aberrant neural crest induction,
migration or cell death

FGF signaling has been implicated in the induction, proliferation, migration and differentia-

tion of neural crest cells [13, 29–32]. The periocular mesenchyme originates from the neural

tube in the midbrain, where active FGF signaling indicated by Etv5 expression coincides with

Fig 3. Shp2 regulates MAPK-Etv signaling in the neural crest. (A) FGF signaling target genes Etv1, Etv4 and Etv5were expressed in the midbrain-
hindbrain junction, branchial arches and nasal placode. These expressions patterns were significantly reduced by the deletions of Shp2 andMek1/2 in the
neural crest. Arrows point to Etv-expressing regions in the brain. (B) Lacrimal gland budding was lost inWnt1-Cre; Mek1f/f;Mek2-/- andWnt1-Cre; Erk1-/-;
Erk2f/fmutants, but rescued by the constitutive activation of Ras signaling inWnt1-Cre;Shp2f/f;LSL-KrasG12D embryos. Arrow: lacrimal gland primordia. (C)
Wnt1-Cremediated deletion of Etv1, 4 and 5 failed to disrupt lacrimal gland development. (D) Expression of the Etv4-Engrailed repressor (EnR) fusion protein
in the neural crest led to craniofacial defects (arrow) and reduced lacrimal gland budding (arrowheads).

https://doi.org/10.1371/journal.pgen.1007047.g003
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Fgf8 expression (Fig 4A, arrows). This suggests that Fgf8 may activate FGF signaling during

the induction of cranial neural crest cell progenitors. Considering that Fgf15 is also expressed

in the midbrain, we ablated Fgf8 in the midbrain-hindbrain junction using En1-Cre in the

Fgf15null background. As expected, both Fgf8 and Etv5midbrain expressions were absent in

En1-Cre;Fgf8f/f;Fgf15-/- embryos (Fig 4A, arrowheads), demonstrating a loss of FGF signaling.

Nevertheless, the lacrimal gland bud still developed normally in these mutants (Fig 4A, aster-

isks; n = 3), showing that FGF signaling at the induction of cranial neural crest cells is not

required for lacrimal gland development.

After induction at the dorsal neural tube, the neural crest progenitors express Sox10 as they

begin to migrate toward their final destination. At E10.5, although Sox10-positive neural crest

cells were present in the cranial mesenchyme inWnt1-Cre;Shp2 f/fmutants, both their number

and extent of migration were slightly reduced as compared to those in the control embryos

(Fig 4B, arrows), suggesting that the loss of Shp2 produces subtle defects in neural crest prolif-

eration and migration. This phenotype was reproduced inWnt1-Cre; Mek1f/f;Mek2-/- embryos,

but ameliorated inWnt1-Cre;Shp2 f/f;LSL-KrasG12D embryos (Fig 4B, arrowheads), supporting a

role for Shp2-Ras-MAPK signaling in post-inductive neural crest cells.

Previous studies in zebrafish suggested that Shp2 may have a MAPK-independent function

in preventing p53-mediated apoptosis in the neural crest [26]. Using lysotracker dye to stain

acidic lysosomes in cells undergoing apoptosis, we observed extensive cell death in the first

pharyngeal arch in E10.5 Shp2mutant embryos (Fig 4C, arrows). In sections, cleaved-caspase

3 staining also detected abnormal cell apoptosis in the periocular mesenchyme, although the

apoptotic regions were far removed from the conjunctiva (Fig 4C, arrowheads). We reasoned

that if the apoptosis induced by the Shp2 deletion was indeed dependent on p53, then the apo-

ptotic events may be avoided by the removal of p53. However, ablation of p53 in Shp2mutants

failed to prevent cell death in the first pharyngeal arch or to rescue any craniofacial phenotype

(Fig 4C, arrows and arrowheads). Further, in lacrimal gland development, budding morpho-

genesis was still aborted inWnt1-Cre; Shp2f/f;p53f/f embryos (Fig 4C, asterisks, n = 6). There-

fore, p53 was not responsible for either the neural crest cell death or the lacrimal gland aplasia

observed in Shp2mutants.

To determine whether these early onset neural crest defects affect periocular mesenchyme

development, we crossedWnt1-Cre mice with those containing the R26RCre reporter to fol-

low the fate of the neural crest cells. Interestingly, by the time of lacrimal gland budding at

E13.5, the periocular mesenchyme adjacent to the conjunctival epithelium was already occu-

pied by the neural crest derived cells in Shp2mutants (Fig 4D, arrows). Furthermore, the

expression of Pitx2 and Foxc1, two markers of the neural crest derived periocular mesen-

chyme, were similar in wild-type control and Shp2mutant eyes (Fig 4E, arrows). Therefore,

despite causing an initial delay in neural crest migration and abnormal apoptosis, Shp2 abla-

tion did not disrupt the occupancy of the periocular mesenchyme by the neural crest-derived

cells at the time of lacrimal gland budding. We thus concluded that the subtle neural crest

migration, survival and proliferation defects seen in Shp2mutants were unlikely to account for

the complete failure of lacrimal gland development.

