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Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common cause for dementia.
There are many hypotheses about AD, including abnormal deposit of amyloid β (Aβ) protein in the extracellular
spaces of neurons, formation of twisted fibers of tau proteins inside neurons, cholinergic neuron damage,
inflammation, oxidative stress, etc., and many anti-AD drugs based on these hypotheses have been developed. In
this review, we will discuss the existing and emerging hypothesis and related therapies.
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Background
Alzheimer’s disease (AD) is a progressive neurodegener-
ative disorder, which is the most common cause for
dementia and imposes immense suffering on patients
and their families. According to the World Alzheimer
Report 2016, there are currently about 46.8 million
people suffering with AD worldwide. The ageing of
world population will further compound this problem
and lead to a steep increase in the number of AD
patients. The numbers of AD patients are expected to
double nearly every 20 years, and thereby the population
of AD will reach 74.7 million in 2030 and 131.5 million
in 2050 [1]. AD has become the third major cause of dis-
ability and death for the elderly, only after cardiovascular
and cerebrovascular diseases and malignant tumors.
However, only five drugs have been approved by the

FDA to treat AD over the past hundred years since the
first AD patient was diagnosed. Not only that, these
approved drugs including cholinesterase inhibitors, N-
methyl-D-aspartate (NMDA) receptor antagonist or
their combination usually provide temporary and incom-
plete symptomatic relief accompanied with severe side
effects. The marginal benefits were unable to slow the
progression of AD. Thus, developing drugs for more
effective AD treatment is in urgent need.

Current hypothesis about AD and anti-AD drug
development
AD is a complicated disease involving many factors. Due
to the complexity of human brains, the lack of reason-
able animal models and research tools, the detailed
pathogenesis of AD is still unclear so far. Many hypoth-
eses about AD have been developed, including amyloid
β (Aβ), Tau, cholinergic neuron damage and oxidative
stress, inflammation, etc. Thus, many efforts have been
done to develop anti-AD drugs based on these hypotheses.

Aβ cascade hypothesis
Extracellular deposits of Aβ peptides as senile plaques,
intraneuronal neurofibrillary tangles (NFTs), and large-
scale neuronal loss were the main pathological features
of AD. Thus, Aβ peptides have long been viewed as a
potential target for AD which dominated new drug re-
search during the past twenty years [2]. The most direct
strategy in anti-Aβ therapy is to reduce Aβ production
by targeting β- and γ-secretase [3]. Safety issues are the
overriding problem. For targeting γ-secretase, undesir-
able side effects are inevitable due to its physiological
substrates, eg. the Notch signaling protein [4–7], which
is essential in normal biological process. Similarily, tar-
geting β-secretase is also challenged for the side effects
such as blindness and the large catalytic pocket [8].
More importantly, in sporadic AD cases, the majority of
AD patients do not necessarily have over-producted
amyloid precursor protein. Besides, Aβ isoforms
could also serve as endogenous positive regulators
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for neurotransmitter release at hippocampal synapses
[9]. Thus, inhibiting Aβ production may encounter
many challenges.
Aβ clearance by immunotherapy is the alternative

