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Abstract. Hardware lock-elision (HLE) introduces concurrency into legacy lock-

based code by optimistically executing critical sections in a fast-path as hardware

transactions. Its main limitation is that in case of repeated aborts, it reverts to

a fallback-path that acquires a serial lock. This fallback-path lacks hardware-

software concurrency, because all fast-path hardware transactions abort and wait

for the completion of the fallback. Software lock elision has no such limitation,

but the overheads incurred are simply too high.

We propose amalgamated lock-elision (ALE), a novel lock-elision algorithm that

provides hardware-software concurrency and efficiency: the fallback-path exe-

cutes concurrently with fast-path hardware transactions, while the common-path

fast-path reads incur no overheads and proceed without any instrumentation. The

key idea in ALE is to use a sequence of fine-grained locks in the fallback-path to

detect conflicts with the fast-path, and at the same time reduce the costs of these

locks by executing the fallback-path as a series segments, where each segment is

a dynamic length short hardware transaction.

We implemented ALE into GCC and tested the new system on Intel Haswell

16-way chip that provides hardware transactions. We benchmarked linked-lists,

hash-tables and red-black trees, as well as converting KyotoCacheDB to use ALE

in GCC, and all show that ALE significantly outperforms HLE.

Keywords: Multicore, Hardware Lock Elision, Hardware Transactional Memory, Al-

gorithms

1 Introduction

Hardware lock-elision (HLE) [30] introduces concurrency into lock-based critical sec-

tions by executing these sections in a fast-path as hardware transactions. However, hard-

ware transactions are best-effort in current Intel Haswell [31] and IBM Power8 [8] pro-

cessors, which means that they have no progress guarantee: a hardware transaction may

always fail due to a hardware-related reason such as an L1 cache capacity limitation, an

unsupported instruction, or a page protection or scheduler interrupt; in all such cases it

may never commit [17]. Therefore, to ensure progress in HLE, a critical section that re-

peatedly fails to commit in the hardware fast-path, reverts to execute in a fallback-path

that acquires the original serial lock. This fallback-path is expensive because it aborts

all current fast-path hardware transactions and executes serially.



Recent work by Afek et al. [32] and Calciu et al. [24] introduced the lock-removal

(or lazy subscription) lock elision scheme. Lock-removal sacrifices safety guarantees in

favor of limited concurrency: the fast-path can execute concurrently with the fallback-

path, however, the fast-path cannot commit as long as there is a fallback in process,

and can observe inconsistent memory states. These inconsistent states can lead to exe-

cuting illegal instructions or to memory corruption. It was claimed that HTM sandbox-

ing significantly minimizes chances of unsafe executions, since any inconsistent hard-

ware transaction should simply abort itself, and therefore, one can provide an efficient

software-based compiler and the necessary runtime support to detect and handle the un-

safe cases that “escape” the HTM sandboxing mechanism. Unfortunately, recent work

by Dice et al. [12] shows that this is not the case: there are new cases of unsafe execu-

tions, ones not identified in the original lock-removal HLE papers, and require complex

compiler and runtime support that would slow lock-removal HLE to a point that elimi-

nates the advantages of using it in the first place. Instead, Dice et al. [12] propose new

hardware extensions that can provide a fully safe HTM sandboxing capability.

Roy, Hand, and Harris [2] proposed an all software implementation of HLE in which

transactions are executed speculatively in software, and when they fail, or if they cannot

be executed due to system calls, the system defaults to the original lock. Their system

instruments all object accesses, both memory reads and writes, and employs a special

kernel-based thread signaling mechanism. This software based system provides better

concurrency than HLE but introduces software-software concurrency that complicates

the required compiler and runtime support and results in a slow scheme. As an example

of a possible software concurrency complication, consider the execution shown in Fig-

ure 1(B), where thread P removes a node from a linked-list, and thread Q concurrently

reads the removed node. In this case, thread P also modifies the removed node out-

side the critical section, which results in a divide by zero exception in thread Q. In the

original code that uses a lock instead of atomic blocks (software transactions), this er-

roneous behavior is impossible. This problem is also known as privatization-safety [25,

28, 1, 2, 10]. Fixing this problem in software is expensive, and Attiya et al. [6] show

that there is no way to avoid these costs. Afek, Matveev and Shavit [4] proposed PLE,

an all-software version of HLE for read-write locks that uses a fully pessimistic STM,

but still has software-software concurrency that results in using the expensive quies-

cence mechanism [10, 21, 22]. A recent paper by Dice et al. [13] proposes to integrate

both hardware and software into an adaptive scheme, but has a software mode that

has software-software concurrency as well, and proposes manual code modifications to

avoid software costs.