Shp2 signaling regulates Alx1 and Alx4 expression in the periocular
mesenchyme

To determine the molecular basis of the lacrimal gland defect observed in Shp2mutants, we

isolated the E14.5 periocular mesenchyme via laser capture micro-dissection and subsequently

performed RNAseq analysis (Fig 5A). Among genes that were downregulated at least two folds

in Shp2mutants, the third and eighth most highly expressed transcription factors were Alx4

Alx4 controls lacrimal gland development
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Fig 4. Shp2 deletion did not prevent the neural crest from giving rise to the periocular mesenchyme. (A) In E10.5 En1-Cre;Fgf8f/f;Fgf15-/- embryos,
Fgf8was ablated in the midbrain-hindbrain junction, where FGF signaling response gene Etv5was also down regulated, indicating a loss of FGF signaling.
Nonetheless, lacrimal gland budded at E15.5 was unaffected. Arrow and arrowhead: Fgf8 and Etv5 expressions in the midbrain-hindbrain junction. Asterisks:
lacrimal gland bud. (B) The migrating neural crest marked by Sox10 expression was reduced inWnt1-Cre;Shp2f/f andWnt1-Cre; Mek1f/f;Mek2-/-mutants, but
rescued inWnt1-Cre;Shp2f/f;LSL-KrasG12D embryos. Arrow and arrowhead: Sox10 positive neural crest cells in the periocular mesenchyme. e: eye. (C)
Deletion of p53 in Shp2mutants failed to prevent aberrant apoptosis in the branchial arches and in the periocular mesenchyme shown by lysotracking (upper
panel) and cleaved caspase 3 staining (middle panel), respectively. Lacrimal gland budding was not rescued in the Shp2/p53 double mutants (bottom panel).
Arrow: lysotracker staining in the branchial arch. Arrowhead: apoptotic cells in the periocular mesenchyme. Asterisk: developing lacrimal gland bud. (D)
Lineage tracing by crossingWnt1-Cremice withR26R reporter mice showed that Shp2 ablation did not prevent neural crest cells from populating the
periocular mesenchyme after E13.5. Arrow: Xgal-stained neural crest cells. (E) Periocular mesenchymemarkers Pitx2 and Foxc1were unperturbed in Shp2
mutants.

https://doi.org/10.1371/journal.pgen.1007047.g004
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and Alx1, respectively (Fig 5B). These results were confirmed by a qPCR analysis of micro-dis-

sected tissues, which also showed significant reductions in Shp2 and Fgf10expressions as

expected (Fig 5C).

We next focused on Alx4 and Alx1 as downstream targets of Shp2 signaling. At both E10.5

and E11.5, Alx4 was widely expressed in the cranial mesenchyme surrounding the wild-type

eye, but the expression was moderately reduced in Shp2mutants (Fig 5D, arrows). At E12.5, a

more pronounced reduction of Alx4 expression was evident at the temporal side of the mutant

eye, where the lacrimal gland bud would have normally emerged. By E13.5, Alx4 expression

was absent in all areas of the periocular region except the dorsal side, but recovered in

Wnt1-Cre;Shp2 f/f;LSL-KrasG12D embryos (Fig 5D, arrowheads). Immunostaining on sections

further confirmed that Shp2 deletion led to a progressive down regulation of Alx4 in the perio-

cular mesenchyme, until it was entirely lost by E14.5 (Fig 5E, arrows). Similarly, Alx1 in con-

trol wild-type embryos was expressed just anterior to the elongating lacrimal gland bud at

E14.5, but this domain of Alx1 expression eventually vanished in Shp2mutant embryos (Fig

5E, arrowheads). These results demonstrate that the periocular expressions of both Alx1 and

Alx4 are regulated by Shp2 signaling.

