
IEEE  TRANSACTIONS  ON SIGNAL PROCESSIh'G. VOL 41, '40 12. DECEMBER 1993 3245 

AM-FM Energy  Detection  and  Separation in Noise 
Using  Multiband  Energy  Operators 

Alan C. Bovik, Senior  Member, IEEE. Petros  Maragos, Senior  Member, IEEE, 
and  Thomas F. Quatieri, Senior  Member, IEEE 

Abstract-This paper develops a  multiband or wavelet ap- 
proach  for  capturing  the  AM-FM  components of modulated 
signals  immersed in noise. The  technique  utilizes  the  recently- 
popularized nonlinear  energy  operator Y (s) = (S)' - s s  to iso- 
late  the AM-FM energy,  and  an  energy  separation  algorithm 
(ESA) to  extract  the  instantaneous  amplitudes  and  frequencies. 
It is demonstrated  that  the  performance of the  energy  operator/ 
ESA approach is vastly improved if the  signal is first  filtered 
through a bank of bandpass  filters, and  at  each  instant  ana- 
lyzed (via I and  the ESA) using the  dominant local channel 
response.  Moreover, it is found  that  uniform  (worst-case)  per- 
formance  across  the  frequency  spectrum is attained by using  a 
constant-Q, or multiscale  wavelet-like  filter  bank. 

The  elementary  stochastic  properties of and of the ESA are 
developed first.  The  performance of P and  the ESA when ap- 
plied to bandpass  filtered  versions of an AM-FM signat-plus- 
noise combination is then  analyzed.  The  predicted  performance 
is greatly  improved by filtering, if the local signal  frequencies 
occur  in-hand.  These  observations  motivate  the  multiband  en- 
ergy  operator  and ESA approach,  ensuring  the  in-band  anal- 
ysis of local AM-FM energy.  In  particular,  the  multi-bands 
must  have  the  constant-Q or wavelet scaling  property to ensure 
uniform  performance  across  bands.  The  theoretical  predictions 
and  the  simulation  results  indicate  that  improved  practical 
strategies  are  feasible  for  tracking  and  identifying  AM-FM 
components  in  signals possessing pattern  coherencies  mani- 
fested  as local concentrations of frequencies. 

I .  INTRODUCTION 

M ETHODS for  the  accurate  and efficient extraction of 
amplitude  modulation  (AM)  and  frequency  modu- 

lation (FM)  information in signals of the form 

s ( t )  = a ( 0  cos [$ ( 0 3  (1) 
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are a topic of increased  recent  attention,  owing  to height- 
ened  interest in modulation  models  for  e.g.,  speech  signal 
production [ 11-[3] and  certain  structures in optical  images 
[4]. In ( l ) ,  s(r) has  both time-varying  amplitude a ( t )  and 
time-varying  instantaneous  frequency 

0 1  (0 = $( t )  (2) 
where = d+/dt .  Generally,  the  model (1) is most use- 
ful if a( t )  and w i ( t )  do not vary  too  rapidly, e .g . ,  in the 
bandlimited  sense [8]. 

The  simple  and  elegant  nonlinear signal operator 

\k((s) = (SI* - sf (3)  

developed by Teager [ 11, [2] and  systematically intro- 
duced by Kaiser  [5], [6], has been shown to  be highly 
effective for  detecting  AM  and  FM  modulation  informa- 
tion  in arbitrary  AM-FM  signals [8], in speech  signals 
[7]-[9] and  in its two-dimensional  form, in image  signals 
[ 101. Indeed, for AM-FM  signals of the  form (l), 

\k (s) = a2(t)w2 ( t )  

\k (S) = a'(t) w; ' ( t )  

with negligible  approximation  error  under  general  realis- 
tic conditions [7]-[9]. This  motivated  the energy  sepa- 
ration algorithm (ESA): 

&r) = 'k2(s) /'k (i) (4) 

&:(f) = \k(i)/'k((s) ( 5 )  

as estimates of the  squared  amplitude  envelope a2(t)  and 
squared instantaneous  frequency wf (t)? respectively.  Mar- 
agos,  Kaiser,  and  Quatieri [7]-[9] have analyzed  the  ef- 
ficacy  of (4) and (5) in detail  and  have  developed  bounds 
on  the absolute  errors I d - a1 and 1;; - wi 1 ,  which  under 
general  conditions  are  quite  small  [8],  [9].  Note  that  in 
the case of a monochromatic signal (a = constant, w, = 
constant), (4) and (5) are  exact. 

In the current  paper,  the  deterministic  approximation 
errors in (4) and (5) are  assumed  small.  Instead, the ef- 
fects of  noise and  multiscale filtering on  the  behavior of 
the  operator \k and  on  the  effectiveness of the  ESA  are 
considered.  The effects  of  significant noise  are very con- 
siderable-rendering \k unpredictable  and  the  ESA highly 
unreliable.  However,  the  performance of the  energy  op- 
erator/ESA  approach is  vastly improved if the signal  is 
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first filtered through a bank of bandpass  filters,  and  at  each 
instant analyzed  (via * and the  ESA) using the  dominant 
local  channel  response.  Optimal  performance is obtained 
when the  filters are sufficiently narrowband  (thus  increas- 
ing the  signal-to-noise  ratio),  the  signal  spectrum is sam- 
pled densely by the filter  set (ensuring a  high  signal  re- 
sponse in the  analyzing  channel),  and  importantly, by us- 
ing a multiscale  wavelet-like filter  having the  constant-Q 
property.  Satisfying  all of the  prescriptions  produces a 
multiband ESA  having a great  detal of noise  resistance. 

The  remainder of the  paper is organized as follows: In 
Section 11, the  basic  statistical  properties of the  energy 
operator (3) are  developed  under  the  assumption  that it is 
applied  to a signal that  is  a zero-mean,  wide-sense sta- 
tionary (WSS) Gaussian random  process.  These results are 
then  used  in Section 111, where  approximate  expressions 
are developed for  the statistics  of the output of the Teager- 
Kaiser  energy  operator \k when  applied  to an AM-FM  sig- 
nal of the  form (1) immersed in noise.  Section  IV  devel- 
ops  the  statistical  analysis of the  ESA (4) and (5) using 
the signal-plus-noise  approximation of Section 111. A key 
element of  these approximations is that  there  be an avail- 
able narrowband channel filter that  can effectively capture 
the local  frequency  structure of the noisy signal. In par- 
ticular,  as  the  analysis  window is  shifted over  the  signal, 
the local  frequencies may sweep  across  the  spectrum.  This 
implies  the necessity of a multiband filter implementa- 
tion,  where  multiple  bandpass filters densely  sample  the 
signal frequencies.  It is also  shown  that  consistent  per- 
formance is achieved  across  low,  high,  and  intermediate 
instantaneous  frequencies, if the filter bank  has  the  con- 
stant-Q  property.  These  themes  are  developed in Section 
V,  where  design  criteria  for  the  individual  bandpass fil- 
ters, and also  for  sampling  the  signal  spectrum with  mul- 
tiple bandpass filters, are  explored.  Section  VI  develops 
some  important  examples,  including  analysis of the  op- 
eration of the  multiband  ESA  applied  to  the  chirp  signal 
in white  noise.  Extensive  simulation  results  are  also  given 
in Section  VI? which demonstrate the dramatic  perfor- 
mance gains obtained using the  multiband  approach.  The 
paper  concludes in Section  VII. 

11. STATISTICS OF \k 
In this  section the  basic  statistical  (low-order  moment) 

properties  of the  Teager-Kaiser energy operator (3) ap- 
plied to a random  signal n ( t )  are  developed.  These  prop- 
erties  prove  to  be  fundamental in the  analysis of systems 
that  employ the  Teager-Kaiser  operator  in  the  presence of 
noise. 

Assume that n ( t )  is a zero-mean,  wide-sense stationary 
(WSS) Gaussian  random  process, with autocorrelation 
function R ( T )  and  power  spectral  density 

@(a) = R ( T )  e-’w7 dT. 

The  assumption of (at least)  wide-sense  stationarity  is 

S, 

necessary to  develop nearly all of the  properties  in a use- 
ful form;  without  the  assumption of Gaussianity,  the  anal- 
ysis likewise  becomes rapidly intractable.  The  assump- 
tion of  a zero-mean is not  critical,  since  the  analysis  is 
only  slightly more  complicated.  In  any  case,  nonzero- 
mean (and  nonstationary)  signals  expressed as the sum of 
a deterministic  signal  and a zero-mean WSS Gaussian 
process  are  considered  later. 

Since n( t )  is WSS Gaussian,  the  processes i z ( r )  and 
i i ( t )  are  also WSS Gaussian.  Moreover, t i ( ? )  is  statistically 
independent of both n ( t )  and ti ( t )  [ 1 13. Therefore,  the  en- 
ergy operator  output 

\ k (n )  = (tiy - nii (6) 

is the  sum of two  independent  processes.  Nevertheless, 
determining  the  probability  density  function of the  pro- 
cess (6) is  difficult, as it  is the  convolution of two  rather 
complicated  functions.  Letting 

Var [n] = R(O)  = 7; 

Var [ t i ]  = -R”’(o) = 7: 

Var [fi] = ~(~’(0) = 7; 

E [nii] = R(”(0) = -7: 

where E [ 0 1  is the  statistical  expectation,  Var [ a ]  is the 
variance,  and 

the probability density function of (h)2 is then  given  by 
[111 

( 2 ~ b y f ) - ” ~  exp [ - b / ( 2 y : ) ] ,  b > 0 
w,,(b) = (7) 

else 

while the probability  density  function of the  product nii is 
[121 

(8) 
for every b ,  where Coz = y&yi - 7: and KO( .) is the  mod- 
ified Bessel function of the  second kind and of order  zero. 
The density function of *(n) is then 

w@) = W l l ( b )  * W02(b) (9) 
where ‘* ’ denotes  linear  convolution. In general, (9) can- 
not be  expressed  in a closed  form,  although  the  numerical 
evaluation of probabilities  involving \k (n) using (7)-(9) 
is straightforward. 

