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New neurons incorporate into the granular cell layer of the dentate gyrus throughout

life. Neurogenesis is modulated by behavior and plays a major role in hippocampal

plasticity. Along with older mature neurons, new neurons structure the dentate gyrus, and

determine its function. Recent data suggest that the level of hippocampal neurogenesis

is substantial in the human brain, suggesting that neurogenesis may have important

implications for human cognition. In support of that, impaired neurogenesis compromises

hippocampal function and plays a role in cognitive deficits in Alzheimer’s disease mouse

models. We review current work suggesting that neuronal differentiation is defective in

Alzheimer’s disease, leading to dysfunction of the dentate gyrus. Additionally, alterations

in critical signals regulating neurogenesis, such as presenilin-1, Notch 1, soluble

amyloid precursor protein, CREB, and β-catenin underlie dysfunctional neurogenesis in

Alzheimer’s disease. Lastly, we discuss the detectability of neurogenesis in the live mouse

and human brain, as well as the therapeutic implications of enhancing neurogenesis for

the treatment of cognitive deficits and Alzheimer’s disease.
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INTRODUCTION

In early development neurons are rapidly produced to form the intricate complexity of the
brain and peripheral nervous system. Postnatally, the role of neurogenesis is shifted from brain
development into brain plasticity. From then on, neurogenesis takes place only in specific niches
in the adult brain, in the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus
and the subventricular zone (Kempermann et al., 2015). Recent evidence suggests substantial levels
of hippocampal neurogenesis in the human brain, estimating about 700 new neurons a day in
the DG (Spalding et al., 2013). Humans replace ∼35% of the DG, while rodents are estimated to
replace only 10% (Ninkovic andGotz, 2007; Imayoshi et al., 2008). Recent information also suggests
that in humans, the striatum may be a source of adult neurogenesis as well (Ernst et al., 2014).
The existence of adult neurogenesis in the human brain supports the notion that neurogenesis
has important functional significance and implications for cognitive disorders and their therapy
(Eriksson et al., 1998; Ninkovic and Gotz, 2007; Imayoshi et al., 2008; Lazarov and Marr, 2013;
Spalding et al., 2013).

The circuitry of the DG, of which new neurons are part, promotes several important
functions, namely, pattern separation, conjunctive encoding of multiple sensory output to the
dorsal CA3, facilitation of encoding of spatial information based on its output to the dorsal
CA3, and encoding of time in new memories (for review, Lazarov and Hollands, 2016).
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In support of the role of hippocampal neurogenesis in plasticity,
learning andmemory, increasing evidence suggests that cognitive
deficits, difficulty learning new information and memory loss,
as occurs in Alzheimer’s disease (AD), may be, at least in part,
due to impairments in adult neurogenesis (Demars et al., 2010,
2013; Lazarov and Marr, 2010; Lazarov et al., 2010). Some of
the foundation for the association between impairments in adult
hippocampal neurogenesis and cognitive deficits leading to AD
might be due to the fact that several key signals implicated in AD
play a role in regulation of hippocampal neurogenesis (Figure 1).

NEUROGENESIS IN AGING, DISEASE
STATE, AND COGNITIVE DYSFUNCTION

In the rodent brain, neurogenesis is dramatically decreased
during adulthood and further declines during aging (Demars
et al., 2013). Recent evidence suggests that in wild type mice
reduced proliferation of neural progenitor cells (NPCs) might
be one of the processes underlying this phenomenon (Demars
et al., 2013). However, other mechanisms, such as altered
signaling, increased quiescence of neural stem cells (NSCs)
and differentiation toward non-neuronal subtypes have been
proposed [see for example Hattiangady and Shetty, 2008]. In
humans, the dynamics are less clear. A recent study suggests
that there is a moderate decline in neurogenesis with aging
(Spalding et al., 2013). However, as of yet, it is unclear how this
decline impacts cognitive function in humans or whether similar
memory paradigms are regulated by adult neurogenesis as they
are in rodents. Observations in humans using high resolution
fMRI (Brickman et al., 2014) and cognitive studies (Toner et al.,
2009; Stark et al., 2010; Yassa et al., 2011; Brickman et al., 2012)
suggest that age-related memory loss begins in the DG. These
changes are believed to stem from a decline in the support of
the neurogenic niche as well as intrinsic characteristics of NSC
(for review Silva-Vargas et al., 2013). Many processes decline in
the aging brain along with a decrease in adult neurogenesis. For
example, in both rodents and humans the density of synaptic
contacts onto granular cells in the DG decreases with age (Flood
et al., 1996; Geinisman et al., 2001, 2004). It will be important
to determine whether age-dependent decline in neurogenesis
compromises the function of the DG and induces susceptibility
to memory impairments.