Alx4 binds a terrestrially conserved Fgf10 genomic element to regulate
its expression in the lacrimal gland mesenchyme

The results above revealed a close resemblance of Alx1 and Alx4 expressions in the periocular

mesenchyme to that of Fgf10during embryonic development. To evaluate this further, we

examined their expression patterns in the neonatal lacrimal gland. At postnatal day 0 (P0),

Fgf10was detectable in the mesenchymal cells, whereas the FGF-inducible gene Etv5was

expressed in the adjacent ducts and acini, suggesting that FGF signaling remained active at

this stage (Fig 6A, arrows). As expected, both Alx1 and Alx4mRNA were also found in the lac-

rimal gland mesenchyme. Through immunostaining, we further demonstrated that the P3 lac-

rimal gland expressed the Alx4 protein, which was separated from both the epithelial marker

Pax6 and the myoepithelial marker SMA (Fig 6B). Finally, to trace the origin of these Alx4-ex-

pressing cells in the lacrimal gland, we crossedWnt1-Cre with an R26TdT (Ai14) reporter to

indelibly label the neural crest-derived cells with tdTomato fluorescence. We then confirmed

through immunostaining that Alx4 resided exclusively in the tdTomato-positive cells, demon-

strating that Alx4 persisted in the neural crest lineage throughout lacrimal gland development.

Based on the similarities observed between Alx1/4 and Fgf10expression patterns during lac-

rimal gland development, we hypothesized that Alx1 and Alx4 were direct regulators of Fgf10

transcription. Because formation of the lacrimal gland was an adaptation of terrestrial animals

to an airy environment, we searched the Fgf10 locus for regions that were evolutionarily con-

served from human to chicken but not in stickleback fish (Fig 6C). We next overlaid these

regions with DNase hypersensitive sites in a 3T3 fibroblast cell line identified by the ENCODE

project, because this cell line expressed both Alx4 and Fgf10at high levels [33]. Finally, we

screened these sequences using the Alx1/3/4 binding motif and identified a perfect match

within intron 1 of Fgf10 (Fig 6D). Interestingly, sequence alignment showed that this site was

evolutionarily conserved among reptiles that have the lacrimal gland, such as the lizard, but

not in Xenopus frog, which lacks one (Fig 6C) [34].

To ascertain whether this sequence was a bona fide Alx binding site, we performed chroma-

tin immunoprecipitation in 3T3 cells followed by qPCR using specific primers. Compared to

the IgG control, there was a ~3 fold enrichment of this putative Alx binding element in chro-

matins pulled down by the Alx4 antibody (Fig 6E). This was further validated in vivo by Alx4

chromatin immunoprecipitation using the lacrimal gland mesenchyme isolated from neonatal
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Fig 5. Identification of Alx genes downstream of Shp2 signaling in lacrimal gland development. (A) Schematic diagram
of laser capture microscopy to isolate the periocular mesenchyme for RNA-seq analysis. (B) Dot plot of genes downregulated at
least two folds in the Shp2mutants. The Alx1 and Alx4 genes are marked by arrows. (C) qRT-PCR confirmed the deletion of
Shp2 and down regulation of Fgf10, Alx1 and Alx4 in the laser captured periocular mesenchyme from Shp2mutants. Student’s t
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pups, which resulted in a ~11 fold enrichment. We next knocked down Alx1 and Alx4 using

siRNAs in cultured lacrimal gland mesenchymal cells (Fig 6F). Interestingly, Alx1 depletion

led to a modest reduction in Fgf10mRNA levels, but the effect was not statistically significant

(Fig 6G). In contrast, the Alx4 knockdown decreased Fgf10 expression by ~50%, which was

not further reduced by the combined treatment of both Alx1 and Alx4 siRNAs. This result sug-

gested that Alx4 plays a more dominant role than Alx1 in regulating Fgf10within the lacrimal

gland mesenchyme.

Alx4 is required for lacrimal gland development in mouse and human

To determine the functional role of Alx4 in lacrimal gland development, we analyzed Alx4lst-J

mice, which carried a frameshift mutation that removed both the homeodomain and down-

stream CAR domain. Homozygous Alx4lst-J animals displayed craniofacial defects, dorsal alo-

pecia and preaxial polydactyly at birth as previously reported in Alx4 knockouts [35, 36]. At

E14.5, Alx4lst-J homozygous embryos maintained normal expression levels of Connexin43 and

Col2a1 in the periocular mesenchyme, but the domain of Alx1 expression was more restricted

(Fig 7A, arrows). Importantly, there was a drastic reduction of Fgf10adjacent to the lacrimal

gland bud, accompanied by a downregulation of FGF-target genes Etv4 and Etv5 in the lacri-

mal gland epithelium (Fig 7A, dotted lines). At E16.5, histology and immunostaining revealed

a complete loss of Alx4 expression in the periocular mesenchyme and a much shorter Pax6-ex-

pressing lacrimal gland bud, characterized by reduced phospho-Histone H3 (pHH3) and

increasing TUNEL signal (Fig 7B, dotted lines). By P1, no lacrimal gland was detectable by

Carmine staining in Alx4lst-J homozygous pups (Fig 7B, black arrows). These results demon-

strated that inactivation of Alx4markedly disrupted Fgf10 expression and downstream FGF

signaling, affected cell proliferation and survival, and ultimately caused a failure of lacrimal

gland development.