Determining  the  moments of \k (n) is much  simpler.  In- 
deed,  we  immediately  have 

E [*(TI)] = -2R‘*’(0) = - w’@’(w) da 
T R  ‘ S  

= 27:. 
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Thus the  expectation of the  process \k ( n )  is twice the 
variance of the  process iz (r)-which is decidedly  positive. 
Not so agreeable  (although not surprising) is the fact that 
the  mean of \k (n)  increases  linearly with the  spectral  en- 
ergy  variance of n ( t ) .  For  a signal immersed in a signifi- 
cant  noise element,  this  may pose severe  problems unless 
steps  are taken to ameliorate  the  noise. 

The  autocorrelation  function R,  ,,,) (7) of \k ( n )  can be 
easily  found for  the  case of Gaussian n ( I )  by using  Isser- 
lis's  formula [I31 to  reduce  all  multiple-component  mo- 
ments: 

Rq(nj(7) = 4[R'21(0)]2 + 3[R'*'(7)I2 + 4R"'(7)R(3'(~) 

+ R (7) (7). (1 1) 

Hence from (10) and ( I  I )  

Var ["(n)] = 3[R("(0)l2 + R(O)R'"(O) 

+ 5, +(w) dw 5 w4@ (w)  dw 
R 

= 37': + 7;y;. (12) 

Thus, the variance of \k ( n )  also  increases  dramatically 
with the presence of higher  frequencies in the process n ( t ) ,  
Furthermore, the  inequality [ 111 

[R") (0)12 I R (0) (0) 
gives interesting bounds  on  the  variance 

4[R"'(0)I2 5 Var [ * (a ) ]  5 4R(0)R'4'(0) (13) 

or  equivalently 

E2 [P (n)] I Var [\k (n)] I 4 Var [n] Var [ti']. (14) 

Since  the  lower  bound in (13) is just E'  ["((n)], then, 
although  the  expectation of ' k ( n )  may be  positive, it is 
possible  that \ k (n )  may take  negative  values, which is 
highly undesirable.  Not  only  does  this  suggest difficulty 
in evaluating  the ESA of a  signal  immersed in noise, it 
also  complicates  the  interpretation of \k (n )  as energy. For 
these reasons, positivity  of the  output of \k has been  ex- 
plored  in detail in [8], where sufficient conditions for pos- 
itivity are given for  narrowband  AM-FM  signals having 
limited amounts of amplitudeifrequency  modulation,  and 
in [14], where necessary and sufficient conditions  are 
given in terms of local geometric  (convexity)  properties 
of the signal. 

Note that for an  ideal bandpass process (i.e.,  +(w) = 
0 whenever IwI [w,, w2]), the  following  bounds  [from 
(13),  (14)] hold 

In the extreme  case  of  a monochromatic process 

R ( T )  = A* cos ( ~ ~ 7 ) .  (15) 

it easily follows  that 

E [P (n)] = 2A'wi 

Var [Q (n ) ]  = E' [P (n)] = 4A4w:. 

Lastly, in evaluating  the ESA (4) and  (5)  the  energies 
of signal derivatives will also  be  required.  Thus,  the basic 
statistics  of \ k ( i z )  are of use.  From  the  preceding  discus- 
sion, it is  easily established  that 

E (iz)] = 2 ~ ' 4 )  (0) (16) 

and 

R q t n 1 ( 7 )  = 4[R'4'(0)]2 + 3[R'4'(7)]2 + 4R'"(7)R(3(7) 

+ R"' (7)  (7) 

hence, 

Var [Q(j2)] = 3[R'"(0)I2 + R(2'(0)R'6'(0). (17) 

The cross-correlation  properties of P ( n )  and P (ri) can  also 
be  developed with a little  effort. The  cross-correlation is 

E ['k(n)Q(ri)] = -8R'2'(0)R'4'(0), 

the  cross-covariance is 

COV [Q(n) ,  Q(ri)] = -8R'2'(0)R'4)(0), (18) 

and  the  correlation coefficient between P ( n )  and Q ( iz)  is 

(19) 

Thus,  for  the  case of monochromatic  process  (15), Q ( n )  
and *(ti) become  linearly  related 

P [*En), \E(iz)l = 1 .  (20) 

111. ENERGY OF BANDPASS-FILTERED AM-FM SIGNALS 
IN NOISE 

In this  section the effect  of additive  noise  on the re- 
sponse of the  Teager-Kaiser  energy  operator  applied  to 
an AM-FM signal of the  form (1) is analyzed. In partic- 
ular, the degree  to  which noise  effects can  be  ameliorated 
by bandpass filtering  of the  signal-plus-noise  process is 
studied.  Thus,  consider  the  noise-corrupted  AM-FM  sig- 
nal 

f ( r )  = s ( 0  + n(r) (21) 

where  the  deterministic signal s ( t )  is given by (1) and n (1) 
is a  zero-mean, WSS Gaussian  random  process with au- 
tocorrelation  function R(7) and  power  spectral  density 
9 (w) as in the  preceding  section. 

Rather  than  studying  the  behavior of the energy Q (f) 



3248 IEEE  TRANSACTIONS ON SIGNAL PROCESSING. VOL 41. NO. 12. DECEMBER 1993 

of the  combined  process  (21),  instead  consider a more 
general bandpass-filtered version of (21); \k (f) may be & 
analyzed as a  special case using limiting  arguments.  Thus, 5 - ( p + +  w,, 
define  the linear  bandpass filter with  impulse  response BPF 

g,(O = 2hU 0) sin (w,r), (22) I 1  

center  freqency w,, and  frequency  response 
Fig. 1 .  Diagram of basic  single-band  energy operator 

A. Filtered Signal Approximations 

where An important  approximation is made  throughout  this 
paper: if s ( t )  = a ( t )  cos [+(t)]  is input  to a linear  system 

(24) with frequency  response G,(w), then the  response s,(t) 1 
H,(w) = - H ( w / u ) ,  & can be  approximated by 

H ( w )  E L2(R) is the  frequency response  of  a low-pass fil- 
ter with impulse  response h :  R + R ,  and u > 0 is  a  pa- 
rameter  that  scales  bandwidth  and  center  frequency. It is 
also  assumed  that h (t) is  even-symmetric, so that 

G,(O) = 0. (25) 

Define  the  kth-order spread of H ( w )  about  the  value w = 
*a to  be 

V$)(a)  = - (w k a)2k(  H ( w ) / *  dw 
2T [S R ]’”” (26) 

which is minimized at Q = 0 

v ~ ) ( o )  = inf { ~ j $ ) ( a ) }  
oi 

= spectral  energy  variance of H ( w ) .  

Note also  that 

V g : ( Q )  = u V ; ) ( a / u )  (27) 

so the  bandwidth of H,(w) is u times  the  bandwidth of 
H ( w ) .  The filter energy,  however, is constant  across  scales 
and is assumed  to  be unity 

5 IH,(w)( 2 dw = IH(w)12dw = 1. (28) 
2iT R 

For  simplicity, it is assumed that for  each  combination of 
center frequency w, and  parameter u, the  positive  and 
negative frequency  components of Go(@) do not overlap 

I G,(w)12 = I H u ( ~  - w,)12 + IH,(w + w,)12. (29) 

fu(1) = a ( t )  I Gu [a, (r)II COS {+ (f) + L G u  [wi(t)I) .  (31) 
In the case of  a monochromatic  signal,  i.e., a single  co- 
sine, the approximation  (31)  is  exact;  indeed,  (31) may 
be regarded  as  a quasi-extension of the concept of  the ei- 
genfunctions of linear  systems.  The  approximation  (31) 
is also  exact if g, (t) is a unit impulse  function.  Otherwise, 
the error may be  bounded  according  to  the  following re- 
sult;  the proof  is supplied in Appendix  A.  First  define, 

1 / 2  

A,(&) = [ j R t2PIg,(t)l2 dr]  (32) 

6(a) = [ jR Ia(r)12 d l ]  (33) 
1 ,‘2 

Theorem I: Let &,(t) = Is , ( t )  - s*,(t)l, where f,(r) is 
given by (31). Then, 

E , ( t )  5 ;amay &(go) 6 ( w , )  + 2  At(g,) ’ 6(a), (34) 
where amax = sup! 1 a ( f ) I .  0 

Thus,  Theorem 1 bounds  the  error in terms of the  con- 
centration of g,(r) in time  (expressed  as  even  moments 
of I g, ( t )  I*), and  the  smoothness of  the AM  and  FM  func- 
tions a (t) and wi ( t )  expressed  as Sobolev 2-norms [4]. The 
bound  (34) has  another  useful  interpretation in the  special 
case  where a ( t )  and wi (t) are  bandlimited  to  the  frequency 
intervals [-w,, w,] and [-w,, wJ, respectively [8], [15], 
[16]. In this case S(a)  5 (w,I urns and 6 ( w i )  5 1 ~ 0 ~ 1  (w~),,,,~, 
where arms = ( 5  a2)1’2 and similarly for 

Theorem 1 gives  additional  useful  approximations  for 
the  derivatives of  the response s,(t) 

where s,(t) = s ( t )  * gu(r )  is the filtered signal  and n,(t) 
= n ( t )  * g,(t) the filtered noise  process.  The  remainder 
of this  section is devoted  to  analyzing  the  system  depicted 
in Fig.  1.  In  Section 111-A, approximate  expressions  are  Here, (35) is assumed f o r k  = 1, 2,  3.  The  error in these 
derived for  the  energy \k (s,) of the filtered signal;  and  in  approximations  can  be  easily  bounded by using  Theorem 
Section 111-B, for  the  moments of the energy Ik (nu) of the 1; simply stated,  the validity  of  (35) requires  that  the  de- 
filtered  noise process. In Section 111-C, the  statistics of  rivatives  of g,(t) of order  up  to 3 must  be of short  dura- 
the energy \k (f,) of the filtered combination  are  analyzed  tion, in the  sense that Am (g,), A,,, (gJ, A,( ?,) be  small, 
utilizing the results  of Sections 111-A and 111-B. for m = 1, 2 given by (32). 