Deficits in adult neurogenesis with age may compromise the
structure and function of the entorhinal-hippocampal circuit.
This area is particularly vulnerable and heavily affected in AD,
the most common form of dementia. AD is characterized by
progressive memory loss and cognitive dysfunction (Baulac et al.,
2003). Rare, Familail AD (FAD) is caused by mutations in
the amyloid precursor protein (APP) and presenilin 1 and 2
(PS1,2) (Selkoe and Wolfe, 2007). However, the majority of AD
cases are sporadic and aging is the greatest risk factor for AD.
Research done in mouse models of FAD suggests that declining
neurogenesis is an early stage event that can be observed as early
as 2–3 months of age (Rodriguez et al., 2008; Demars et al.,
2010; Hamilton et al., 2010)(for review Lazarov and Marr, 2010,
2013). Nevertheless, it is important to note that some FADmouse

lines, mostly lines that overexpress APP, exhibit enhanced, rather
than reduced, neurogenesis (Jin et al., 2004; Chuang, 2010). As
discussed below, this might be attributed to the overexpression of
soluble APP (sAPP), a proliferation factor of NPCs (Demars et al.,
2011, 2013; Lazarov and Demars, 2012). The manifestations of
neurogenic impairments in FAD mice are diverse. They include
defective maturation/reduced rate of survival of new neurons
in the granular cell layer (GCL), compromised dendritic tree
branching (Sun et al., 2009; Bonds et al., 2015), imbalance of
GABAergic and glutamatergic input onto new granular neurons
(Sun et al., 2009), expression of the less potent proliferation factor
sAPPβ at the expense of sAPPα in the neurogenic niche (Demars
et al., 2011, 2013) and loss of γ-secretase function in NPCs and
new neurons (Gadadhar et al., 2011; Bonds et al., 2015).

Below, we highlight several key signaling factors that are
implicated in AD and were recently described to regulate
neurogenesis. These factors play a role in aging-dependent
behavior, circadian rhythm, inflammation, oxidative stress,
neurotrophic signaling, hormonal signaling, neurotransmission,
vascular signaling, and others. Thus, the multi- factorial effect
on neurogenesis exposes the complex relationship between
neurogenesis and the progression of AD pathology (for review
Lazarov and Marr, 2010, 2013; Lazarov et al., 2010).

ALTERATIONS IN MOLECULAR SIGNALS
DURING AGING AND COGNITIVE
DYSFUNCTION ACCOMPANYING
NEURODEGENERATIVE DISEASE

Presenillin-1 (PS1) is the catalytic core of γ-secretase, an aspartyl
protease, which cleaves numerous substrates, including APP
and Notch (De Strooper et al., 1998, 1999). Mutations in PS1
cause FAD, presumably due to loss of γ-secretase function
(Xia et al., 2015). A recent paper suggests that PS1 undergoes
a conformational change during aging and sporadic AD, and
this change may have downstream effects on the processing
of its substrates APP and Notch (Wahlster et al., 2013). PS1
regulates NPC differentiation in the adult brain (Gadadhar et al.,
2011) via β-catenin, Notch1 and CREB (Bonds et al., 2015).
Down regulation of PS1 in hippocampal NPCs compromises
the maturation of new neurons, manifested by deficits in their
dendritic tree branching, leading to learning andmemory deficits
(Bonds et al., 2015), suggesting that PS1-induced dysfunction of
neurogenesis can impair cognitive function in AD. Transgenic
expression of FAD-linked mutant variants of PS1 also impairs
neurogenesis and the neurogenic response to experience in an
enriched environment (EE) (Wang et al., 2004; Wen et al., 2004;
Chevallier et al., 2005; Choi et al., 2008).