In human, ALX4 loss-of-function mutations underlie autosomal recessive frontonasal dys-

plasia 2 syndrome, characterized by skull defects, wide nasal bridge, notched nares, depressed

nasal tip, hypertelorism and alopecia (OMIM 613451). We reanalyzed one patient carrying a

homozygous c.503delC mutation in exon 2 of the ALX4 gene, which resulted in the truncation

of the homeobox (HD) and C-terminal OAR domains [37]. MRI imaging in that patient

revealed a bilateral absence of lacrimal glands (Fig 7C, arrows). The patient lacked tearing and

experienced irritable eyes and multiple episodes of eye infection since birth. This finding is

consistent with the role of ALX4 in human lacrimal gland formation.

Discussion

In this study, we show that FGF signaling in the neural crest is required for Fgf10production

within the periocular mesenchyme, thereby triggering a second round of FGF signaling in the

conjunctival epithelium to form the lacrimal gland (Fig 7D). This is mediated by Frs2 and

Shp2, which together activate the Ras-MAPK pathway to control the survival, migration and

differentiation of the cranial neural crest cells. The downstream effector of Shp2 signaling in

the periocular mesenchyme is the homeodomain transcription factor Alx4, which binds a

test: *P<0.001, n = 3. (D) Shp2 deletion reduced Alx4 expression in the cranial mesenchyme, especially at the periocular region
next to the future lacrimal gland at E13.5, which was ameliorated inWnt1-Cre;Shp2f/f;LSL-KrasG12D embryos. Arrow: Alx4
expression in the cranial mesenchyme at E10.5 and E11.5. Arrowhead: Alx4 expression in the periocular mesenchyme at E12.5
and E13.5. (E) In Shp2mutants, Alx4 was progressively reduced in the periocular mesenchyme adjacent to the conjunctival
epithelium from E12.5 to E13.5. By E14.5, both Alx1 and Alx4 were lost. Arrow: Alx4 immunostaining in the periocular
mesenchyme. Arrowhead: Alx1 expression surrounding the lacrimal gland bud. Lacrimal gland primordia are outlined in dotted
lines.

https://doi.org/10.1371/journal.pgen.1007047.g005
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terrestrially conserved element to regulate Fgf10expression in the periocular mesenchyme,

reflecting the evolutionary history of the lacrimal gland. Our results highlight the sequential

use of FGF signaling in neural crest development and reveal the etiology of lacrimal insuffi-

ciency in an ALX4 patient.

RASopathies represent a spectrum of congenital abnormalities caused by aberrant Ras-

MAPK signaling, but the particular RTK signaling pathway mediated by Ras in the normal

development of a specific tissue is not always clear [38, 39]. Using mouse genetics, we showed

that defective FGF signaling, and not PDGF signaling, in the neural crest reproduced the Shp2

conditional knockout phenotype seen in the lacrimal gland, thereby positioning FGF receptors

as the primary regulators of Shp2 function in the neural crest cells that partake in directing the

development of the lacrimal gland. Contrary to a previous study in zebrafish, we did not

observe that Shp2 acts upstream of p53 to suppress neural crest cell apoptosis [26]. This dis-

crepancy could be due to differences either intrinsic to the species used or to the experimental

approaches utilized as we took advantage of conditional knockouts in mice whereas the zebra-

fish study used a morpholinos knockdown. Instead, our genetic evidence demonstrates a fun-

damental role for the Shp2-Ras-Mek-Erk signaling cascade in neural crest survival and

development. MAPK is known to phosphorylate and induce the ETS domain transcription

factors, which act as downstream effectors in gene regulation. In particular, the expressions of

Pea3 family genes Etv1/4/5 correlate closely with FGF signaling activities during embryonic

development [10]. While deletion of all three Pea3 family genes in the neural crest failed to

produce any craniofacial or lacrimal gland defects, the overexpression of a dominant-negative

Etv4 lead to stunted lacrimal gland growth. This suggests that other members of the ETS

domain transcription factors, which recognize similar binding sites as Etv1/4/5, can play

redundant roles in transmitting FGF-MAPK signaling during neural crest development.

Our study demonstrates that Alx genes are the ultimate downstream effectors of Shp2 sig-

naling in the periocular mesenchyme. Alx4 shares both sequence and structural homologies of

paired-type homeodomain and C-terminal aristaless domain with two other transcription fac-

tors, Alx1 and Alx3. These proteins are present within the craniofacial mesenchyme and limb

bud, displaying overlapping expression patterns [40]. Members of this family of transcription

factors also exhibit functional redundancies as shown by genetic interactions in specific tissues.