* COS +(t )  + ~ G , [ ~ i ( f ) l  + I 
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Using reasoning similar  to  that in the  development of 
Theorem 1 ,  the  following  approximations  for  the  energy 
\k of  the  filtered  signal component s, ( t )  and its derivative 
will be essential 

$((s,) = a 2 ( t ) w : ( t )  . 1 G, [oi(t)]12. (36) 

$(So) = a2( t )wp( t )  * I G,[oi(r)]12. (37) 

Note  that (36) and (37) are  exact  for  a  monochromatic 
signal s ( t )  = a. cos (oat), where ao. wo are  constant.  A 
more  general (nonmonochromatic)  justification for these 
approximations is given  next, in Theorem 2. First  define, 

s o  = 1, Isu(r)l d l .  (38) 

Theorem 2: Let &,(t) = I\k(s,) - $(s,,)l, where 
~ ( c s , )  is given by (36). Then, 

( 4  5 i ( a m a J 2  . [E, A2(gu) + 2, A,( g,) 

+ 28, ~ 2 ( g 0 ) 1  * 6 (ai) 

+ 2am.x . [ s o  ~ l ( ~ u )  + g o A l ( g o )  

+ 22, Al(k)l ’ &(a) .  0 (39) 

Theorem 2, while  intuitive in view of Theorem 1, re- 
quires  separate proof (given in Appendix  B).  However, 
both  in Theorem 2 and  the  approximations (35)-(37), the 
error  bounds  are reduced by selecting g,(r)  to  be of short 
duration  and  to  have  derivatives of up  to  order 2 of short 
duration. Slightly looser but intuitive  bounds  also apply 
when a(?) and/or w ,  ( t )  are  bandlimited (34). 

B. Filtered  Noise  Approximations 
Denote  the  autocorrelation of the filtered  noise process 

n,(t) in (30) by R,(7)  with  associated  power  spectral  den- 
sity 9,(w) = I G,(w)(*  9 (w) .  Of  interest are  the values 
that  the (2 k)-th derivatives of R,(T) take  at the origin 

Rfk’(0) = - 
2T R 

1 ( j ~ ) ’ ~ (  G,(w)(’ %(w)  dw. (40) 

An important, but  nontrivial approximation will  rou- 
tinely be  used 

R y ’  (0) = R y ’  (a) ,  (41) 

where  for a E R we define 

8L2”(cx) = ( - 1 ) ‘ ~ r ~ ~ l  G,(a)(*I’,, (42) 

with 

the  concentration of  noise power within the  passband of 
the filter g,,(t). The  veracity of the  approximation (41) 
requires some  assumptions  that  are  made  clear in Theo- 
rem 3 (proved in Appendix C). 

7’heorem 3: Let &$:(a) = I RLzk’ (0) - Z?b2k’(a) 1 ,  where 

Rf”(0) and Rf”(a) are  given by (41)-(43). Then, 

(44) 

where @‘max = sup, I 9 ( w ) l  and V$’ is given  by (26). 0 
Careful  examination of (44) reveals that,  for  arbitrary 

a ,  the  validity  of the  approximation (41) and (42) requires 
two  important  assumptions.  First,  the  spread 

must be  small; this occurs  when cx = o, and when the 
bandwidth of H ( w )  is  small.  Thus,  the filter G,(w) must 
be  narrowband  and a must fall near the  center of the  pass- 
band  of G,(u), Le.,  near  the filter center  frequency u,. 
Secondly,  the  quantity 

! I  - I E r l  
must be  small;  this  requires  either  that a fall  close  to  the 
filter center  frequency wcr or at least  that a fall  within the 
filter passband-ifthe in-band  amplitude response 1 G,(w)l 
is approximately  flat.  Fig. 2 illustrates  these  requirements 
on (45) and (46). 

In the  best  case a = wc,  the  error  bound (44) becomes 

I wc I 

which relative to  the  approximation l?~’”(w,) given by (42) 
can be made constant  across  frequencies,  for  each  value 
of k ,  by varying  the  bandwidth  parameter o directly with 
the  center  frequency w,. This  observation  motivates  the 
constant-Q, or wavelet  scaling property  of the  multiband 
implementation  described in Section V.  Of course,  small 
bandwidths will further  reduce  the  approximation  error, 
particularly when  using (42) to  approximate  high-order 
derivatives of R,(7)  at T = 0. 

Specific forms of the  approximation (41) and (42) will 
be of interest. In the  sequel,  whenever  analyzing  the fil- 
tered signal-plus-noise f , ( t )  at time I ,  we will use (47) 
with 01 = w , ( t )  

R t k ’  (0) = Rp [a, ( t ) ] .  (48) 

This is a novel time-valying approximation  to  the  auto- 
correlation of the filtered noise  process.  In  making  such 
an approximation,  there is a  tacit  assumption  that wher- 
ever f,(t) is being analyzed, it is being  done so with  a 
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Fig. 2 .  The validity of the  approximation (41) and (42) to the  even  deriv- 
atives R0(7) at T = 0 requires  both  that / a  - ~ ( 1  be small and that 1 G,(a) 

flat passband  for the filter G,(w). 
- G,(w,)I be  small. These requirements  amount  to  specifying a narrow. 

filter that is concentrated in the vicinity of the  instanta- 
neous  signal frequency w,  ( t ) .  

When  analyzing filtered  noise only, it will be  conve- 
nient to  use  (47)  with CY = 0,. This will be used to  com- 
pare the  responses  of inactive  channels  (stimulated by 
noise only) with active  channels  (stimulated by signal- 
plus-noise) in the  multiband  analysis of Section  V. 

It is desirable that the  contribution of the noise element 
to the  energy operator  output 9 ( fc) be minimized  as  much 
as  possible. By using (48),  approximations  for  the  statis- 
tics  of  the  energy  of the filtered  noise process can be  ob- 
tained.  From  (lo),  (16),  and  (48): 

E ['€'(no)] = -2Rf ' (O) = 2 ~ 2 ( t )  1 G,[w,(t)]l?I',,  (49) 

E [9 (h,)] = 2Ra'(O) = 2w4(t) 1 G, [wi(t)] I'r,,. (50) 

Similarly,  from  (12), (17), and  (48) 

Var  [*(nu)] = 3[Ry)(0)I2 + R,(0)RL4'(O) 

= 4wP ( r )  1 G, [a, (t)11 'rr3 (5 1) 

Var [*(;I,,)] = 3[R;'(O)]' + RF'(0)Rb6'(0) 
-- 4w? (t)  1 G, [a, ( t ) ]  i 4 1 ' r 3 .  (52) 

Clearly, both  the means  and  the  variances of * ( n o )  and 
9(&) are  decreased by making small,  i.e.,  using  a 
sufficiently narrow  filter passband. But regardless of the 
bandwidth, from (49)-(52) 

Var [Q (n,)l = E' [Q (null (53)  

Var [Q (h,)] = E' [9 Clt,)] (54) 

which is important  within the context of taking  ratios of 
these types of quantities. In view of ( 5 3 )  and  (54), it is 
not unlikely  that + ( n u )  or 9(iz,) will take  a  value  near 
zero. or a  negative  value. In the  case of a  low  signal-to- 
noise ratio,  computing  the  ESA  subsequently  becomes 
unreliable,  as  found in the next section;  fortunately,  the 
use  of  an appropriate filtering strategy can  greatly im- 
prove  the  predicted  results. 

C. Filtered Noisy AM-FM Signal Approximations 
First  note  that 

9(f,) = 9 ( s u )  + * ( n u )  + 2S,h, - sofio - funo 

the trailing  terms of which are  zero  mean.  Using  (31), 
(35),  (49),  and  (50).  the  expected  values of the energy 9 

of  the  filtered signal-plus-noise  can  be  approximated: 

E [9 (full = w?( t )  1 G, [w ,  (01 I2[a2(t) + 2 r u l  (55) 

E [* (?,)I = 4 (t)  ! Gu[wj(t)l 12[a2(r) + ~I ' , I .  (56) 
It should be  reemphasized  that  the validity  of (55)  and 
(56) utilizes the  approximation  (48) which requires  the 
assumptions  depicted in Fig.  2,  i.e.,  that  the  instanta- 
neous frequency wi  ( t )  at  time t falls well within  the pass- 
band of the filter with frequency response G,(w),  and that 
the  passband is  nearly flat.  Moreover, within the  current 
analysis, without  this assumption  the signal component of 
the energy signals 9 (f,) and 9 ( j b )  will also  become  neg- 
ligible or vanish. 

Although the ratio of (56)  and  (55)  appears  to  be  an 
appealing  approximation of the  expected  value of the  ESA 
(4), such  an approximation  must  be  carefully  justified, 
particularly in view of (53)  and  (54).  From  (12).  (17), 
(181, (201, (49)-(52), 

Var 19 (fJl = 4w4(t) I G,[w, (t)il4ru[a%) + r,i 
(57) 

Var [* ( j J 1  = 4w: ( t )  I G [ai ( 0 1  1 %  [a'(t) + r,l 
(58) 

Cov [*(f,), 9(f23 = 4w!(f) I G,[w,(t)1i4r? (59) 

and 

P [9(f,), *(.?,)I -- r,/[a2(r) + r,i (60) 
where p denotes  correlation coefficient. 