In this paper we propose amalgamated lock-elision (ALE), a novel lock-elision al-

gorithm that provides both hardware-software concurrency and efficiency: the fallback-

path executes concurrently with fast-path hardware transactions, while the common-

path fast-path reads incur no overheads and proceed without any instrumentation. The

problem is that instrumenting all reads and writes in hardware simply makes it as slow

as the software path, so why use hardware in the first place. The key idea in ALE is to

use a sequence of fine-grained locks in the fallback-path to detect conflicts with the fast-

path, and at the same time, reduce the costs of these locks by executing the fallback-path

as a series segments, where each segment is a dynamic length short hardware transac-
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Fig. 1. (A) An example of unsafe hardware-software concurrency in lock-removal HLE. (B) An

example of unsafe privatization due to software-software concurrency.

tion. Also, ALE forbids software-software concurrency, so that there is no need for

complex and expensive software support that it would otherwise require. Instead, the

focus in ALE is on making hardware-software concurrency efficient.

The new ALE protocol combines several ideas. First, it uses a “mixed” fallback-

path that uses both software and hardware, in the style of [26, 27], to preserve full

safety guarantees while the fallback-path executes concurrently with fast-path hardware

transactions. To understand the problem in doing so, Figure 1(A) presents a simple un-

safe scenario of lock-removal HLE [32, 24], that may occur when the fallback-path of

Thread 2 executes concurrently with a fast-path hardware transaction of Thread 1. As

can be seen in the figure, first the fallback updates X, and then the hardware transaction

reads both X and Y. But, since the fallback has not yet updated Y, the hardware trans-

action has read a new X and an old Y relative to the fallback. As a result, at this point

in time, the hardware transaction executes on an inconsistent memory state and may

perform random operations that may corrupt memory or even crash the system [12]. In

ALE, the mixed fallback-path defers the writes to the commit, and executes all of the

writes in a “one shot” short hardware transaction, so that intermediate states (some mix

of old and new values) are never visible.

ALE combines the mixed fallback-path with fine-grained locks to provide concur-

rency between fast-path hardware transactions and the fallback-path. More specifically,

a lock ownership array, in the style of [20, 11, 29, 14], coordinates the reads of the

fallback-path with the writes of the fast-path. Figure 2(A) depicts this coordination,

where Thread 1 executes a fast-path hardware transaction and Thread 2 a fallback-path.

On start, both read X and Y, and the fallback-path also locks the associated locks of

X and Y. Then, the fast-path writes to X, but before actually committing it first ver-

ifies that X is unlocked. In this way, the fast-path cannot overwrite the fallback-path

reads. In Figure 2(A), X is locked, so the fast-path of Thread 1 detects this conflict and

aborts. However, if there were no real conflict, the fast-path would be able to commit

concurrently.

Figure 2(A) also shows the use of a write-buffer in the fallback-path. The write-

buffer is necessary to delay the actual writes to the commit-phase, where the ALE
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Fig. 2. (A) The mixed fallback-path of ALE uses fine-grained locks for conflict detection, and a

write-buffer that defers actual writes to the commit, where all writes execute in a short “one-shot”

hardware transaction. (B) The fallback-path executes as a series of segments, where each segment

is a short hardware transaction that reduces the cost of lock barriers it includes to one barrier (the

HTM commit).

protocol will execute all of the writes as a “one shot” short hardware transaction. In

the unlikely case this short hardware transaction fails, ALE acquires the critical sec-

tion lock, that aborts all hardware transactions, and executes the writeback as is (in

software). Notice that this aspect of ALE is similar to HLE, however, hardware trans-

actions in ALE abort and block only for the short duration of the writeback and not for

the whole fallback-path execution.