Alx3 knockout mice were morphologically normal, but Alx3/4 double mutants displayed more

severe defects in the neural crest-derived craniofacial structures than the Alx4 knockout alone

[40]. Alx1 null mice showed craniofacial defects distinct from Alx4mutants and combined

deletion of both genes led to developmental abnormalities not found in either of the single

mutants, indicating that Alx1 and Alx4 have both unique and redundant roles [36]. The lacri-

mal gland mesenchyme expresses Alx1 and Alx4, but not Alx3. Although we did not observe a

synergistic effect of Alx1 and Alx4 in our in vitro experiments, it remains possible that Alx4/

Alx1 double knockout mice will present comparably severe lacrimal gland defects as the neural

crest Shp2mutant did.

Fig 6. Alx4 binds a terrestrially conserved element in the Fgf10 locus. (A) In new born pups, Alx1, Alx4 and Fgf10were
expressed in the lacrimal gland mesenchyme, whereas the FGF response gene Etv5was expressed in the epithelium. (B)
Alx4 was excluded from Pax6-positive epithelial cells and SMA-positive myoepithelial cells, but it was expressed in the neural
crest derived mesenchymal cells labeled byWnt1-Cre induced tdTomato fluorescence. (C) Sequence alignment identified an
Alx4 site within an intronic region of Fgf10, which was conserved from human to lizard, but not in species ranging from
Xenopus to fish. It resided next to DNase hypersensitivity peaks in NIH3T3 cells. (D) The Alx4 site in the Fgf10 locus matched
the Alx consensus sequence. (E) Chromatin immunoprecipitation showed that Alx4 directly bound the Fgf10 intronic site in
both lacrimal gland mesenchyme and NIH3T3 cells. Student’s t test: *P<0.01, n = 4; **P<0.001, n = 3. (F) Schematic diagram
of mesenchymal cell culture isolated from newborn pups and treatment with Alx siRNA. LGM: lacrimal gland mesenchyme.
LGE: lacrimal gland epithelium. (G) Alx4 siRNA significantly down regulated Fgf10 expression in lacrimal mesenchymal cells,
whereas additional application of Alx1 siRNA did not lead to further reduction. OneWay ANOVA: *P<0.01, **P<0.001, n = 3.

https://doi.org/10.1371/journal.pgen.1007047.g006
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The precise level of FGF10/Fgf10expression in the periocular mesenchyme is critical for lac-

rimal gland induction. This is clearly shown by aplasia of the lacrimal and salivary glands

(ALSG) and Lacrimo-auriculo-dento-digital (LADD) syndromes, in which even heterozygous

mutations in human FGF10 can lead to congenital lacrimal gland defects [41, 42]. Our study

has demonstrated that neural crest FGF signaling is required for Fgf10expression in the perio-

cular mesenchyme, but the ligand of the neural crest FGF signaling that leads to lacrimal gland

development remains an open question. It is unlikely to be the autocrine signaling of Fgf10,

because deletion of Fgfr2, the cognate receptor for Fgf10, in the neural crest only produced

minor defects in lacrimal gland development (Fig 1). In limb development, the mesenchyme-

derived Fgf10 signals the epithelium to induce Fgf8 and later Fgf4, Fgf9 and Fgf17, which in

turn act on Fgfr1 and Fgfr2 in the mesenchyme to maintain Fgf10 expression [43–45]. During

lung development, Fgfr1 and Fgfr2 in the mesenchyme respond to Fgf9 expressed by the lung

epithelium and mesothelium. This maintains the mesenchymal expression of Fgf10 that signals

back to the epithelium [46, 47]. Submandibular salivary gland development is yet another

example where the epithelium-mesenchyme interaction plays an important role. In this case,

Fgf10 in the mesenchyme originated from the cranial neural crest is modulated by ectoder-

mal-derived Fgf8 [48]. However, neither a systemic knockout of Fgf9nor deletion of Fgf8

using Cre transgenes specific to the midbrain-hindbrain junctiondisrupt lacrimal gland devel-

opment (S3 Fig and Fig 4A). Considering the complexity of the FGF family, further work is

needed to identify the relevant FGF ligands for the neural crest FGF signaling pathway during

lacrimal gland development.

The main and accessory lacrimal glands secrete the aqueous component of the tear film,

and thereby play an important role in maintaining the health and transparency of the ocular

surface. Because the tear is only necessary for land animals whose eyes are constantly exposed

to the air, the lacrimal gland emerged relatively late in the evolution of the vertebrate tetrapod.