Amyloid precursor protein (APP)- APP is a substrate of γ-
secretase. Misregulated cleavage of APP in the amyloidogenic
pathway is implicated in FAD. While the physiological role of
APP is yet to be fully understood, numerous studies suggest
a role in synaptic plasticity and neurogenesis (Lazarov and
Demars, 2012). The soluble form of APP (sAPPα) regulates
NPC proliferation and survival (Demars et al., 2011, 2013).
In fact, neurogenesis can be upregulated in the aging mouse
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FIGURE 1 | Common mechanisms of neurogenesis and Alzheimer’s disease and the implications for learning. (A) Signals that play a role in

neurogenesis, such as Notch-1, Wnt/β-catenin, CREB, sAPP, tau, and presenilin-1 are implicated in Alzheimer’s disease. (B) Following learning, changes in the

neurogenic niche include alterations in Notch and sAPP, increased expression of neurotrophins such as VEGF, BDNF, and IGF which enhance angiogenesis and

provide support for the neurogenic niche and lead to increased neurogenesis. Upregulation of CREB signaling by neural progenitor cells and neurons may promote

survival and maturation of NPCs. Increased dendritic branching of mature neurons and synaptic plasticity may be mediated by presenilin-1 and APP. The factors

mediating these processes are dysfunctional or compromised in Alzheimer’s disease, suggesting that defective neurogenesis may affect hippocampal function in

Alzheimer’s disease.

brain following injection of sAPPα into the SVZ (Demars et al.,
2013). While APP is extensively researched in regards to AD,
the regulation of APP with aging is less well studied. However,
there is some evidence that APP processingmay be altered during
aging, perhaps through dysregulation of the circadian system
(Dobrowolska et al., 2014). In FAD, there is upregulation of the
less potent sAPPβ counterpart at the expense of sAPPα, which
may compromise proliferation of NPCs (Demars et al., 2011,
2013). Interestingly, sAPPα plays an important role in migration
of NPC during brain development (Young-Pearse et al., 2007,
2008). Other metabolites of APP, such as AICD and Aβ have been
suggested to regulate neurogenesis (for review see Lazarov et al.,
2010), but more studies are warranted in order to establish their
role.

Tau- is a neuronal microtubule-associated protein, the
hyperphosphorylation and aggregation of which plays a key role
in AD pathology. Significantly, adult born neurons transiently
express the tau-3R isoform during development, overlapping
with DCX and NeuN co-expression in the DG (Bullmann
et al., 2007; Llorens-Martin et al., 2012). Tau phosphorylation
in the DG is also temporally and spatially linked to DCX and
neuroD expression with activated GSK-β believed to be the

main tau kinase in newborn neurons (Fuster-Matanzo et al.,
2009; Hong et al., 2010). The genomic based hTau mouse
model exhibited reduction in adult neurogenesis, as a result
of decreased proliferation, as early as 2 months of age before
the appearance of significant tau pathology (Komuro et al.,
2015), which may suggest that either impaired hippocampal
neurogenesis is an early hallmark of tau pathology in AD or
that there is an association between tau pathology and defective
neurogenesis in AD. For a comprehensive review about tau and
adult neurogenesis see (Fuster-Matanzo et al., 2012).

Notch 1- is a critical neurogenic signal and a substrate of
γ-secretase. The intracellular domain cleavage product, NICD,
translocates to the nucleus and drives transcription of factors
important for maintaining the NSC pool such as Hes and ErbB2
(for review Pierfelice et al., 2011). Notch signaling occurs when
the Notch receptor is activated by one of its ligands in the Jagged
or Delta-like family of proteins (for review Kopan and Ilagan,
2009). Following physical activity, NPC proliferation is increased
in a Notch-dependent manner in the SGZ of the DG, even in
aged mice (Lugert et al., 2010). In contrast, Notch signaling is
decreased with age, including in the hippocampus (Lugert et al.,
2010; Tseng et al., 2014). Down regulation of PS1 in hippocampal
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NPC results in reduced levels of NICD (Bonds et al., 2015). In
mature neurons Notch levels are low, and its function is not fully
elucidated (for review see Marathe and Alberi, 2015; Marathe
et al., 2015).