We shall now reexamine  the  relative  values of the  ex- 
pected  values and  variances of  the energy  signals,  only 
this time  following  the filtering operation. Defining the 
instantaneous  signal-to-noise ratio as  a  ratio of instanta- 
neous signal  power to averagejfiltered  noise  power: 

SNR,(t) = a2(z ) / rU  (61) 

we then find that 

and 

In passing,  we  also  note  that 

Thus for sufficiently large  SNR  at  time t ,  and if all as- 
sumptions  regarding  the filter are satisfied (underlying  the 
key approximations  (31),  (35)  and (48)), the  energies 
9 ( f,) and 9 ( h )  are  approximately  uncorrelated; if the 
SNR at time t is small, they have nearly a  linear  relation- 
ship. In view  of (19)  and  (20), this  is most  accurate if the 
bandwidth of the  system is  sufficiently small. 
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IV.  COMPUTING THE ESA IN THE PRESENCE OF NOISE 
In  this  section,  we  justify  the  use of the ESA (4)  and 

(5)  in the  presence of noise,  where filtering  is applied  to 
reduce  the  noise  contribution.  Fig. 3 depicts  the ESA sys- 
tem to  be  analyzed;  compare  with  Fig.  1.  Extensive  use 
is made of the  approximations  for  the  output  moments of 
the energy  operator * developed in the  preceding  section. 
In addition,  statistical  justification of the  combined filter/ 
ESA system  is developed using approximations  for  the 
output moments of the  ESA. As  will be seen, it is difficult 
to  develop  statistical  ESA  approximations  unless it is as- 
sumed  that the  signal-to-noise  ratio is large. 

A .  ESA Approximations for Large SNR 

f, =.r,+n, 

Fig. 3. Diagram of basic ESA with filtered signal-plus-noise input 

However,  note  that 

Var 1;: (t)] 4  [SNR,(t) - 11 [SNR,(f) + 212 
E’ [;f (t)] [SNR:(t) + 8 SNR,(f)+ 41’ 

- - (68) 

Suppose  that  SNR, ( t )  >> 1 is sufficiently large that the 
ratios  (62) and (63) are  small;  for  example, using  the value 
0.1 to signify “small”  requires  [from  (62)]  that  SNR,(t) 
> 36.97.  Under  this  assumption  and  using  (57)-(61),  the 
following  second-order  approximations  to  the  expecta- [d2(t)l 
tions of the  ESA  (4)  and  (5)  are useful [ l l ,   p .  2121: 

and 

Var [d2(t)] 4[5 SNR,(t) + 11 [SNR,(t) + 21’ = 
[SNRt(t) + 12 SNR,(t) + 41’ (69) 

and 

Also for  the  second-order  approximation  for  the  variances of the  ESA: 

4[SNR,(t) - I] 
= wf(t) 

[SNR,(t) + 21’ 
and 

(67) 

At first glance it may appear  that  the  variances  (66)  and both of which  become  negligible  at  reasonably high  val- 
(67)  of the  ESA  (4)  and (5) increase  dramatically with the ues  of SNR,(t).  Fig. 4  plots (68)  and (69) versus SNR,(t) 
fourth powers of the  AM  and FM functions wi( t )  and a ( t ) .  > 10. As  is apparent  from  the  plots, both  ratios fall off 
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Fig. 4 .  Plots of the ratlos (68) and 169). For small values of the  plotted 
functions,  the  approximations (70) and ( 7 1 )  may be considered valid 

fairly rapidly;  (68)  falls  to 0.1 at SNR,(t) = 26  (28  db), 
whereas (69) falls  to 0.1 at SNR,(t) = 34 (31 db). 

It subsequently follows  from (64)-(69) that for SNR,(t) 
sufficiently large  we may  confidently assume that 

S f ( t )  = w f ( t )  (70) 

d*(r) = a2(t)  1 Go [w, ( t ) ]  1:. (71) 

If (70) is valid, then  in (71), wi(r )  may be  estimated first 
using (5) and used to  compute Go [w, ( r ) ] .  Another  simple 
approach is to  use filters  with approximately flat in-band 
responses, so that 

1 Gu[w,(t)ll = I G,,(wOI. 

Of course  this is just  another  statement of the constraint 
(46), which is important in  making the key approximation 
(48) accurate,  and is used in the simulations  given in Sec- 
tion VI. 

V.  MULTIBAND  FILTERING A N D  ESA 
Equations (31) and (35) imply that unless the  instanta- 

neous  frequency w,(t) falls within the  passband of  the fil- 
ter G,(w), the  energy  signals *(so) and *(io) will become 
negligible or  vanish.  Therefore, by the selection of an ap- 
propriate  filter (passband) at time t ,  it becomes  possible 
to isolate an AM-FM signal  component  and to compute its 
energy *. Moreover, it becomes  possible  to reject  noise 
components nor falling within the vicinity of the desired 
local AM-FM component. 

These very useful observations about locally coherent 
signals (signals with a  strong  local  modulation  structure) 
can be regarded  as extending  the  well-known global prop- 
erties  of  filtered sinusoidal  signals  immersed in noise. 
With it comes  a  caveat: in order  to  isolate  the local mod- 
ulation  energy  of an  AM-FM  signal  component of the 
form (1) in the presence of noise, it becomes necessary to 
establish a filter passband in advance,  either by estimating 
the  local center  frequency by a  tracking  procedure,  or by 
utilizing a bank  of bandpass filters  that sample  the  fre- 
quency domain sufficiently densely.  This is particularly 
important since the instantaneous signal frequencies may 
sweep the  signal spectrum,  implying that multiple filters 
will be  involved,  at different times, in capturing the mod- 
ulation signal s ( t ) .  Here,  the  second  approach is ex- 
plored. In particular,  criteria  for  channel filter selection 
and for the design of a  multiband  sampling of the  fre- 

- 

quency domain  are  discussed in depth.  Significantly, it  is 
found that uniform (worst-case)  performance  across  fre- 
quency bands is  naturally ensured  through  the  use of a 
constant-Q  or  wavelet-like  scaling of the  channel  filters. 

Fig. 5 depicts  a  block  diagram of the  multiband  energy 
operator  system that is  proposed  and  analyzed  in  detail in 
this section.  The signal f (f) is divided into multiple  pass- 
bands  using M filters  having impulse  responses g,(t), fre- 
quency responses G,(w), with  associated  center  frequen- 
cies w, and  bandwidth  parameters urn, producing  outputs 
fm( t ) ;  m = 1 ,  . * * , M. The filters G,,, (a) are  all  assumed 
to have  the form  (22)-(29).  Section  V-A  discusses the de- 
sign of the  individual  channel filters G, (a), based on the 
observations  made in the  preceding  sections,  while  Sec- 
tion V-B discusses  the multiband implementation.  Fol- 
lowing  filtering, the  process of energy  demodulation us- 
ing  the operator I is applied to each  output.  Although not 
made explicit in Fig. 5 ,  at  each  instant t the  response hav- 
ing the  maximum normalized energy 

I * ( t )  = max 9 [ fm (01 
I s r n s M  1 G,,,(W~)~' 

(72) 

is used  as  the analysis  signal, i .e . ,  it is input  to the ESA. 
In this way.  a filter is made  available with large  response 
to  the signal component s ( t ) ,  by ensuring  that the instan- 
taneous frequency w,  ( t )  falls within one of the filter sub- 
bands motivating the  multiband implementations  de- 
scribed in Section  V-B.  The efficacy of the  operation (72 )  
is examined in Section V-C. Thus,  a filter g ,  containing 
the  instantaneous frequency within  its  passband  will  likely 
be used  in computing  the  ESA,  yielding  a  stable,  noise- 
resistant result.  In  this  case;  depicted by the  dotted  lines 
in Fig. 5 ,  the  behavior of the  ESA is well described by 
the results of the previous sections.  Section  V-C  studies 
the  strategy  of  utilizing the  channel with maximum energy 
output 9 * ( t )  as the analysis  channel.  A  similar  strategy 
was employed using Gabor  wavelets in a  digital  image 
analysis  application in [4], although  the  actual filter  re- 
sponses,  rather  than  computed  energies,  were used to de- 
termine the analyzing  channels. 

The strategy depicted in Fig. 5 presents a novel and 
interesting approach  to  isolating  an  AM-FM signal that 
may be modified. The  approach used here  yields  the  chan- 
nel having the  maximum product of channel  response  and 
Teager  energy.  This means that  the  magnitude of the  in- 
stantaneous  frequency I wi ( t )  1 is deemed  equally  important 
as  the amplitude  function (a( t ) l  in detecting  the  signal, 
which,  while not usual,  does have application.  However, 
changing  (72)  to  agree with more  conventional  criteria is 
straightforward.  For  example, the  ESA  may be computed 
for each channel,  and  the  analysis  channel  selected on the 
basis of the maximum  estimated I w , ( r ) (  (if it is desired  to 
find high-frequency  AM-FM  functions),  or  on  the  maxi- 
mum estimated la(r)l (if it is desired  to find high-ampli- 
tude  AM-FM  functions, which  is the most  likely goal). A 
simple  approach which  well approximates  the  latter  strat- 
egy is to modify the  criteria  (72) by normalizing  also by 
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Fig. 5 Block diagram  depicting  multiband  filtering  and  energy  separation 
of a noisy AM-FM  signal.  The  dotted  lines  indicate  a  single  subsystem  as 

largest  energy  reponse \k* at  time r .  
analyzed  in  the  preceding  sections.  which  may be regarded as having  the 

the squared  channel  center  frequency: 

Whichever method  is used,  the  multiband strategy  still 
affords superior  predicted  and  demonstrated  performance. 
In this paper, (72) will continue  to be used for  simplicity, 
and also novelty. of exposition. 