Even among animals living both on land and in water, the lacrimal gland is only present in

reptiles such as the alligator, but not in amphibians such as the frog (S4 Fig). In this study, we

show that the Alx4 binding site in the Fgf10 locus lies within a region that’s conserved from

humans to alligators, but not in frogs or fish. This suggests that, although both Alx4 and Fgf10

arose in more primitive organisms, these two genes were most likely not functionally linked

until the emergence of the lacrimal gland in reptiles. Considering that Fgf10 lies at the top of

the genetic cascade for inducing branching morphogenesis in many glandular organs, this rep-

resents an example of evolution that coopts an existing genetic circuitry to develop new organs

that enable the adaptation to new environments. By showing that the Alx4-Fgf10 axis is con-

served from mouse to human, our study contributes to the understanding of the role of Alx4

in human neural crest cell and lacrimal gland development and points in the direction of gen-

erating the lacrimal gland from pluripotent stem cells.

Fig 7. Alx4 inactivation led to lacrimal gland aplasia in human andmouse. (A) In E14.5 Alx4 knockout embryos, Connexin43 and
Col2a1 expression remained in the periocular mesenchyme, whereas the Alx1 expression domain was reduced. Fgf10, Etv4 and Etv5
were significantly downregulated. Arrows: staining in the periocular mesenchyme. Lacrimal gland buds are outlined in dotted lines. (B)
E16.5 Alx4 null mutants merely displayed a rudimentary lacrimal gland shown by histology and Pax6 staining, while Alx4 immunostaining
was lost altogether. There was a reduction of pHH3 and an increase in TUNEL staining within the residual bud (Inserts showed
magnified region of lacrimal gland buds). At P1, carmine staining revealed an absence of the lacrimal gland in Alx4 null pups. Lacrimal
gland buds are outlined in dotted lines. (C) An MRI revealed the bilateral absence of the lacrimal gland in a patient carrying the c.503delC
mutation that removed the functional domains of ALX4. Lower panel showed enlarged region of the eye and arrows point to the lacrimal
gland. (D) Model of neural crest Shp2 signaling in lacrimal gland development. Shp2mediates FGF signaling in the developing neural
crest to activate Ras-MAPK signaling, which is required for Alx4 expression in the periocular mesenchyme. By binding to an intronic
element of Fgf10, Alx4 activates Fgf10 expression to induce lacrimal gland budding.

https://doi.org/10.1371/journal.pgen.1007047.g007
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Materials andmethods

Ethics statement

The animal experiments were approved by Columbia University Institutional Animal Care

and Use Committee (IACUC).

Mice

Mice carrying Erk1-/-, Erk2flox, Frs2αflox, Frs2α2F,Mek1flox,Mek2KO, Shp2flox alleles were bred

and genotyped as described [20, 49–52]. We obtained Etv1floxmice from Dr. Silvia Arber (Uni-

versity of Basel, Basel, Switzerland), Etv4-/- and Etv5floxmice from Dr. Xin Sun (University of

California at San Diego, San Diego, CA), En1-Cre and R26-EtvEnR from Dr. James Li (Univer-

sity of Connecticut Health Center, Farmington, CT), Fgf8flox from Dr. Suzanne Monsour (Uni-

versity of Utah, Salt Lake city, UT), Fgf15-/- from Dr. Steven Kliewer (UT Southwestern

Medical Center, Dallas, TX), Fgfr1ΔFrs from Dr. Raj Ladher (RIKEN Kobe Institute-Center for

Developmental Biology, Kobe, Japan), Fgfr2LR from Dr. Jacob V.P. Eswarakumara (Yale Uni-

versity School of Medicine, New Haven, CT) and Fgf9-/- and Fgfr2flox from Dr. David Ornitz

(Washington University Medical School, St Louis, MO) [16, 19, 28, 53–58]. LSL-KrasG12Dmice

was obtained from the Mouse Models of Human Cancers Consortium (MMHCC) Repository

at National Cancer Institute [59]. Alx4lst-J (Stock No: 000221), Fgfr1flox (Stock No: 007671),

p53flox (Stock No: 008462), Pdgfrαflox (Stock No: 006492), R26R (Stock No: 003474), R26RTdT

(Ai14, Stock No: 007914), Sox10-Cre (Stock No: 025807) andWnt1-Cre (Stock No: 009107)

mice were obtained from Jackson Laboratory [16, 40, 60–64]. Animals were maintained on

mixed genetic background.Wnt1-Cre or Shp2flox only mice did not display any lacrimal gland

phenotypes and were used as controls.