The downside of having a lock for each read of the fallback-path is the expensive

memory barriers: a lock acquire must execute a memory barrier to become visible im-

mediately, which forces the processor to drain the store buffer on each lock acquire,

before proceeding to the next instruction. To overcome this overhead, ALE elides most

of the memory barriers of lock acquires, by executing the fallback-path as a series of

segments, where each segment executes as a short hardware transaction. A lock acquire

that executes inside a hardware transaction does not need to become visible imme-

diately, and therefore, does not require a memory barrier. As a result, multiple lock

acquires that execute in a hardware segment, involve using only one barrier (instead of

many) that executes as part of the hardware commit. Figure 2(B) depicts this idea: on

the left, the fallback-path executes without segmentation, which involves executing a

memory barrier for each read, while on the right, the hardware segmentation allows to

reduce the number of barriers from the number of reads to the number of segments.

What if a hardware segment fails to commit? For this purpose, ALE implements

a dynamic segmentation [5] policy that adjusts the length of each segment based on

hardware aborts. In particular, the protocol counts the number of reads and writes that

execute in the hardware segment, and when this count reaches a predefined limit, it

commits the hardware segment and starts a new one. The predefined limit is dynamic:

it gets reduced on excessive aborts, and gets increased on successive commits. In the



extreme case, when a segment cannot commit (unsupported instruction or some inter-

rupt), it reverts to execute in the standard software mode, where each read involves a

memory barrier. It is important to notice that subsequent segments may still commit in

the hardware, so the fallback is local for the specific segments that repeatedly fail.

We implemented ALE in GCC using the recent transactional memory support [3]

and tested it on an Intel Haswell 16-way chip. We executed micro-benchmarks includ-

ing linked-lists, hash-tables and red-black trees, which all show that ALE is significantly

more performant than HLE due to the additional concurrency it provides. In addition,

we tested ALE by converting KyotoCacheDB [18], a commercially used database man-

agement library, from read-write locks to the GCC based ALE. Our results are encour-

aging and show that the ALE implementation is two times faster than an HLE one.

2 Amalgamated Lock-Elision

2.1 Algorithm Overview

The key challenge in the design of ALE is efficiency: it is hard to provide (1) fallback-

path that can execute concurrently with fast-path hardware transactions and preserve

(2) full safety guarantees. This is why researchers propose to sacrifice safety [32, 24] or

introduce new hardware extensions [12]. In contrast, ALE provides these properties on

commodity multicore architectures of Intel and IBM.

In a nutshell, the ALE protocol works as follows. The fallback mechanism of ALE

is similar to HLE: a critical section first starts as a fast-path hardware transaction, and

only when it fails multiple times to commit in the hardware, it reverts to execute in the

fallback-path.

Safe concurrency. ALE mixes fine-grained locks and short hardware transactions in the

fallback-path to detect all possible conflicts between fast-path hardware transactions

and the fallback-path. First, the fallback-path locks each read location at encounter-

time, while fast-path hardware transactions verify the locks of locations they want to

write at commit-time. In this way, the fast-path writes detect fine-grained conflicts with

the fallback-path reads. Second, the fallback-path writes are buffered and delayed to

the commit-phase, where they execute in a “one shot” short hardware transaction. As

a result, the hardware detects all conflicts involving fallback-path writes. Put together,

both techniques ensure that all conflicts between fast-path hardware transactions and

the fallback-path are detected, which allows safe concurrency between the two. Notice,

that in the case when there is a conflict, the one that aborts is the fast-path and not the

fallback-path. Finally, ALE executes fallbacks one at a time, so there are no possible

fallback-to-fallback conflicts.