choice. For active Aβ-immunotherapy, although the first
active AD vaccine (AN1792) developed by ELAN
showed some beneficial effects such as less cognitive de-
cline, it was suspended owing to serious side effect, or
meningoencephalitis [10–12]. Also, the passive immuno-
therapy did not do much better than active immuno-
therapy. Several antibodies targeting Aβ have failed in
clinical trials, including bapineuzumab (Pfizer/Johnson
& Johnson) [13, 14], Crenezumab (Genentech) [15, 16],
solanezumab (Eli Lilly) [16–18] and ponezumab
(Johnson & Johnson /Pfizer) [19–21]. In addition,
although passive immunotherapy could overcome some
problems of active immunotherapy, there were still
inevitable side effects such as amyloid-related imaging
abnormalities [22]. Likewise, the small molecule Aβ
binder scyllo-inositol [23] and tramiprosate [24–26] also
failed in clinical trials. These failures even cast more
doubts on the Aβ theory [27]. Actually, the strategy of
targeting only a single functional subregion of Aβ may
partly account for these failures [27, 28]. Furthermore,
immunotherapy may influence the human immune sys-
tem, which might cause beneficial or detrimental conse-
quence (such as side effects). However, every cloud has a
silver lining. A phase Ib trial of aducanumab (Biogen)
showed a positive correlation between brain Aβ levels
and disease exacerbation as measured by Clinical
Dementia Rating [29–31]. Even the failed phase III
EXPEDITION3 trial of solanezumab (Eli Lilly) still
demonstrated better performance in Clinical Dementia
Rating Sum of Boxes and beneficial impacts on Mini-
Mental State Examination and Activities of Daily Living
[17, 18, 32, 33]. Thus, despite all kinds of problems,
immunotherapy may still be the better approach to
modify the extent of neurodegeneration in AD cur-
rently [34].
In fact, the original amyloid cascade hypothesis was

that “Aβ is the causative agent in Alzheimer’s Disease
pathology, and that neurofibrillary tangles, cell loss, vas-
cular damage, and dementia follow as a direct result of
this deposition” [35]. After decades of research, although
the bulk of data still supports a role for Aβ as the pri-
mary initiator of the complex pathogenic cascade in AD,
more and more evidences indicate that Aβ acts as a trig-
ger in the early disease process and appears to be neces-
sary but not sufficient in the late stage of AD [36].
Especially, recent rapid progresses in understanding
on toxic amyloid assembly and Aβ metabolism
associated systemic abnormalities will provide fresh
impetus and new opportunities for this interesting
approach [37].

Tau hypothesis
Neurofibrillary tangles, another intracellular hallmark of
AD, are composed of tau. Tau is a microtubule-
associated protein working as scaffolding proteins that
are enriched in axons. In pathological conditions, tau
aggregation will impair axons of neurons and thus cause
neurodegeneration. After numerous failures of Aβ-
targeting drugs for AD, more interests are turning to
explore the therapeutic potential of targeting tau,
particularly as studies of biomarkers suggest that tau
pathology is more closely linked to the progression of
AD [38].
Tau undergoes many modifications, including phos-

phorylation, arginine monomethylation, lysine acetyl-
ation, lysine monomethylation, lysine dimethylation,
lysine ubiquitylation and serine.
O-linked N-acetylglucosamine (O-GlcNAc) modifica-

tion [39]. Under pathological conditions, increasing of
tau hyperphosphorylation will render the protein
aggregation-proned, reduce its affinity for microtubules,
and thereby influence neuronal plasticity. Consequently,
strategies to target tau involve blocking of tau aggrega-
tion, utilizing tau vaccinations, stabilizing microtubules,
manipulating kinases and phosphatases that govern tau
modifications. However, most of these efforts have failed
in clinical trials. For Tau aggregation blockers, TRx0237
failed to show treatment benefits in phase III trials [40].
As for vaccinations, tau-targeted active vaccines (ACI35
and AADvac-1) and passive vaccines (RG6100 and
ABBv-8E12) are currently in phase I and II clinical trials
[41, 42]. Intravenous immunoglobulin (IVIG), the only
passive vaccine in phase III clinical trials, failed to meet
the primary end points in patients with mild-to-
moderate AD [42]. Other tau-targeting strategies for
AD, including stabilizing microtubules and manipulating
kinases and phosphatases, have just been tested in pre-
clinical studies.
In general, tau-targeting therapies remain challenging

because of incomplete understanding of AD, lack of
robust and sensitive biomarkers for diagnosis and
response-monitoring, and the obstruction of blood-brain
barrier.