Histology and immunohistochemistry

Histology, carmine staining, TUNEL assays and immunohistochemistry are performed as pre-

viously described [11, 65]. The following primary antibodies were used: Alx4 (sc-33643, Santa

Cruz Biotechnology), E-cadherin (U3254, Sigma, St Louis, Missouri), Cleaved-caspase 3

(#9664, Cell signaling Technology), Col2a1 (ab34712, Abcam), Connexin43 (#3512, Cell sig-

naling Technology), pHH-3 (#06–570, Millipore), Pax6 (PRB-278P, Covance, Berkeley, CA,

USA), RFP (#600-401-379, Rockland), α-SMA (#C6198, Sigma-Aldrich).

X-gal staining

E13.5 embryos were incubated in 4% PFA for 1 hr at 4˚C and washed twice in PBS containing

0.02% NP-40, 0.01% sodium deoxycholate and 2 μg/ml MgCl2 for 30 min each, followed by

overnight incubation in X-gal staining solution (1 mg/ml X-gal, 10 mM Potassium Ferricya-

nide, 10nM Potassium Ferrocyanide, 2 μg/ml MgCl2 in PBS) at 4˚C. The samples were then

cryopreserved in OCT (Sakura Finetek), sectioned at 10 μm thickness and counter-staining

with nuclear red.

RNA in situ hybridization

RNA in situ hybridization was performed as previously described [66]. The following probes

were used: Alx1 (from Dr. Terence Capellini, Harvard University, Boston, MA), Alx4 (from

Dr. Yang Chai, University of Southern California, Los Angeles, CA), Etv4, Etv5 (from Dr. Brid-

get Hogan, Duke University Medical Center, Durham, NC, USA), Foxc1 (from Dr Anthony

Firulli, Indiana University School of Medicine, Indianapolis, IN, USA), Fgf10 (for whole

mount) (from Dr. Suzanne Monsour, University of Utah, Salt Lake city, UT)), Fgf10 (for

Alx4 controls lacrimal gland development

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1007047 October 13, 2017 16 / 23

https://doi.org/10.1371/journal.pgen.1007047


sections)was generated from a full length cDNA clone (IMAGE: 6313081 Open Biosystems,

Huntsville, AL, USA), Pitx2 (from Dr. Valerie Dupé, CNRS, Strasbourg, France).

Laser capture micro-dissection and gene expression profiling

Freshly harvested embryos were frozen in the OCT, sectioned at 10μm thickness and trans-

ferred to PEN slides (Zeiss). Slides were dipped in 95% ethanol for 2 min to fix the samples

and stained with crystal violet stain (3% in ethanol) on ice. This was followed by dipping in

70% ethanol for 30–40 sec to remove the OCT and dehydration in 100% ethanol for 2 min.

The periocular mesenchymal tissue was micro-dissected using Laser capture microscope

(Zeiss AxioObserver.Z1 inverted microscope). 500 pg of RNA was isolated from each sample,

converted to cDNA and amplified using Nugen Ovation kit (Nugen) to obtain 2–3 μg cDNA,

which was then converted to cDNA library for RNA-sequencing analysis at core facility in

Columbia University. The RNAseq data is available at the GEO repository under accession

number GSE103402.

Lacrimal gland mesenchyme culture

Lacrimal glands mesenchymal culture was performed as described previously [67]. Briefly,

glands were isolated from P0-P2 pups and trypsinized (Gibco 1:250) at 4˚C for 1 hr. After neu-

tralizing trypsin, the mesenchyme was manually separated from the epithelium using fine nee-

dle and grown in the complete medium (DMEM+10% FBS with antibiotics) for 3 days before

passage. The primary mesenchymal cells were transfected with siRNA using Lipofectamine

RNAimax as previously described and harvested after 24–48 hrs [68]. For Alx1 and Alx4, the

results were confirmed using two different predesigned Silencer1 Select siRNAs from

Ambion (Life technologies).

Quantitative-PCR (qPCR)

Quantitative-PCR was performed as described [69]. Primer sequences used were, Alx4: 5’-

ACACATGGGCAGCCTGTTTG3’, 5-TGCTTGAGGTCTTGCGGTCT-3’, Alx1: 5’ GGAGG

AAGTGAGCAGAGGTG-3’, 5’- TTCAAATGCGTGTCCGTTGGT-3’, Fgf10: 5’ CAATGGCA

GGCAAATGTATG-3’, 5’- GGAGGAAGTGAGCAGAGGTG-3’, Gapdh: 5’-AGGTCGGTGT

GAACGGATTTG-3’, 5’-TGTAGACCATGTAGTTGAGGTCA-3’, Shp2 (exon 4): 5’- CTGAC

GGAGAAGGGCAAGCA-3’, 5’- CGCACGGAGAGAACGAAGTCT-3’.