A .  Filter Design 
Before exploring  the  design of the multiband  imple- 

mentation,  criteria  for  selecting the individual filters com- 
prising the signal decomposition  are  explored (with the 
multiband implementation in mind).  There  are  a variety 
of criteria,  some of them  conflicting,  that affect the  design 
of the individual  filters,  or  more  precisely,  the  design of 
the  low-pass equivalent filter H ( w )  in (22)-(24). The  ar- 
chitecture of the  multi-band  implementation will be  dic- 
tated by a set of frequency  translated  and  dilated  versions 
of the bandpass filter G,(w) defined by (22) and (23). 

As will be  seen, both low-uncertainty filters [4] and fil- 
ters with a flat in-band  responses  have  certain  advantages. 
Indeed,  Theorems 1 and 2 and (35) suggest  that, in order 
that the modeling of the deterministic problem be accu- 
rate,  the channel  filters be  selected  such  that  the  temporal 
energy durations 

be made  as  small as  possible,  for p = 1, 2, where Ap ( e )  

is given by (32). It is enough  to  consider p = 1 ,  It is  not 
difficult to state this in a  simple way as  constraints  on  the 
low-pass  equivalent filters h,. With g, and h, related by 
(22), i t  is a  simple  matter  to show  that A,(g,) 5 Al(ho), 
and  that further,  for  each k = 0, 1. 2.  3: there  exists  con- 
stants bk,i; i = 0 ,  * * * , k .  such that 

1 

Al,k(g,) 5 bk,, A , , k ( k ) .  
r = O  

Thus, it suffices to take the temporal  energy  durations of 
h,  and  its low-order  derivatives to be  small.  However, by 
the arguments  posed by Theorem 3, in order  that  the  mod- 

eling  of the  statistical  problem  be  accurate,  the spectral 
energy  duration VE’(0) given by (27) should also be taken 
small.  Ignoring  momentarily  constraints  on  the  deriva- 
tives of h,, simultaneously  optimizing  these  criteria, by 
for  example!  minimizing  the  product 

inevitably  leads 
form [4] 

h,  (0 

A, (h )  V $  (0) (73) 

to  the minimum uncertuinry filters  of  the 

which are  unit-energy  Gaussian  functions.  The  functions 
(22), which are  frequency-shifted  Gaussians,  are  then  the 
real-valued Gabor  functions. A couple of points  need to 
be considered  before taking these as one  possible  basis 
for  a multi-band implementation.  First, in (29) it was  as- 
sumed (for  simplicity of exposition)  that  the shifted  filters 
H , ( w  f w,) not have any spectral  overlap;  clearly,  the 
functions (74), which  have infinite support, violate this 
criteria.  However, by taking the filter bandwidths suffi- 
ciently narrow, say one  octave,  the  overlap will be ex- 
tremely small [4]. In any practical  implementation, the 
filter bandwidths will be effectively limited  to  achieve 
(29). Of course.  there exist other  low-uncertainty filters 
that have strictly finite support, such  as prolate  functions 
[15], which could  be  used.  The difference in perfor- 
mance,  however,  would likely be  microscopic.  Finally, 
in  defining  low uncertainty filters  that minimize  the prod- 
uct (73) the  durations A l , k ( h u )  of the  derivatives have  been 
ignored.  However,  the  low-order  derivatives of Gaussians 
also  have good timeifrequency  localization  properties 

There is another  important  criterion  to  be  considered. 
Theorem 3 suggests  the constraint (46), which implies that 
when a = wc,  it is desirable that G,(a) = G,(w,). In 
other  words,  the  passband of H ( w )  should  be  approxi- 
mately  flat. Of course, this criterion conflicts  with the 
choice of a  GaussianiGabor  configuration,  since  the 
Gaussian  frequency  characteristic rolls off quickly within 
the  passband,  and  slowly at the  transition,  rather than 
having  an abrupt  transition  from  a flat passband.  While it 
is  an interesting  problem  to  consider  the  design of filters 
that are  both  low  uncertainty  and  also  have relatively flat 
passbands,  there is no  immediately apparent  procedure for 
such a  design. In any case.  the  error  bounds  described in 
the  preceding  represent  worst-case  performances.  There- 
fore.  simple  multiband filter  configurations are  considered 
next,  consisting  either of Gabor  functions or ideal (flat) 
bandpass filters.  In  either  case  the  use of a  multiscale, 
dyadic  wavelet-like filter bank configuration is motivated. 

B. Multiband Design 
Once  a basic low-pass filter H ( w ) ,  or  basic  bandpass 

filter G,(w) has  been selected,  the next step is the choice 

~ 7 1 .  
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of a  tesselation  of the  frequency  axis by a  set  of multiple 
frequency  translations and  dilations of G,(w). Since in  this 
development,  signals  are  being  analyzed on continuous 
domains,  the  practical  assumption is made that the system 
of  interest produces  signals that fall within  a  specific (pos- 
sibly wide)  band of frequencies; of course, any  real-world 
system  approximates this hypothesis.  Thus,  assume  the 
overall  bandwidth of the  analysis  system  to  be fixed at an 
upper limit Q,, i .e . ,  the  magnitude I S(w)l of the  Fourier 
integral s ( t )  is  guaranteed  to be negligible  for  all ( w (  > 

Many arguments have  been put forth  for the use of time/ 
frequency signal analysis  windows having  a constant 
width (localization)  on a logarithmic  scale [ 181-[21]. One 
of  the simplest,  yet most compelling  observations,  applies 
to  the local analysis of monochromatic  functions;  lower 
frequencies  require  larger  analysis  windows in order to 
capture  the  signal’s  period.  Since  we  are  dealing with sig- 
nals that may be  termed  “locally  quasimonochromatic,” 
similar  arguments  apply.  However, within the  current 
modeling framework,  the  bound in Theorem 3 supplies 
additional  motivation,  as  discussed  next. 

The  important  approximations  developed  for  the  local 
noise response in the  presence of  an AM-FM  signal,  all 
of  which are  based  on (48), can  be  improved by designing 
the  basic  filter H ( w )  according  to  certain  prescriptions,  as 
in Section  V-A.  However,  the  modeling  error  bound (47) 
is also scaled by 

Q, . 

so it  is  necessary that  the  channel  bandwidths  be  small, 
but more  importantly, in order to maintain consistent 
(worst-case)  predicted  perforamnce  across  the  filter 
channels the  error  bound  can  be  made  constant  across  the 
spectrum by taking  the  bandwidth  (dilation)  parameter urn 
for  each  channel G,(w) to  be  the  inverse  (up  to a multi- 
plicative constant) of the  center  frequency  (translation) 
parameter w,: 

_ -  ‘Jm 

wm 
-constant; m = l ; . . , M - l  

which  implies  a constant  logarithmic  spacing  betweeen 
the filters. In  other  words,  constant-Q  (wavelet  scaled) 
filter banks will provide  uniform  worst-cast  perfor- 
mance  across  channels. 

Certainly, uniform (worst-case)  performance  across 
channels is  a design  criterion  that may be  modified. If it 
is desired  to  achieve  improved  performance  over  some 
sub-band  of frequencies,  then this can  be  accomplished 
by narrowing  the  filters bandwidths (using more filters) 
over  that  frequency  range.  Nevertheless, it is  significant 
that the  constant-Q property falls naturally out of the  anal- 
ysis.  Given  the specific goal of estimating a(r)  and w i ( t ) ,  
uniform performance  for  small  or  large  values of w, ( t )  is 
obviously  desirable  unless  there  is a  specific reason oth- 
erwise. In any case,  the  (worst-case)  performance  from 
each  channel will depend  directly on its  Q. 

Thus,  regardless of the  exact filter specification, define 
the set of M center  frequencies  for the subband filters  (no- 
tice the indexing  from  higher  frequencies to lower  fre- 
quencies) by a dyadic  relation,  yielding  one-octave  sep- 
aration: 

The  baseband filter  will be taken to  be  an  unshifted  (low- 
pass)  filter: 

while  the  subband  channel filters are  given by 

G,(w) = - 1 [ H ( y )  - H ( y ) ] ;  
j J L  

m = 1 ,  , M -  1. (77) 

Gabor Wavelets: The  real-valued  (sine)  Gabor  wavelets 
defined by ( 2 2 ) ,  (28),  (74) and (75) are of the form 

The  bandpass  functions (78) satisfy  the  usual  wavelet  ad- 
missibility conditions [ 181-[21]: complete  orthonormal 
decomposition of  any  signal f ( t )  E L2(R) can  be  con- 
structed  using a basis  consisting of frequency  translates 
and  dilates of (78),  from which the  signal may be  exactly 
reconstructed,  in  principle.  However,  from a practical 
perspective, in the  application  being  considered  here, 
where highly  specific signal  components  (AM-FM  sig- 
nals) are  being  extracted in the  presence of  significant 
noise, it is  most  important  that  the  frequency  domain  be 
adequately  sampled by the filter set,  rather  than  ensuring 
the  perfect  reconstruction property  of  the  filter responses. 

Nevertheless, if the filter tesselation is  defined such  that 
the  filters intersect  at  half-peak,  then both criteria  are  sat- 
isfied. One-octave  (half-peak  bandwidth)  Gabor filters 
achieve this prescription  exactly.  In  this  case  the filter 
bandwidth  parameters satisfy 

(79) 

We  choose uM = 2uM-,  for  the  baseband filter,  in order 
that the filters Gw - , (w ) ,  GM(w)  intersect at the  half-peak 
responses.  Fig. 6 depicts a decomposition of the unit fre- 
quency  interval [0, 11 (i.e., W, = 1) using five Gabor 
wavelets defined by (75), (77)-(79). 
Littlewood-Paley  Wavelets: Littlewood-Paley  wavelets 
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quency  interval [O. 11 into five subbands of constant  (unlty)  octave  band- 
Fig. 6. Multiband  Gabor  wavelet  filter  decomposition of the  unit fre- 

width (except  the  baseband). 