Efficiency. A lock acquire involves executing an expensive memory barrier, and there-

fore, a fallback-path that involves many reads, will result in many lock acquires that

introduce an unacceptable performance penalty. To reduce locking costs, the fallback-

path executes as a series of segments, where each segment executes as a short hardware

transaction. All lock acquires that execute within a single hardware segment become

visible atomically when the hardware segment commits, and therefore have no need



to execute individual barriers. This allows multiple lock acquires to share the cost of

a single barrier (of the hardware commit). Because hardware transactions may abort,

ALE splits the fallback-path dynamically: it adapts each segment length to the specific

abort behavior of the code, and falls back to execute the standard locking barriers of the

segment, when the segment repeatedly fails to commit.

Naturally, the benefit of ALE depends on the success ratio of the short hardware

transactions that execute in the fallback-path. In particular, a high success ratio of the

fallback-path writeback is necessary to avoid excessive fast-path aborts. Our empirical

results show that this is usually the case, because most operations follow the 80:20 rule

(80% reads and 20% writes [23]). In general, other read-write distributions are possible,

but we believe that our benchmarks that present a set of popular data-structures and a

real-world application are encouraging. In addition, besides the writeback, the fallback-

path segments may repeatedly fail to commit in hardware. For example, a segment will

always fail when it will try to execute an unsupported instruction or encounter a page

fault interrupt. In our experiments, most of the segments succeed to adapt to the specific

code behaviors, and only in rare cases, segments must revert to software and execute

one barrier per lock.

2.2 Algorithm Details

Algorithm 1 and Algorithm 2 present the pseudo-code for ALE fast-path and fallback-

path: each critical section first tries to execute in the fast-path as a hardware transaction,

and when it repeatedly fails to commit it reverts to execute in the fallback-path. The

pseudo-code assumes an elision process for a critical section that is protected by a lock

named section-lock, and presents a simplified version of the code that omits the code

that handles nested locks and hardware segmentation (similar to [5]).

Global Structures The ALE protocol is based on the following global structures:

– locks-array : An ownership array, in the style of [11, 29], that uses a hash function to

assign a 64bit lock for each memory location (all initially 0). In our implementation

we allocate an array with 2
19 locks and use a “striping” hash function that maps

each consecutive 2
8 bytes of memory to the same lock.

– fallback-lock : A 64bit lock that is also used as a counter by the fallback-path to

lock locations. A zero value represents that there is no fallback executing (initially

0).

– acquire-counter/release-counter : 64bit counters that the fallback-paths use to ex-

ecute one at a time (both initially 1).

In ALE all locks and counters only increase, except for the fallback-lock that alter-

nates between 0 and ever increasing number. This is why ALE uses 64bit counters to

avoid overflows.

Fast-Path Algorithm 1 presents the pseudo-code for the fast-path. On start, it resets a

local lock-id-log to an empty set, and then initiates a hardware transaction (lines 2 - 3).



Algorithm 1 ALE: fast-path

1: function FAST PATH START(ctx)

2: ctx.lock-id-log← ∅
3: while HTM START() = htm-failed do

⊲ Outside HTM

4: ... some fast-path retry policy ...

5: if no retry then

6: ... switch to fallback-path ...

⊲ Inside HTM

7: if section-lock 6= 0 then

8: HTM ABORT()

9:

10: function FAST PATH READ(ctx, addr)

11: return load(addr) ⊲ Direct read

12:

13: function FAST PATH WRITE(ctx, addr, v)

14: lock-id← HASH(addr)

15: ctx.lock-id-log ∪ = {lock-id}
16: store(addr, v) ⊲ Direct write

17:

18: function FAST PATH COMMIT(ctx)

19: if ctx.lock-id-log = ∅ then

20: HTM COMMIT() ⊲ read-only

21: return

22: if fallback-lock = 0 then

23: HTM COMMIT() ⊲ no fallback

24: return

25: for id ∈ ctx.lock-id-log do

26: if lock-array[id] = fallback-lock then

27: HTM ABORT() ⊲ conflict found

28: HTM COMMIT() ⊲ no conflicts

Then, inside the hardware, it first puts the section-lock into hardware monitoring, by

verifying that this lock is free (lines 7 - 8). This step provides the fallback-path with

an ability to abort all hardware transactions (for the case when the fallback writeback

short hardware transaction fails). Next, during the execution, the reads proceed directly

without any instrumentation (line 11), while the lock ids of writes are logged to the

lock-id-log (lines 14 - 15). On commit, if the fast-path transaction has been read-only

or detects that there is no fallback (lines 19 - 24), then it can simply commit. Otherwise,

the fast-path traverses each logged lock-id and verifies that it is free (lines 25 - 27).