Chromatin immunoprecipitation

The Chromatin Immunoprecipitation (ChIP) assays were performed in 3T3 fibroblasts cells

and primary lacrimal gland mesenchymal cells as described [70]. Briefly, the cells grown in

DMEM/10% FBS with antibiotics were crosslinked with 1% Formaldehyde for 8–10 min with

gentle shaking. This was followed by quenching with 125 mM glycine or 5 min, 3X washing

with cold PBS and addition of 1 ml of cold CHIP lysis buffer. After incubation for 10 min at

4˚C, the lysed cells were centrifuged at 3000 rpm for 3 min and the pellet were stored at -80˚C

until later use. The pellet was then resuspended in 1.2 ml of RIPA buffer, sonicated on ice for 8

min using probe sonicator (1 sec “on”, 2 sec “off”, power 3.5) and centrifuged at 13000 rpm for

15 min at 4˚C. The supernatant was precleared by adding 45 μl Protein G agarose beads (50%

slurry, Millipore) and incubated for 2 hrs at 4˚C on rotor. After centrifugation at 5000 rpm for

1 min, the supernatant was transferred to a fresh tube and the protein concentration was mea-

sured by Bradford assay. For pull down, 1 μg of antibodies were added per 1mg of protein for

overnight incubation at 4˚C, followed by addition of 20 μl agarose beads for another 1–2 hours
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incubation. After brief centrifugation, the beads were washed 1X with RIPA buffer at room

temperature, 3X with cold RIPA buffer, 2X with cold Wash buffer A andWash buffer B, 1X

with TE/150mMNaCl. Next, the samples were decrosslinked in Elution buffer containing

RNAase (40μg/ml) and Proteinase K (20μg/ml) for 1 hr at room temperature and 50˚C over-

night. After brief centrifugation, the supernatant was treated with equal vol. of Phenol/Chloro-

form and the DNA was precipitated with 2.5 vol. of 100% ethanol and Glycoblue for 1 hr at

-80˚C and dissolved in 20 μl sterile water for qPCR analysis. The antibodies used were IgG as

isotype control (sc-2028, Santa Cruz Biotechnology) and anti-Alx4 (sc-22066, Santa Cruz Bio-

technology). Buffer recipes: CHIP lysis buffer- 10mM Tris-Cl, pH8, 85mM KCl, 0.5% NP-40,

5nM EDTA, 0.25% Triton; RIPA- 1% Triton, 150mMNaCl, 0.1% SDS, 0.1% Na-Deoxycholate,

10mM Tris-Cl, pH8, 5mM EDTA; Wash buffer A- 50mMHEPES, pH7.9, 500mMNaCl, 1mM

EDTA, 1% Triton, 0.1% Na-deoxycholate, 0.1% SDS, Wash buffer B- 20mM Tris-Cl, pH8,

1mM EDTA, 250 mM LiCl, 0.5% NP-40, 0.5% Na-deoxycholate; Elution Buffer- 1% SDS, 30

mM Tris-Cl (pH8), 15mM EDTA, 200mMNaCl. Protease inhibitor cocktail is added prior to

use in all the buffers until ready to elute. The primers used for CHIP in intron 1 of Fgf10- F-

5’-GGTTGGAGCTTGTTGTGTGT-3’, R- 5’-GCTCTGCTAATAAAGGTCTCCC-3’.

Bioinformatics analysis

We retrieved 200 KB upstream and 100 KB downstream of Fgf10 transcription start site from

Mouse Genome assembly GRCm38/mm10 and analyzed this sequence for evolutionary con-

servation using UCSC genome browser. These sequences were also overlaid with the DNase-

hypersensitivity data from 3T3 cell line retrieved from ENCODE database and scanned for

Alx4 consensus binding sites based on TRANSFAC (release 2013.1) database using MATCH

algorithm, with minFP as parameter to identity sites with minimum false positives.

Supporting information

S1 Fig. Frs2-Shp2 interaction is required for lacrimal gland development. In theWnt1-Cre;

Frs2f/2Fmutant that disabled Shp2 binding to Frs2, lacrimal gland development was aborted at

E14.5 (n = 6).

(PDF)

S2 Fig. Shp2 deletion in the migratory neural crests disrupted lacrimal gland development.

(A-B) Sox10-Cremediated ablation of Shp2 in the migrating neural crest also abolished lacri-

mal gland budding at E14.5 (arrows). (C-D) Fgf10expression was lost in the periocular mesen-

chyme (arrowheads). Lacrimal gland primordia are outlined with dotted lines.

(PDF)

S3 Fig. Fgf9knockout did not affect lacrimal gland development. Fgf9-/- embryo has the lac-

rimal gland (outlined in yellow dotted line).

(PDF)

S4 Fig. Evolutionary conservation of the Alx4 site in the avian and reptile genome. The

Alx4 binding region within the Fgf10 locus is conserved in species ranging from the finch to

the lizard.

(PDF)
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