[21,  p. 1051 satisfying (28) have  the  form 

= J 1- & [[[-I, 11 (7) 
. _  

o n  
W L  

0.5 1 0  

Fig, 7 .  Multiband  filter  decomposition of the  unit  frequency  interval [O. 
I ]  using five ideal  subbands of constant  (unity)  octave  bandwidth  (except 
the  baseband) 

(1)  and assume that the instantaneous  frequency w, ( t )  falls 
within the  passband of the filter G,, where  for  simplicity 
m # M. Then  from (53, and defining SNR,(t) using (61) 
with u = urn, the normalized expected  signal-plus-noise 
energy  is approximately 

where is the  indicator  function of the interval [ - 1, 
11. Thus  (80)  represents  the ideal case of maximally flat 
filters also having good  spectral  localization, but ripple in 
the time  domain.  Although  not  realizable in practice, the 
bandpass  functions  (80)  also  satisfy the usual wavelet ad- 
missibility conditions [18]-[21]. Here  the prescriptions for 
perfect  reconstruction  and  complete  coverage of the  sys- 
tem bandwidth  are in agreement.  Thus, defining center 
frequencies w, according  to  (75),  (76)  and  the  bandwidth 
parameters  according  to 

2-m+'Q,; = 1,  . . . u r n = - =  3 
, M - 1 (81) 

and uM = 2aM- (baseband filter) once  again  yields a  set 
of unity-octave filters  with  unity octave  spacing.  The 
(positive  frequency) filter passbands  are the intervals 
[ 2 - m ~ , ,  2-" + 'QJ, rn = 1. . * * . M - 1.  Fig. 7 depicts 
a decomposition of the unit frequency interval [0, 11 using 
five Littlewood-Paley  wavelets defined by (73,   (77) ,  
(80),  and  (81). Of course,  modelling  the  bandpass filters 
as ideal  is an  analytic  convenience.  In  practive,  the filter 
characteristics may be  approximated  using, e .g . ,  quad- 
rature mirror filters [22],  related  subband  techniques  [23], 
or  standard  bandpass filter design  procedures  [26]. 
Comments: Of course,  the  use of one-octave filters  with 
one-octave  separations is somewhat  arbitrary in the  pres- 
ence of  significant noise,  where  the  signal-to-noise  ratio 
may be low. it may be  advisable  to  use a large  number of 
filters  having narrow  bandwidths, such  as (1  /2)-octave 
filters  with (1 /2)-octave  separations. 

C. Channel  Selection  by Maximum Energy Response 
In this subsection  the  technique  (72)  of  selecting an 

analysis  band  for  the  extraction of signal frequency  mod- 
ulations by finding the  channel  having  the  largest  energy 
response is studied.  Suppose that the  signal is given by 

For every other  channel G,, q # m ,  from  (36)  and  (IO), 
and using (41)  with a = w,, the  normalized  expected  sig- 
nal-plus-noise  energy is approximately 

with r4 given by (43).  Clearly, in the absence of noise 

E [* ( f m ) l  >> E [*(fq)I 
if the filters are properly designed.  Otherwise  the ratio  of 
expected energies: 

The first term inside  the brackets is clearly negligible.  The 
second  term  inside  the  brackets will be  small if the  signal- 
to-noise  ratio SNR,(r) is large.  Hence, it  is important that 
the  bandwidth of each channel filter be taken  small to 
achieve  large  signal-to-noise ratios across  all of the  chan- 
nels.  in order  that  the  strategy of using the channel  with 
the  maximum  normalized  response  (72)  as  the  analysis 
band  will be most effective.  However,  the  scaling by the 
factor wa/w:(r)  does  indicate  that  the ESA  will be  sensi- 
tive  when it is desired  to  detect  low-frequency  AM-FM 
signals immersed in high-frequency  noise.  This is be- 
cause of the strategy (72)  that is used.  As  discussed below 
(72), it is  possible to  ameliorate  this effect by computing 
the  ESA for every channel. 

The only  other  question  concerns  the  behavior of the 
overall ESA as  the  instantaneous  frequency w, ( t )  sweeps 
across  channels.  Conceptually,  there is a  discontinuity in 
the flow of  the algorithm when there is a  transition  from 



3256 IEEE TRASSACTIONS OS SIGNAL  PROCESSING. VOL 41. NO 12, DECEMBER 1993 

one  maximizing  channel  to  another  according to (72). In 
view of the  above  discussion  this  occurs  when  the  instan- 
taneous  frequency  makes a transition  from  one  passband 
to  another.  However,  under  rather  general  conditions, the 
ESA (4) and ( 5 )  gives  continuously-varying  results. 

In applying  the  energy  operator \k to  the signal (1) as 
in (3), it  must be assumed that the signal s ( t )  is  a twice- 
differentiable function.  However, if the signal  is  filtered 
first,  then it is more  convenient  to  impose  additional  con- 
ditions on the filter impulse  response  such  that  the  ESA 
will be  regular.  Indeed, it is sufficient to assume  that  the 
low-pass equivalent  function h ( t )  is continuously  three- 
times-differentiable, a condition clearly  met by the  ex- 
ample wavelet configurations  discussed in Section V-B. 
Then, the energy  responses * [ f m ( t ) ] ;  m = 1 ,  * * , M 
will  all be  continuous  functions  [see (B.6)], as will be  the 
associated energies -$’ [ fm ( t ) ]  necessary for the ESA com- 
putations.  Since  the  maxima of continuous  functions is 
continuous, the maximum  Teager response ** ( t )  will also 
be  continuous.  Accordingly,  the  associated  energy ** [ j ( t ) ]  should also  be  continuous.  In  order  to  assure 
this,  the  energy-of-derivatives  could  also  be  computed  for 
every channel  and  the  maximum  taken,  although  accord- 
ing to  the  approximation (56) this is  likely unnecessary in 
practice.  Finally,  since  the ESA (4) and ( 5 )  is  defined  in 
terms of continuous  mappings,  the ESA responses shown 
in Fig. 5 will be  continuous  functions. 
Comments: The  above  analysis  could, in principle,  be  ex- 
tended in a  natural and  interesting way by casting the 
channel selection  problem,  currently  implemented via 
(72),  as an M-ary hypothesis  testing  problem.  Such  an 
approach  would lead  to a probabilistic  description of the 
overall  multiband ESA performance  as a function of  the 
noise,  the filter bandwidths,  and  the  number of filters. 
Complicating  this  approach,  however,  is  the necessity  of 
expressing  the  necessary  output  conditional  distributions 
of  the Teager-Kaiser  operator  for a signal-plus-noise  in- 
put. As  indicated in  Section 11, this problem is compli- 
cated even  for  the  case of zero  signal;  for  the  case of sig- 
nal-plus-noise,  it  is  much  more difficult (Section 11-C). It 
is for  this reason  that the  stochastic  analysis in  this paper 
has  been  restricted to the  computation of useful  moments 
of the  energy  operator  output. 

VI.  EXAMPLES AND SIMULATIONS 
In this section,  examples  are  provided of the predicted 

ESA performance  for a sinusoidal signal (Section VI-A) 
and  for a chirp  signal  (Section VI-B). Section VI-C pro- 
vides actual MATLAB  simulation  results, using an  ap- 
proximate  implementation of the  Littlewood-Paley filter 
bank  described in Section V-€3. 

A. Sinusoidal  Signal-Monochromatic Noise 

sinusoidal  signal 
As an instructive  example  consider  the  case of a pure 

s ( t )  = a0 cos (oot) (82) 

where  the signal  frequency  falls in  an assumed  frequency 
interval: wo E [0, 11 (i.e., Q, = 1 for  simplicity).  Further 
assume  that  the signal  is embedded in zero-mean,  additive 
Gaussian  monochromatic  noise n ( t )  with  autocorrelation 

R(7) = A’ cos ( w , ~ ) .  (83) 

We  shall now  study the efficacy of  the overall  system  de- 
picted  in Fig. 5 ,  using  the  Littlewood-Paley  wavelet  con- 
figuration (80). This  example (82) and (83) is canonical, 
since nearly all of the  approximations  [except (64)-(67)] 
made prior  to this  point  hold exactly,  provided  that wo and 
w ,  fall into different frequency  bands,  although  that  case 
will be  considered  as  well. Of course,  this  example  rep- 
resents  the simplest  possible  case,  where  there  is no in- 
formation  in  the AM-FM  signals. It is an  important  ap- 
plication,  since it is often of interest  to  capture a dominant 
sinusoidal signal in the  presence of other  random  periodic 
signals(s).  The  example  also  provides  insights  into  the 
general performance of the ESA in  the presence of  filtered 
noise;  for  signals  having  slowly-varying  modulating  func- 
tions, this example is largely  applicable. Of course, if 
either  or both of the  signal  amplitude  and  the  signal  phase 
vary with extreme  rapidity,  then the approximations,  par- 
ticularly those  developed in Theorems 1 and 2 ,  are not 
guaranteed  to  be  close.  One  interpretation of this,  how- 
ever, is  that it is simply quite difficult to  track a signal 
with rapidly  fluctuating AM or  FM  information. 