Wnt/β-catenin- are critical signaling factors in the regulation
of hippocampal neurogenesis (Chenn and Walsh, 2003; Sato
et al., 2004; Lie et al., 2005; Shimizu et al., 2008). Wnt3 is
expressed in the SGZ of the DG, and overexpression of Wnt3
is sufficient to increase neurogenesis (Lie et al., 2005). Wnts
are produced by astrocytes in the adult hippocampal niche
and support the proliferation and differentiation of neuronally-
restricted NPCs (Lie et al., 2005). Wnts regulate NSC self-
renewal by inactivating Glycogen synthase kinase 3 (GSK3) and
stabilizing β-catenin (Shimizu et al., 2008). Further, β-catenin
promotes NPC proliferation through the activation of LEF/TCF
transcription factors (Shimizu et al., 2008). Interestingly, nuclear
accumulated β-catenin also induces anti-neurogenic hes1 gene
expression through the enhancement of Notch1- and RBP-J-
mediated transcription. β-catenin can associate with the NICD,
and it is present in a nuclear protein-DNA complex containing
the hes1 gene promoter. The β-catenin–NICD complex is
efficiently formed when transcriptional coactivators p300 and
P/CAF are present. Also, significantly, following its cleavage, the
PS1CTF/NTF forms a complex with GSK3 and β-catenin (Tesco
et al., 1998; Tesco and Tanzi, 2000). PS1 has been implicated
as a negative regulator of the Wnt/β-catenin signaling pathway
(Xia et al., 2001). Wnt-independent interaction of β-catenin and
PS1 has also been described (Kang et al., 2002). Downregulation
of PS1 in adult NPCs compromises the phosphorylation of β-
catenin, which may affect β-catenin translocation to the nucleus,
leading to alterations in the normal development of NPC (Bonds
et al., 2015).

CREB- Cyclic-AMP Response Element Binding protein
(CREB) is a critical signaling factor for adult brain plasticity
and learning (for review Kandel, 2012). Activation of CREB
by phosphorylation on Ser133 (pCREB) is observed in the
hippocampus and cortical areas following learning and memory
tasks (for review Mayr and Montminy, 2001). Importantly,
NPCs, neuroblasts and immature neurons constitutively express
pCREB, suggesting that pCREB is a critical component of
neurogenesis. Indeed, CREB plays a role in neuronal maturation
and survival in hippocampal neurogenesis (for review Ge et al.,
2006; Jagasia et al., 2009; Herold et al., 2011; Merz et al., 2011).
In rodents, CREB signaling components in the hippocampus
decrease with age (Chung et al., 2002; Kudo et al., 2005; Porte
et al., 2008). However, these observations were made primarily
in mature neurons. Thus, the impact of aging on NPC-specific
CREB signaling remains unclear. Also unclear is how aging
causes a decrease in CREB signaling, although hypotheses suggest
that this could occur either by aging-dependent increased levels
of reactive oxygen species, or via decreased NMDA receptor
and BDNF expression, which are both important for CREB
activation (Chung et al., 2002; Kudo et al., 2005; Porte et al.,
2008; Ozgen et al., 2010). Interestingly, exposure to young
blood increased CREB activation and neurogenesis in the aged
hippocampus, suggesting that systemic factors that are altered
with aging may play an important role in CREB signaling and

neurogenesis in the brain (Villeda et al., 2011; Villeda and
Wyss-Coray, 2013). Impaired CREB signaling in AD has been
the subject of much study. CREB signaling is dysregulated in
both human AD and in mouse models of FAD (Vitolo et al.,
2002; Ma et al., 2007; Caccamo et al., 2010; Bartolotti et al.,
2015). In addition, down regulation of PS1 expression in NPCs
compromises pCREB expression, leading to defective maturation
of new neurons and induction of cognitive deficits (Bonds et al.,
2015). While the role of CREB signaling in memory via mature
neurons is well documented, the contribution of CREB signaling
in NPCs to memory is not fully elucidated, and separating out
the contribution of CREB to learning and memory via mature
neurons or via NPC function is technically challenging and
remains to be investigated (for review see Scott Bitner, 2012;
Ortega-Martinez, 2015). Likewise, most of the work on CREB
signaling in AD has focused on the transient activation in mature
neurons during the formation of long-termmemories, and so the
contribution of CREB signaling in NPC in the context of AD also
remains an open question.

NEUROGENESIS AS A BIOMARKER OF
COGNITIVE FUNCTION AND AS A
THERAPEUTIC APPROACH

While it is clear that hippocampal neurogenesis takes place in
the human brain and that the number of new neurons generated
is significant (Spalding et al., 2013), information concerning
the fate of neurogenesis in aging and cognitively impaired
individuals is scarce. Current techniques allow the examination
of neurogenesis postmortem. However, because of the dynamic
modulation neurogenesis can undergo following numerous
stimuli, such as progressive pathology, the development of
methodologies for the detection of neurogenesis in live
individuals will be crucial. Up to the present time, tools for the
detection of neurogenesis in live humans have been limited. The
level of 14C in genomic DNA has been used for the estimation
of date of birth of hippocampal neurons and their quantification
in postmortem tissue (Spalding et al., 2013). A previous study
suggests that adult neurogenesis can be specifically detected
by proton nuclear magnetic resonance spectroscopy (1H-MRS,
Manganas et al., 2007). However, this method was challenged by
Loewenbruck et al. (2011), thus, more studies are warranted for
the determination of the specificity, sensitivity and feasibility of
1H-MRS for the detection and quantification of neurogenesis.