Inflammation hypothesis
Reactive gliosis and neuroinflammation are hallmarks of
AD. Microglia-related pathways were considered to be
central to AD risk and pathogenesis, as supported by
emerging genetic and transcriptomic studies [43–47].
Increasing evidence demonstrate that microglia emerges
as central players in AD. In very early stage, microglia,
TREM2 and complement system are responsible for
synaptic pruning [48, 49]. The processes of activity-
dependent and long-term synaptic plasticity are the com-
mon and fundamental cellular underpinning of learning
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and memory which may manifest as influence on long
term potential [50]. Following that, reactive microglia and
astrocytes will surround amyloid plaques and secrete
numerous pro-inflammatory cytokines. These events are
regarded as an early, prime mover in AD evolution. How-
ever, non-steroid anti-inflammatory drugs (NSAIDs) did
not show enough benefits in clinic. This is because that
the relationship between innate immunity and AD patho-
genesis is complex, and the immune response can be ei-
ther deleterious or beneficial depending on the context
[47, 51, 52]. However, the new observations that PD-1 im-
mune checkpoint blockade reduces the pathology of AD
and improves memory in mouse models of AD [53–55]
give us a direction of future researches.
The recent advances in our understanding of the

mechanism underlying microglia dysfunction in pruning,
regulating plasticity, and neurogenesis are opening up
possibilities for new opportunities of AD therapeutic
interventions and diagnosis [56, 57]. Targeting these
aberrant microglial functions and thereby returning
homeostasis may yield novel paradigms for AD therap-
ies. However, given the complexity and diverse functions
of microglia in health and disease, there is a crucial need
for new biomarkers reflecting the function of specific
microglias [52, 58].

Cholinergic and oxidative stress hypothesis
Acetylcholine (ACh) is an important neurotransmitter
used by cholinergic neurons, which has been involved in
critical physiological processes, such as attention, learn-
ing, memory, stress response, wakefulness and sleep, and
sensory information [59–63]. Cholinergic neurons dam-
age was considered to be a critical pathological change
that correlated with cognitive impairment in AD. Thus,
cholinergic hypothesis was firstly tested with cholinester-
ase inhibitors in AD treatment. Tacrine, a cholinesterase
inhibitor, was the first anti-AD drug available in clinic
[64–66] although it was withdrawn from the market in
2012 due to severe side effects. Although inhibiting
cholinesterase is a symptomatic relief treatment with
marginal benefits, it is currently the most available
clinical treatment which gives desperate AD patients a
glimmer of hope. For other neurotransmitter dysfunc-
tion, such as Dopamine and 5-hydroxytryptamine, there
are some studies about them, but not much as acetyl-
choline in AD.
Oxidative stress is considered to play an important

role in the pathogenesis of AD. Especially, the brain uti-
lizes more oxygen than other tissues and undergoes
mitochondrial respiration, which increases the potential
for ROS exposure. In fact, AD is highly associated with
cellular oxidative stress, including augmentation of pro-
tein oxidation, protein nitration, glycoloxidation and
lipid peroxidation as well as accumulation of Aβ, for Aβ

can also induce oxidative stress [67–73]. Thus, the
treatment with anti-oxidant compounds would provide
protection against oxidative stress and Aβ toxicity in
theory. However, oxidative stress is only a single feature
of AD, so antioxidant strategy was challenged for its
potency to stop the progression of AD and thus it is
proposed as a portion of combination therapy [74, 75].