Assume  that  the  signal  frequency oo > 0 falls  within 
the  passband of the filter Gm(w), and that the  noise fre- 
quency w, > 0 falls out of band,  viz., in the  band of the 
filter G , ( w ) ,  where  for  simplicity m, q # M .  The  case 
where  the signal  and  noise  frequencies  fall  into the same 
band  is  really the  same as  the case  where  no  bandpass 
prefiltering  is applied;  that is considered  next.  From (36), 
(37), (80), and (81) the  exact  normalized in-band filtered 
signal energies  are 

since the noise falls  out-of-band. 
For  the out-of-band energies,  the  filterienergy  operator 

system responds  to  the noise only.  The  exact  normalized 
energy moments  are  found by directly  evaluating (40) in 
(49)-(52), (80), and (81) 

The  responses of  all other  channels will be  zero.  The ratio 
of (84) to ( 8 5 ) :  

(;) (z) 2 

makes  it clear that for sufficiently large  signal-to-noise 
ratio a&: > 2A2w:. the  correct  channel Gm(u) will pro- 
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vide  the largest energy  response, resulting  in an exact ESA 
computation (4) and (5). Otherwise  the  approach will 
clearly fail,  corresponding  to  the  case  where  there  exists 
a  periodic  noise signal  burying the signal of interest. 
However,  the  main point to  be  made is that,  once  the  cor- 
rect channel is selected, the ESA  performs extremely well. 
Comparison-Without  Filrering: It is interesting to com- 
pare  the  performance of the  energy  operator in  the  pre- 
ceding  with the case  where  the  energy  operator  and  ESA 
computations  are not preceded by bandpass filtering. In 
this case, the exact  expectations of the  signal  energies  are 

E [9 ( f ) ]  = uiwi + 2A’w: 

E [9 (f)] = u&ot + 2  A2wf 

which is a  weighted linear  combination of even  powers of 
the signal (wo)  and  noise ( w , )  frequencies.  Hence,  even in 
the case of  a  fairly large  signal-to-noise  ratio,  the  ESA 
computations will be  inaccurate,  since, in  the  best case 
[from (64) and  (65)] 

neither resembles  the  correct  values u i ,  w i  unless u iu i  
>> 2A2w: or a&; = 2A’w:. 

B. Chirp  Signal-White Noise 

of  a pure  chirp  signal (wo > 0) 
As another interesting example,  consider  the  analysis 

s ( t )  = uo cos (mot*) (86) 

over  the  time  window t E [l  / ( 2 M ~ o ) ,  1 / ( 2 w 0 ) ] .  Over this 
span the  instantaneous  frequency 

q ( t )  = 2wot 

of (86) will,  for  each t ,  fall within the  frequency  interval 
[2‘ - M ,  1 1  (again taking Q, = 1 and  avoiding  the  baseband 
for simplicity of exposition).  In  order  to  model  the way 
in which the ESA computation  passes  between  channels, 
it is convenient  to first consider  the  signal  to  be  noise- 
free.  Then,  the  performance of the  multiband  ESA  can  be 
analyzed  in the  signal-plus-noise  case  using  this  infor- 
mation. 

This  time  we  utilize the Gabor wavelet configuration. 
From (36) and (37), the  normalized  energies of the  re- 
sponse of the filter (80) to  the  chirp (86)  at time t are 

Selecting the (index of the)  analysis  channel as  a function 

of time  then  follows  from ( 7 2 )  and (87): 

if it is assumed  that 

From (75) and (81), it follows that rn = m * ( t )  for 

not surprisingly,  higher-frequency filters analyze  the  sig- 
nal over  larger  time  windows,  since they are  allocated 
larger  pieces of the  spectrum.  Fig. 8 depicts  the  intervals 
over which each filter g m ( t )  will be  “active,”  viz.,  for 
which rn = m*(r)  in (88), f o r m  = 1, 2 ,  3, 4 = M - 1 
using  the set  of 5 wavelets  depicted in Fig. 7 ,  after  ap- 
propriately scaling  the filters to  cover  the  frequency  range 
[0, I ] .  Note  again  that  the  example  was  designed  such 
that  the baseband filter does not become  active. 

The effects  of noise  on  the  multiband  energies of the 
chirp signal are  considered  next.  This  time,  assume  the 
signal s ( t )  to  be  immersed in zero-mean,  additive 
Gaussian white noise  with  power  spectrum 

Of course,  for  this  noise  model,  image prefiltering using 
bandpass  filters  is an  absolute  necessity,  since  the  energy 
operator * cannot  be  meaningfully  applied  to a white 
noise signal. 
In-Bund Energy  Moments: Assuming  that rn = m* ( t ) ,  i.e., 
that at time t the  channel filter Gm (0) contains  the  instan- 
taneous frequency q ( t )  = 2wot (regardless of whether 
g, ( t )  is correctly  selected as the  analyzing  wavelet),  then 
from (43), ( 5 5 ) - ( 5 8 ) ,  the  normalized  energy  moments  are 
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Fig. 8. Division of chirp  signal ~ ( f )  given by (86) into rime intemals  ober 
which different Gabor wavelets  from  the set of f i ve  depicted i n  Fig. 6 will 
be "active." 

exp [ -4 (2uor  - ".)'I. (92) 
urn 

Out-of-Band Energy Moments: Suppose q # m* ( t )  at time 
t (although it is possible  that g, ( t )  may be  selected as the 
analyzing  wavelet).  To  determine  the  normalized  out-of- 
band energy moments  (energy  moments  from  band q) ,  use 
the  approximation  (41) with CY = wq 

and 

(93) 

(94) 

For  narrowband  channel filters, these  approximations 
yield accurate  approximations  for  the  moments of the re- 
sponses of any  channel  to  a  pure noise stimulus. 
Channel  Selection: Observing  from (88) that 2wot > 
(9/8)2-"  for m = m*(t ) ,  the ratios  of (89)  to  (93)  and 
(90)  to  (94)  are  respectively  bounded  below by 

( 2 ) 2 3 q - 2 m f i  16 snrO (97) 

(E) 2 5 q - 4 m f i  snrO (98) 
where 

For snro large,  the in-band  channel will dominate the other 
(noise) channels.  Thus,  the  channel  containing the  local 

signal frequencies  (the  in-band  channel) will be  selected 
as the analysis  channel with a  high  probability.  However, 
from  (97)  and  (98) it  may again  be  observed  that  the  en- 
ergy  operator  has  increased  sensitivity  when  the signal to 
be  detected is lower  frequency,  and  immersed in high- 
frequency  noise  [see the  discussion below (72)]. 

ESA Computation: If the  correct  channel is selected, 
then since  the  ratio of the  square of (89) to (91),  and of 
the  square of (90)  to (92 )  are both bounded below by 

2" + 2 J l n z  snrO 

then for reasonably high snro the normalized  energies  sat- 
isfy 

Hence, when snro is large,  the  computation of the  ESA 
using  the channel that  yields the  maximum normalized en- 
ergy  response will yield the  desired  ESA  computations 

$ ( r )  5 (2wot)* 

ri2(t) = u:, 

for  each r E [ 1 / 2 M ~ , J ,  1 /(2w0)] 

C. Simulation  Results 
In  order  to verify  the predicted results developed in the 

preceding,  the  multiband  ESA  was  implemented  and  ap- 
plied to  several  interesting  signals,  using  the  MATLAB 
Signal Processing  Toolkit  [25]. In all of the  examples  the 
filters in  the  Littlewood-Paley  filter bank  (80)  were  ap- 
proximated by equiripple  (Chebyshev) FIR bandpass fil- 
ters numerically designed  using  the  Parks-McClellan  al- 
gorithm  [26].  The filters are  all of order 101. As  in the 
preceding analysis, five channel filters  were  used (includ- 
ing baseband).  The  frequency  response  magnitudes of the 
five filters are  shown in Fig.  9;  note that unity-magnitude 
passbands were used to simplify  the  computation of (72). 
The ESA results in the simulations  were  computed  using 
the discrete-time  Teager-Kaiser energy operator  [9];  while 
the theoretical  development of the  discrete-time  operator/ 
ESA  is  nontrivial  (and hence not developed  here),  imple- 
mentation of it requires  only  minor modifications  relating 
primarily to  sampling  approximations that do  not  present 
an issue in the  context of these  simulations. 

In the first simulation  example,  a  digital  implementa- 
tion of the  multiband  ESA  was  applied  to  a signal com- 
posed of a  sum of two  sinusoidal  functions,  one  with  mag- 
nitude 1.0 and 1000 Hz  frequency,  and  the  other  with 
magnitude 0.2 and  a  2000 Hz frequency.  The  signal  (and 
all other  simulated  signals)  were  sampled at a  rate of 
10,000 Hz.  This  example  corresponds  to  the  analysis  in 
Section VI-A,  where  one of the  sinusoid  components  may 
be  considered  to  be  noise.  Fig.  10(a)  and (b)  show the 
computed  ESA results using  the  multiband  ESA. Both the 
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Fig. 9. (a)-(@  Magnitude  responses of the  filters  composing  the  multiband 
implementation  used  in  the  simulations.  The  filters  were  designed  using 
the  Parks-McClellan  FIR  equiripple  (Chebyshev)  algorithm. ( f )  Plot of all 
five  magnitude  responses  showing  the  small  amount of band  overlap. 

Fig. 10. ESA applied  to  sum  of  two  sinusoidal  components  with  (magni- 
tude,  frequency) = (1.0. lo00 Hz) and (0.2,  2000 Hz). (a), (b) Amplitude 
and  frequencies  computed  using  the  mulliband ESA. (c).  (d)  Amplitude 
and  frequencies  computed  using  the ESA wlifhour filtering. 

signal amplitude  and  the  signal  frequency of the  compo- 
nent  having the  largest  energy  were  approximated with a 
high  accuracy,  although a small  ripple in the  computed 

3259 

result may be  observed. By comparison,  Fig. 1O(c) and 
(d)  show the  computed  ESA results without filtering. In 
this case,  the  ESA result  is extremely  poor  and  cannot 
even be considered  to  be  useful.  Fig.  ll(a)-(d)  depicts a 
similar  result, only this  time  the  signal  is a unity-magni- 
tude  1000  Hz  sinusoid  added  to a 1200 Hz  sinusoid  with 
magnitude  0.3.  Similar  high-quality results were  ob- 
tained,  demonstrating  the capability  of the  multiband  ESA 
to provide  excellent  resolution,  provided  that  the  signal 
components  do not fall within the  same  band. 