If some lock is not free, then there is a conflict with a fallback read, and the fast-path

aborts, else the fast-path commits safely and concurrently.

Fallback-Path Algorithm 2 presents the pseudo-code for the fallback-path. On start, it

resets a local write-log to an empty set, and then acquires the fallback-lock (lines 2 - 3).

Next, it initiates the process of hardware segmentation (line 4) that elides the expensive

per lock barriers. During the execution, both read and write first execute the segmen-

tation checkpoint function (lines 6 , 17), that controls the dynamic split of hardware

segments (increments a local counter of reads/writes and splits the segment when it

reaches a limit). Then, on write, it simply buffers the write into the write-log (line 18),

and on read, it first checks if the read location is in the write-log (lines 7 - 8). If this

is the case, then it returns the value from the write-log, else it proceeds to locking the

location and reading its value from the memory (lines 9 - 15).

As can be seen in the read procedure, to lock a read location, the ALE writes the

fallback-lock into the lock, and only executes the actual barrier of the lock if the current

segment reverted to the software. Notice that only a single fallback can execute at a

time, and therefore, the fallback-lock is actually specific to the fallback that currently

executes. This allows a fast-path hardware transaction to identify that a lock in the

locks-array is taken, by checking that the lock value equals to the current value of the



Algorithm 2 ALE: fallback-path

1: function FALLBACK START(ctx)

2: ctx.write-log← ∅
3: ACQUIRE FALLBACK LOCK(ctx)

4: HTM SEGMENT START()

5: function FALLBACK READ(ctx, addr)

6: HTM SEGMENT CHECKPOINT()

7: if (addr, val) ∈ ctx.write-log then

8: return val

9: lock-id← HASH(addr)

10: lock-array[lock-id]← fallback-lock

11: if HTM ACTIVE() then

12: return load(addr) ⊲ Elide barrier

13: else

14: MEMORY BARRIER() ⊲ no HTM

15: return load(addr)

16: function FALLBACK WRITE(ctx, addr, v)

17: HTM SEGMENT CHECKPOINT()

18: ctx.write-log ∪ = {addr, v}

19: function FALLBACK COMMIT(ctx)

20: HTM SEGMENT COMMIT()

21: WRITE BACK(ctx)

22: RELEASE ALL LOCKS(ctx)

23: function WRITE BACK(ctx)

24: while HTM START() = htm-failed do

25: ... some write-back retry policy ...

26: if no retry then

27: section-lock← 1 ⊲ aborts HTM

28: FLUSH(ctx.write-log)

29: section-lock← 0 ⊲ resumes HTM

30: return

31: FLUSH(ctx.write-log)

32: HTM COMMIT()

33: function ACQUIRE FALLBACK LOCK(ctx)

34: turn← FETCH&ADD(acquire-counter)

35: while release-counter 6= turn do

36: spin-wait ⊲ wait for my turn

37: fallback-lock← turn

38: MEMORY BARRIER()

39: function RELEASE ALL LOCKS(ctx)

40: fallback-lock← 0 ⊲ releases all locks

41: FETCH&ADD(release-counter)

fallback-lock. As a result, the fallback-path can release all locks at once, by a single

write that resets the fallback-lock. The next fallback-path will use a subsequent value of

the acquire-counter, and therefore, all previous locks will not be seen as taken (lines 34 -

41).

The segmentation process of ALE is dynamic: it adjusts the length of each segment

based on hardware aborts it encounters. More specifically, it counts the number of reads

and writes in each segment checkpoint call, and when this count reaches a predefined

limit, then it initiates a split procedure: commits the current segment and starts a new

one. On start, the predefined limit is set to a large value (100 shared accesses), and

during the execution gets reduced by 1 on a hardware abort, and gets increased by 1 on

4 successive hardware commits. This simple algorithm could be tuned and made more

adaptive.