Glucose hypometabolism
Glucose hypometabolism is the early pathogenic event
in the prodromal phase of AD, and associated with cog-
nitive and functional decline. Early therapeutic interven-
tion before the irreversible degeneration has become a
consensus in AD treatment. Thus, alleviation of glucose
hypometabolism was emerged as an attractive strategy of
AD treatment. However, most of these therapeutic strat-
egies are targeting mitochondria and bioenergetics,
which have shown promise at the preclinical stage but
without success in clinical trials [76, 77]. Although no
strategies are available to alleviate glucose hypometabo-
lism in clinical, glucose metabolism brain imaging such
as 18FDG-PET (Positron emision tomography with 2-
deoxy-2-fluorine-18-fluoro-D-glucose) has become a
valuable indicator for diagnosis of neurodegenerative
diseases that cause dementia, including AD [78].
Up to now, there’re no effective treatments for

changing the course of AD. Confronting these difficul-
ties, we should get deeper understandings about these
hypotheses, and meanwhile we should renovate our
knowledge about AD and develop new hypothesis.

New pathway to AD
AD is conventionally regarded as a central nervous sys-
tem (CNS) disorder. However, increasing experimental,
epidemiological and clinical evidences have suggested
that manifestations of AD extend beyond the brain.
Most notably, research over the past few years reveals
that the gut microbiome (GMB) has a profound impact
on the formation of the blood-brain barrier, myelination,
neurogenesis, and microglia maturation [79–84]. In
particular, results from germ-free animals and animals
exposed to pathogenic microbial infections, antibiotics,
probiotics, or fecal microbiota transplantation showed
that gut microbiota modulates many aspects of animal
behaviors, suggesting a role for the gut microbiota in
host cognition or AD-related pathogenesis [85–88]. The
underlying mechanisms of gut microbiota influencing
brain involve the communication through immune
system, the endocrine system, the vague nerve, and the
bacteria-derived metabolites.

Immune pathway
The intestinal mucosal lymphoid tissue contains 70% ~
80% of the immune cells in the whole body, and is
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considered to be the largest and most important human
immune organs. It is also the first line of host defense
against pathogens. The human gut contains a large, di-
verse and dynamic enteric microbiota, including more
than 100 trillion microorganisms from at least 1000
distinct species. There’s a complex relationship between
intestinal mucosal immune system and intestinal
microbiota. Thus, gut microbiota induced immuno-
modulation is emerging as an important pathway that
influences AD [89].
Gut microbiota can influence brain through immune

system in several ways. Firstly, intestinal microbiome
can induce cytokines secretion, which enter the circula-
tory system, pass through blood brain barrier, and dir-
ectly affect the brain function. For instance, perivascular
macrophages and cerebral small vessel epithelial cells
can receive the intestinal microbiome produced IL-1 sig-
nal and affect central nervous system. Also, gut microbes
can activate Toll-like receptors of the brain immune
cells (such as microglia) through microbes associated
molecular patterns (MAMP). MAMPs can either directly
bind to intestinal epithelial cells or infiltrate to the intes-
tine lamina propria to activate lymphocytes, promoting
the release of pro-inflammatory cytokines, which further
cause subsequent inflammation in brain. Secondly, gut
microbes can produce metabolites such as short-chain-
fatty acids (SCFAs), gamma-aminobutyric acid (GABA)
and 5-HT precursors, which could also travel to the
brain via circulatory systems or signal through intestinal
epithelials to produce cytokines or neurotransmitters
that activate vagus nerve. Thirdly, gut microbes can acti-
vate enteroendocrine cells to produce 5-HT, which affect
the brain through neuroimmune pathways.
In addition to changing the functions of the immune

system, such as through secretion of inflammatory fac-
tors or anti-inflammatory factors, intestinal microbiome
can also affect the development and composition of im-
mune system. For example, in germ-free mice, isolated
lymphoid follicles in gut associated lymphoid tissue are
unable to mature, and lymphocytes that are able to se-
crete IgA in the intestinal epithelium decreased [89–92].
For immune system in brain, the deletion of gut micro-
biota in germ-free mice have global influence on the cell
proportions and maturation of microglia in the brain,
and thus affect the properties and phenotype of micro-
glia, as compared to conventionally colonized controls
[93]. Similar results were obtained in antibiotic treated
mice. Other research also demonstrates that the number
of T regulatory cells and T helper lymphocytes (T helper
17, Th17) are significantly reduced in the germ free
mouse, indicating the regulatory effects of intestinal
microbiome on T cell composition, while microbiome
tansplant to germ free mice can modify these variations
and restore normal immune function [94, 95]. All these

modulations of gut microbiota may have direct and
indirect effects on AD development and progression.