Fig. 12(a) depicts a chirp signal having a 3000 
Hz/second  sweep  rate  (1000 Hz initial frequency),  im- 
mersed in additive  Gaussian  white  noise.  The  signal-to- 
noise  ratio (SNR) is  15 dB.  Fig.  12(b)  and  (c)  depict  the 
result of the  multiband  ESA  computation;  again,  the^ re- 
sults are highly accurate,  although  there  is  noticeable fluc- 
tuation in the  estimate of the  amplitude. If plotted,  the 
estimated  instantaneous  frequencies  could not be  dis- 
cerned,  since  they  fall  directly  on  the plot  of the  computed 
result. The  root-mean-squared  (rms)  error  relative to the 
ideal  was computed  for both the  AM  and  FM  estimates, 
and  found to  be  0.039  (AM  rms  error)  and  11.4  Hz  (FM 
rms error). By comparison,  Fig.  12(d)  and (e) shows  the 
ESA computation  obtained  without any  filtering. The 
computed rms values  were  0.77  (AM  rms  error)  and 
594.17  Hz  (FM  rms  error).  Clearly,  the  multiband  ap- 
proach affords  a vast  improvement. Both results (with  and 
without  filtering)  could be  improved by some kind of post- 
processing,  e.g., low-pass or median post-smoothing,  but, 
in any case  far  superior  results  are clearly obtained by 
using the  multiband  approach  to  isolate  the  signal  infor- 
mation. 

Fig. 13(a) depicts  another  chirp  signal, with  initial fre- 
quency 2000  Hz  and a 3000  Hz/sec  sweep,  only this time 
with  a 20  Hz  amplitude  modulation.  The signal was  im- 
mersed in noise  as  depicted  in  Fig.  13(b) (SNR = 15 dB). 
The  ESA results  with  filtering are  shown in Fig.  13(c)  and 
(d)  (AM  rms  error = 0.046, FM rms error = 32.4 Hz) 
and without  filtering  in Fig.  13(e)  and  (f)  (AM rms error 
= 0.27,  FM rms error = 543.41  Hz).  Again,  the  multi- 
band  ESA  results present  enormous  improvement  over  the 
simple  ESA  computation. 

Finally,  Fig.  14(a)  depicts  an  AM  (20  Hz) noisy chirp 
signal (SNR = 15  dB) with initial frequency  2400  Hz  and 
a 3000  Hz/sec  sweep  rate.  Fig.  14(b)  and (c) depict  the 
results of the  multiband  ESA  computation.  The  computed 
errors  were  found  to  be 0.044 (AM  rms  error)  and  59.8 
Hz  (FM rms error).  This  last  example is presented  since 
the  instantaneous  frequencies of the  chirp  signal  compo- 
nent sweep well across a transition  from  one  channel 
passband to  another,  demonstrating  the  sustained,  contin- 
uous performance of the  multiband ESA as  predicted in 
Section V-C. Fig.  14(d)  depicts  the transitions between 
the two  highest  frequency  channels  (labeled  as  channels 
2 and 1) that  were  automatically  selected  by  the  multiband 
ESA algorithm  according to the  maximum  criterion in 
(72).  Clearly, (72) oscillates  quite a  bit between  channels 
2 and 1 near  the  theoretical  cross-over  point  of  2500  Hz. 
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Fig. 12. ESA computation  applied to the noisy c h ~ r p  signal  depicted  in (a). (b).  (c)  Amplitude  and  frequenc~es  computed  using 
the  multiband ESA. (dl,  (e)  Ampl~tude  and  frequencies  computed  using  the ESA wdthouf filtering. 
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(d) ( e )  
Fig. 14. ESA computatlon  applied  to noisy AM chirp  signal  depicted i n  (a), with  instantaneous  frequency that sweeps  across 
filter passbands.  (b), (c) Amplitude  and  frequencies  computed  using the multiband ESA. ( d ) .  (e) transitions between  channels 
2 and 1 according to (72).  

This is not surprising,  since  the filter transition width  is 
about 50 Hz, and the  chirp  sweep is fairly slow, Of course, 
the oscillation between  channels is not undesirable;  rather, 
it is a natural consequence of the maximizing  criterion 
( 7 2 ) ,  and  demonstrates  the  robustness of the multiband 
ESA for the  main goal  AMiFM  demodulation in the  pres- 
ence of noise.  Finally.  Fig.  14(e)  shows  that  a  single 
switch from  channel 2 to  channel 1 does occur (at 2500 
Hz) when the  multiband ESA is applied to the  same signal 
14(a), but without noise. 

VII. CONCLUSION 
This  paper has developed  a  multibandiwavelet-like  ap- 

proach for  capturing  AM-FM  information  from noisy 
modulated  signals. An in-depth  statistical  analysis  was 
presented of the nonlinear energy operator 9 (s) = (S)’ - 
sf, and of a  related  energy  separation  algorithm (ESA). It 
was demonstrated  that  overall  approach is  greatly im- 
proved by first filtering the  observed signal  with multiple 
bandpass  filters, and at each  instant  analyzed  using the 
dominant  local  channel  response.  Importantly, uniform 
worst-case  performance  across  the  spectrum  can only be 
attained by using  a  constant-Q,  or  multiscale  wavelet-like 
filter bank. 

Future work that  remains  to  be  accomplished  includes 
the analysis of digital  implementations of the  systems  de- 
scribed herein,  using  the  discrete-time  Teager-Kaiser 
energy operator [ 5 ] ,  and  also  extensions of the  para- 
digm  that  will  allow for  the  analysis of multicomponent 
AM-FM signals of the  form 

K 

The problem  then  involves  the  tracking of multiple  com- 
ponents that may merge,  vanish,  or possibly contains  dis- 
continuities.  Although  the problem is difficult, we  suspect 
that the  applications of the  model (99) will be very wide- 
spread. 

APPENDIX A 

Proof of Theorem 1: We first  note that by Taylor’s 
theorem with remainder 

where 

(1 - b ) d ( t  - bx) db. (A.2) 

From (1) and  (A.  1)  we  have 
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we obtain 

by an interchange of integrals  and  the  Cauchy-Schwarz 
inequality. 

Furthermore, from (A.2), (A.6), and ( 2 )  we  have 

The proof  is completed by combining (A.5) ,  (A.6) ,  and 
(A.8) .  0 



Now, 

G , ( t ;  m, n) = 

where 

3263 

& k . o ( t ;  m, E) 

= j j lg,(x)l Igz(Y)l la ( t  - x)a ( t  - Y )  
RZ 

- a2(t)/  dr dy 

5 S j 1 gl(x)I I g2(y)l I a(r - x ) ~  1 a(r - y) 
R2 

- a(t)I dr dy 

+ s j Igl(x)l lg*(Y)l la(t) l  l a 0  - x) 
R? 

- a(t)I dy 

5 arnax[El 1, Ig*(Y) l  la ( t  - Y) - a ( ~  dY 

+ E 2  1 l g l ( 4  l a ( t  - 4 - a@) /  d* . ( B . 3 )  
R 1 

However,  from (A.6)  and (A.8) we  have that 

SR I g2(Y) I I Q, ( t ,  y )  I dy 5 Az(g2) 8 (wi) 

so that (B.2) becomes 

&k.p( f ;  m, n) 5 (arnaJ2tgl ~2 (g2)  + 92 A ~ ( ~ I ) I  S(mi ) .  

(B .4) 
We  also  have  from (A.6) and (A.7)  that 

j, lgz(y)l la(r - Y) - dr = 2 AI(82) 6(a). 

so that (B.3) becomes 

E k , o ( t ;  m, n) 5 2arnm[El Al(g2) + E 2  A ~ ( g l ) l  S(a). 

(B.5) 
Combining (B . l ) ,   (B .4 ) ,  and (B.5) completes  the 

proof. 0 
Proof of Theorem 2: From (3) and (A.  1) we  have 

‘k(s,) = (,io)? - s& = ( s  * 8)’ - (s * g)(s * g). 
(B.6) 

The  proof  follows by applying  Lemma 1 to  the first term 
of (B.6) with g ,  = g2 = go,  by also  applying  Lemma 1 to 
the second  term of (B.6) with g ,  = go, g2 = g, and by 
taking the differences of the  respective  approximations to 
yield (35). The  bound (39) follows easily by applying  the 
triangle inequality to  the  sum of the  errors of these 
approximations. 0 

Note: Equation (B.6)  has  also  been  used  in [27] as  an 
alternative way of applying  the energy operator  to  sam- 
pled, bandpass-filtered speech  signals,  as a means  for re- 
ducing the discretization effects  introduced by using  dis- 
crete derivative  operators  to  approximate \E. 
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APPENDIX C 
Proof of Theorem 3: Clearly 

. d w < A + B ,  

where 

A = - [  1 
(aZk - 22k1 1 G,(w) l *@(w)  dw 277 R 

and 

NOW A = 0 when k = 0, hence  assume k 2 1. Using the 
identities, 

W 2 k  - a?k - 
2 k -  I 

- (w  - a)  c W 2 k - l - f a f  = (w + a )  
i = o  

21- 1 
, w 2 k - I - i  (-CY)' 

I = O  

and from (29) it follows  that 

2 k -  1 

where the  equality  follows  from  the  symmetry of H(w).  
Simple  algebraic  inequalities yield 

2 k -  1 

i = O  l W 2 k - ' - i  a I 5 2 k ( / w ( 2 " - '  + I a I 2 k - I ) .  (C.2)  

Substituting (C.2) into (C.l)  and  applying  the  Cauchy- 
Schwarz inequality yields 

where the equality  in (C.3) is obtained  from (26 ) .  Finally, 
the  simple inequality 

( 1 ~ 1 2 k - l  + ~ ~ l ~ ~ - ~ ) ~  I 2 ( W 4 k - 2  + a 4 k - 2  1 
combined with (28 )  yields 

(C.4) 

where  the simple  inequality 5 Ib/ + 1 is used 
to obtain (C.4).  The  kth-order  spread V$) in (C.4) is de- 
fined in (26 ) .  

In  addition. 

from (28) and (29 ) .  Combining  (C.4)  and (C.5) yields the 
bound (44). 0 
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