The success ratio of segmentation also depends on the implementation of the write-

set buffer lookup function. If the lookup traverses the whole buffer on each read, then

potentially it may introduce excessive HTM capacity aborts into the segments. To avoid

this negative effect, ALE implements the write-set buffer as a hash table with 64 buck-

ets, and uses a bloom filter [11, 7] to minimize lookups.



HTM Retry Policy Our empirical evaluation shows that the HTM retry policy is per-

formance critical (also shown in [16, 32]). We implement a simple policy that we found

to perform well. When a fast-path hardware transaction fails, ALE checks the abort

code, and if the IS RETRY flag is set, then it retries the fast-path. Else, it reverts to the

fallback-path. The limit of retries is set to 10. The short hardware transaction of the

fallback-path gets retried in a similar way, while the fallback-path hardware segments

retry based on the adaptive segmentation [5].

3 Performance Evaluation

We benchmarked using an Intel Core i7-5960X Haswell processor with 8-cores and sup-

port for HyperThreading of two hardware threads per core. This chip provides support

for hardware transactions that can fit into the capacity of the L1 cache. It is important to

notice that the HyperThreading reduces the L1 cache capacity for HTM by a factor of 2,

since it executes two hardware threads on the same core (same L1 cache). As a result, in

some benchmarks there is a significant penalty above the limit of 8 threads, where the

HyperThreading executes and generates an increased amount of HTM capacity aborts.

The operating system is a Debian OS 3.14 x86 64 with GCC 4.8. We added the

new ALE scheme into GCC 4.8 that provides compiler and runtime support for instru-

menting shared reads and writes and generated two execution paths (the fast-path and

the fallback-path), as part of the GCC TM draft specification for C++ [3]. Our results

show that the malloc/free library provided with the system is not scalable and imposes

significant overheads and false aborts on the HTM mechanism. As a result, we used the

scalable tc-malloc [19] memory allocator, which maintains local per thread pools.

We compared the following lock elision schemes:

1. HLE: This is the state-of-the-art hardware lock elision scheme of Rajwar et al.

[30], in which we also implement the advanced fallback mechanism (as described

in 2.2 and also noted in [16]). This scheme provides full safety guarantees, but

has no concurrency between fast-path hardware transactions and the fallback-path.

More specifically, a lock-based critical section starts in the fast-path as a hardware

transaction, and then immediately verifies that the lock of this section is free. In this

way, when the fast-path repeatedly fails to commit, it reverts to execute in serial

mode, in which it acquires the section lock that triggers an abort of all fast-path

hardware transactions.

2. HLE-SCM: This scheme combines HLE with software-assisted contention man-

agement [32]: it introduces an auxiliary lock to serialize fast-path hardware trans-

actions that repeatedly abort due to conflicts. In this way, it reduces unnecessary

hardware conflicts under high contention, and increases the success probability of

the fast-path.

3. Unsafe-LR: The unsafe lock-removal (lazy subscription) lock elision scheme [32,

24] that provides improved concurrency: the fallback-path can proceed concur-

rently with hardware transactions, however, hardware transactions cannot commit

as long as there is a concurrent fallback. This improves over HLE, but unfortu-

nately has no safety guarantees. As was shown in the work by Dice et al. [12],



lock-removal may result in reading inconsistent memory states, executing illegal

instructions, corrupting memory and more. However, we still provide results for

lock-removal, as a reference that shows the potential of making this scheme work

by providing the new hardware extensions proposed by Dice et al. [12].

4. ALE: Our new ALE scheme as described in Section 2 implemented into GCC.

3.1 Micro-benchmarks

We executed a set of micro-benchmarks on a red-black tree, hash-table and linked-list.