The association between decline in neurogenesis and
cognitive deterioration during aging, coupled with disruption
in neurogenesis and cognitive dysfunction in FAD mouse
models suggests that enhancing neurogenesis may be a feasible
therapeutic approach (Figure 2). Successful attempts to enhance
neurogenesis in rodents have been described. For example
Sahay et al. used genetic manipulation of neurogenic pathways,
excising the pro-apoptotic gene Bax, to enhance survival of nestin
expressing cells (Sahay et al., 2011). They observed enhanced
performance in the DG-dependent pattern separation task,
where animals must distinguish between two similar contexts.
Wang et al. also enhanced cell survival, neuronal differentiation,
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FIGURE 2 | Therapeutic and translational potential of neurogenesis.

Examples of current and prospective methods for the modulation and

detection of neurogenesis. Means of enhancing neurogenesis include

noninvasive, environmental modulations like cognitively complex activities and

exercise, as well as molecular interventions like anti-depressants,

pro-neurogenic small molecules, hormones or neurotransmitters, or other

manipulations of the neurogenic pathways. While readouts of human

neurogenesis are typically done in postmortem tissue using radioactive

isotopes or analysis of neurogeneic cell markers, imaging techniques such as

fMRI, or blood biomarkers will offer non-invasive avenues to determine

neurogenesis during life.

and dendritic complexity in neurogenic regions through
activation of ERK5 map kinase (Wang et al., 2014). Following
this manipulation, animals had increased performance in spatial
learning and memory in the Morris Water Maze (MWM) task.
In MWM and the novel object recognition task they also probed
long-term memory and saw improvements as well, suggesting
that adult neurogenesis may be a key therapeutic target.

Given the evidence from genetic manipulation of
neurogenesis in rodents, it is important to consider how
neurogenesis could be modulated in humans. One approach
is the modulation of lifestyle factors, termed environmental
enrichment (EE). Evidence from rodents suggests that EE and
running are effective ways to enhance hippocampal plasticity

and neurogenesis in particular (Kempermann et al., 1997; van
Praag et al., 1999a,b). These behavioral interventions have been
found to enhance neurogenesis and ameliorate pathology in
AD mouse models (Lazarov et al., 2005; Lazarov and Larson,
2007; Hu et al., 2010, 2013). Significantly, studies have shown
that exercise can improve cognitive performance in the elderly
(Ahlskog et al., 2011). Brief increases in physical activity (6–12
months) upregulates hippocampal volume and improves both
episodic and spatial memory (Klusmann et al., 2010; Erickson
et al., 2011; Ruscheweyh et al., 2011). In rodents it has also
been shown that EE can increase many of the molecular factors

involved in neurogenesis, such as pCREB expression and CRE-
gene transcription in the hippocampus of wild-type mice (Hu
et al., 2013; Bartolotti et al., 2015). While this observation
was not specific to new neurons, it raises the possibility that
enhanced CREB signaling may be one mechanism by which
EE may increase the survival of new neurons. Nevertheless,
EE and running do not target neurogenesis specifically, but
have numerous effects on the hippocampus. Several studies
describe the manipulation of neurogenesis using small molecules
(Longo et al., 2006; Schneider et al., 2008; McNeish et al.,
2010; Pieper et al., 2010; Lange et al., 2011; MacMillan et al.,
2011; Neely et al., 2012; Petrik et al., 2012; Shi et al., 2013)
or pharmacological agents, such as SSRI’s or modulators of
neurogenic pathways [For example, see Warner-Schmidt and
Duman, 2007]. Some of these have been shown to enhance
neurogenesis and reverse memory deficits. However, to this
point the use of these compounds in AD mouse models has
not been explored. In future experiments it will be important
to consider the mechanism by which these molecules modulate
adult neurogenesis in light of the signaling cascades we have
described here. Particularly considering how these cascades
are altered in aging and AD, both in rodent models and in
humans.
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