Endocrine pathway and the vagus nerve
The gut is also the largest endocrine organ in the body.
Gut microbiota can regulate secretion of many hor-
mones from intestinal endocrine cells, such as cortico-
sterone and adrenal hormones, and thus establish the
information exchange between the intestines and the
brain. For example, the intestinal microbiome can affect
the secretion of serotonin and regulate brain emotional
activities [96, 97]; intestinal microbial metabolism can
also produce a variety of neurotransmitters, such as
dopamine, GABA, acetylcholine and melatonin, which
are transmitted to central nervous system through the
vagus nerve [98]. Besides transporting these signal sub-
stances, the vagus nerve itself plays an important role in
inflammation and depression [99]. The vagus nerve can
influence the gastrointestinal tract, orchestrate the com-
plex interactions between central and peripheral neural
control mechanisms [100]. The stimulation of vagus
nerve is able to regulate mood, and the immune system,
suggesting the therapeutic potential of vagus nerve
modulation to attenuate the pathophysiological changes
and restore homeostasis [98–103].

Bacteria-derived metabolites
Generation of essential nutrients for host physiology,
such as vitamins and other cofactors, is an important
physiological function of the gut microbiota [104]. The
metabolites of microbiome, such as SCFAs including
acetate, butyrate, and propionate, are able to modulate
peripheral and central pathologic processes [105]. For
example, butyrate is effective in reducing inflammation
and pain. Once in the brain, acetate is able to alter the
level of the neurotransmitters glutamate, glutamine, and
GABA, as well as increases anorectic neuropeptide ex-
pression [106]. In addition, the gut microbiota can secrete
large amounts of amyloids and lipopolysaccharides, which
might contribute to the modulation of signaling pathways,
the production of proinflammatory cytokines associated
with AD pathogenesis and Aβ deposition [107–109].
In fact, microbiota-gut-brain axis has been established

and a disturbed gut microbiota has been incriminated in
many neurodegenerative diseases in animal and transla-
tional models. In theory, a role for the microbiota-gut-
brain axis is highly plausible. However, the theoretical
basis for the use of microbiota-directed therapies in
neurodegenerative disorders still needs supports from
high-quality clinical trials [110]. To date, only a few
studies directly focused on the gut microbiota and AD
[111, 112], and studies on AD patients is particullarly
deficient. A recent research from human showed an in-
crease in the abundance of a pro-inflammatory GMB
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taxon and a reduction in the abundance of an anti-
inflammatory taxon are possibly associated with a
peripheral inflammatory state in patients with cognitive
impairment and brain amyloidosis. It is important for
the research of gut microbiota and AD. However, further
investigations are still necessary to explore the possible
causal relation between GMB-related inflammation and
amyloidosis [111]. The comprehensive understanding of
these underlying mechanisms may provide new insights
into these novel therapeutic strategies for AD. In
particular, based on the gut microbiota hypothesis,
Chinese traditional medicine and probiotic bacteria may
play a more important role in therapy [113].

Conclusions
Nowadays, new technologies are making it possible to
get to know enough pathologic details of disease. More
importantly, scientists are beginning to treat AD as a sys-
temic disease and they are paying more attention to the
correlation between brain and other organs [47, 89, 114].
Perhaps, for complicated disease such as AD, researches
and therapies should be based on the principle that com-
bined reductionism with holism, and great efforts should
be made to search the fundamental laws of AD by means
of multi-scale modeling and efficient numeric assessment.
Maybe, just like Chinese traditional medicine [115], com-
bination treatments or systematic therapy will be a final
way out.
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