The red-black tree is derived from the java.util.TreeMap implementation found in the

Java 6.0 JDK. That implementation was written by Doug Lea and Josh Bloch. In turn,

parts of the Java TreeMap were derived from Cormen et al. [9]. We implemented a

standard linked-list, and use this list to implement a hash table, that is simply an array

of lists. In addition, we introduce node padding to avoid false-sharing. We measured

various padding lengths for small and large data-structure sizes, and found out that the

overall best padding size is 16 longs (each long is 64bit).

All data-structures expose a key-value pair interface of put, delete, and get opera-

tions. If the key is not present in the data structure, put will put a new element describing

the key-value pair. If the key is already present in the data structure, put will simply in-

sert the value associated with the existing key. The get operation queries the value for

a given key, returning an indication if the key was present in the data structure. Finally,

delete removes a key from the data structure, returning an indication if the key was

found to be present in the data structure.

Our benchmark first populates each data-structure to a predefined initial-size, and

then executes put() and delete() with equal probability. For example, a mutation ratio of

10%, means that there is 5% put() and 5% delete(). We choose a random key for each

operation from a key-range that is twice the size of the initial-size, so that mutations will

actually mutate the data-structure. We report the average throughput of 3 runs, where

each run executes for 10 seconds.

In top row of Figure 3, we present throughput results for a red-black tree with

1,000,000 nodes, and a hash-table with 262,144 nodes equally distributed over 8,192

buckets (approximately 32 nodes per bucket). We use a 20% mutation ratio for both

data-structures. In the next two rows, we present an execution analysis, that reveals

HTM (1) conflict, (2) capacity and (3) explicit abort ratios that occur in the fast-path,

and the (4) fallback ratio, the relative amount of operations that completed execution

in the fallback-path. The next three rows use the same format to present results for a

linked-list with 100 nodes and 2% mutation ratio, and Kyoto CacheDB (details in Sec-

tion 3.3). In these benchmarks, HLE and HLE-SCM exhibit similar performance so we

plot only HLE.

As can be seen in Figure 3, ALE matches and significantly outperforms HLE in

micro-benchmarks: for 16 threads, ALE is approximately 5.5-7 times faster than HLE

for the red-black tree, hash-table and the linked-list. Notice that Unsafe-LR also pro-

vides significant improvements over HLE. The result of Unsafe-LR is interesting, and

in some sense unexpected, since the concurrency that Unsafe-LR provides is limited

(hardware cannot commit when there is a fallback). This shows that hardware exten-
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Fig. 3. Results for micro-benchmarks and Kyoto CacheDB

sions proposed by Dice et al. [12] (not present in current processors) to make Unsafe-

LR fully safe will be beneficial in practice.

The main reason for the improvements of ALE is the full concurrency that it pro-

vides between fast-path hardware transactions and the fallback-path. In HLE, the fallback-

path aborts all fast-path hardware transactions when it starts, which is why HLE exhibits

a large amount of HTM conflict aborts (as can be seen in the HTM conflict abort ra-

tio graphs). This is not the case in Unsafe-LR, that allows the fallback-path to proceed

concurrently with fast-path hardware transactions. However, this concurrency is lim-

ited, because at commit-time fast-path hardware transactions must explicitly abort if

there is a concurrent fallback. This generates a large amount of HTM explicit aborts (as

can be seen in HTM explicit abort ratio graphs). In contrast, in ALE both HTM conflict

and explicit abort ratios are very low (except for the linked list where the HTM conflicts
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Fig. 4. Speedup results for 8 and 16 threads for various red-black tree sizes.

are a result of true contention). A side-effect of this is the reduced fallback-path ratios

in ALE, which allow ALE to provide better results.

We also measured the success ratios of short hardware transactions that ALE uses

in the fallback-path for segmentation and writeback. Our results show that the write-

back succeeds to commit as a short hardware transaction 90-95% of the time. Also,

the segmentation process works best for segment limits in the range of 20-40 shared

reads/writes (per segment), so it reduces the lock barrier overheads by at least an order

of magnitude.

3.2 Various Red-Black Tree Sizes

Figure 4 shows speedups of HLE, HLE-SCM, Unsafe-LR and ALE for 8 and 16 threads

(from left to right) for various sizes of red-black tree. The baseline in these executions

is 1-thread HLE.

We can see that ALE and Unsafe-LR are significantly faster than HLE and HLE-

SCM for 16 threads. However, for 8 threads, these differences become smaller since

less operations revert to execute in the fallback-path. This means that in order to see the

advantages of ALE over HLE there should be a sufficient amount of fallbacks.

Notice that HLE-SCM is only beneficial over the standard HLE for small 100 nodes

red-black tree on 8 threads. HLE-SCM reduces conflicts by serializing conflicting op-

erations via an auxiliary lock, and since this case (of a small tree) is highly contended,

it helps to reduce unnecessary conflicts and improve the overall performance.

3.3 KyotoCabinet

KyotoCabinet [18] is a suite of DBM data stores written in C++. In this benchmark,

we focused on the in-memory component of the suite, called Kyoto CacheDB, that

implements a bounded in-memory cache of key-value pairs where both the keys and

values are opaque byte arrays. Internally, Kyoto CacheDB splits the database into slots,

where each slot is a hash table of binary search trees. As a result, for each key, it first

hashes the key into a slot, and then hashes again into a hash table of the slot. Next, it

traverses the binary tree of the slot. The database ensures that the tree is bounded in size,

by evicting entries that are least recently used (LRU policy). For synchronization, Kyoto



CacheDB uses a single coarse-grained read-write lock to start a database operation, and

a per slot mutex lock to access a specific slot.

We replaced all locks of Kyoto CacheDB with ALE. Since our implementation of

ALE uses GCC TM, the transformation is automated by the GCC that generates the nec-

essary code paths and instrumentations. Our first comparisons of ALE to the original

Kyoto CacheDB showed that the original read-write lock is a performance bottleneck,

which concurs with the results of [13]. We also found that Kyoto performs an exces-

sive amount of explicit thread context switches due to the specific implementation of

reader-writer spin locks in the Linux pthreads library. Therefore, we replaced the orig-

inal read-write lock of Kyoto CacheDB with an ingress-egress reader-writer lock im-

plementation [14] that has no explicit context-switches. To the best of our knowledge,

the ingress-egress reader-writer locks perform the best on Intel machines (ingress/enter

counter and egress/exit counter for read-lock/read-unlock) [4]. We note that one could

use hierarchical cohort-based reader-writer locks [15] in our benchmark to reduce the

inter-thread cache traffic in Kyoto. However, this would not have a significant effect

since the performance analysis reveals that the cache miss ratio is already low (4%-

5%).

The benchmark for Kyoto CacheDB works in a similar way to our micro-benchmarks:

it fills the database to a fixed initial size, and then executes gets/puts/deletes with ran-

dom keys. Results are shown in Figure 3. We can see that ALE is twice faster than

HLE. Notice, that this is not the same improvement like in the micro-benchmarks,

where ALE was 5.5-7 times faster than HLE. The reason for this difference can be

seen in the analysis: the HTM abort ratios are much lower for Kyoto CacheDB com-

pared to the micro-benchmarks, which also results in low fallback ratios (1-2%). As

a result, the reduction in HTM aborts that ALE provides is less dominant than in the

micro-benchmarks, however, the ALE is still twice faster than HLE, and we believe that

with increased concurrency it will become even more faster. Notice that Unsafe-LR is

similar to ALE also due to low HTM aborts. However, in Unsafe-LR there is no safety

guarantees and the program may crash, while ALE provides full safety.

4 Conclusion

We proposed amalgamated lock-elision (ALE), a new lock-elision scheme that provides

concurrency between fast-path hardware transactions and the fallback-path, while pre-

serving full safety guarantees. The key idea is to split the fallback-path into dynamic

sections that fuse hardware and software with fine-grained locks in a way that provides

efficiency. Our empirical results show that ALE is significantly faster than hardware

lock elision (HLE) on both micro-benchmarks and a real use-case application, the Ky-

oto CacheDB. We believe that our results are encouraging, and show that hardware and

software may be mixed in new and unexpected ways that were not originally intended

by hardware and software designers.
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