
Amarino: A Toolkit for the Rapid Prototyping of Mobile 
Ubiquitous Computing

Bonifaz Kaufmann and Leah Buechley 
MIT Media Lab 

High-Low Tech Group 
Cambridge, MA 02139, USA 

bonifaz@mit.edu, leah@media.mit.edu

  

ABSTRACT 

Ubicomp applications increasingly involve smart phones that 

control or communicate with embedded systems.  Compelling 

examples in this space include tangible interfaces, environmental 

sensor networks, game controllers and automated homes. Across 

research, design, and hobbyist communities there is clearly a 

desire to build applications that involve combinations of mobile 

and non-mobile technologies.  However, constructing these 

applications is a laborious process that requires considerable 

breadth and depth of expertise in programming, electronics, 

industrial and interaction design. 

Amarino is a toolkit that enables the rapid prototyping of such 

applications by connecting the Android operating system to the 

Arduino microcontroller platform. It consists of an Android 

application, an Arduino library, and a collection of documentation 

and examples.  This suite of tools allows users to: 1) access 

Android events (ie:  compass orientation, accelerometer data, and 

text messages received) and send them to Arduino 

microcontrollers without doing any Android programming, and 2) 

quickly develop Android applications that receive data (ie: 

environmental sensor data) from (and send data to) Arduino 

microcontrollers.  This paper introduces Amarino and presents the 

results of a preliminary user study. 

Categories and Subject Descriptors 

H.5.2 [Information Interfaces and Presentation (e.g., HCI)]: 

User Interfaces – Haptic I/O, Input devices and strategies, 

Prototyping. 

General Terms 

Design, Human Factors 

Keywords 

Mobile Devices, Android, Arduino, Toolkit, Microcontroller, 

Interfaces, Communication, Tangible, Mobile Computing, Smart 

phones, Mobile Phones, Wearables 

1. INTRODUCTION 
When Weisner introduced “ubiquitous computing”, he motivated 

his discussion by articulating problems with current computing 

paradigms. “Even the most powerful notebook computer, with 

access to a worldwide information network, still focuses attention 

on a single box” [18].  Strikingly, this criticism can be applied to 

most of today’s technology, particularly smart phones. Smart 

phone “boxes” engross and isolate us with their power to capture 

our attention, a problem that has negative social and physical 

consequences.  Ambient and tangible interfaces can solve many 

of these problems—they can leverage a wide range of our existing 

physical skills and can convey information without demanding all 

of our visual and cognitive attention [12].  But, while tangibles 

have many advantages, they aren’t as common as traditional GUI 

systems in part because they are difficult to design and construct 

[16, 17].  Ambient interfaces to smart phones are especially rare, 

perhaps because they are particularly challenging to build [2]. 

Amarino aims to facilitate the development of tangible interfaces 

to smart phones by eliminating several of the developments steps 

that are required to build them.  In particular, Amarino allows 

Android-based mobile phones to communicate seamlessly with 

Arduino-based microcontrollers.  It also allows tangible 

developers who would like to employ phone-based sensing in 

their projects to do so without engaging in any mobile device 

programming.  The toolkit consists of two components, an 

Android [3] application, which runs on a mobile device, and a 

software library for the Arduino [5], which runs on a tangible 

device.  Central to each of these is a communication protocol that 

allows a developer to focus on the behavior of his or her project 

instead of low level communication details.  The current 

implementation takes advantage of most phones’ built in 

Bluetooth radios and assumes that communication takes place 

over Bluetooth. 

Before we describe the system in detail, we will describe an 

example that highlights Amarino’s most important features.  

Figure 1 shows a picture of this project—an RGB LED lamp 

(similar to the Ambient Orb [1]) that can be controlled by a smart 

phone.  To change the color of the lamp, the phone is placed on a 

flat surface and rotated—the lamp’s color changes in response to 

changes in the phone’s compass heading. 

The process we used to construct the lamp illuminates the 

affordances and benefits of Amarino.  In the first step, the 

Arduino that controls the lamp was programmed to receive data 

from Amarino.  In this stage, we specified the type of information 

that would be sent by the phone—compass data—and 

programmed the Arduino to translate this data into lamp color.  

Once the Arduino was programmed, we could control the lamp 

directly from the Android Amarino application. The Amarino 

interface allows users to choose from a list of built-in Android Copyright is held by the author/owner(s). 

MobileHCI’10, September 7–10, 2010, Lisbon, Portugal. 

ACM  978-1-60558-835-3/10/09. 



events (including accelerometer readings, compass readings, and 

call received events) to send to Arduinos. We selected compass 

events from the list and then also used the Amarino interface to 

discover the Bluetooth enabled lamp and connect to it.  Once we 

connected, compass data was continually sent from the phone to 

the lamp and we were able to use the phone as a remote control 

color mixer. 

 

Figure 1: A multicolor lamp controlled by an Android phone. 

What is noteworthy about this example is that we did not need to 

do any Android programming to build and control the lamp.  Only 

the Arduino was programmed. Amarino allowed us to use the 

phone as an input device without doing any mobile development.  

Amarino has many additional features, but this example 

highlights what we believe is its most important contribution—

enabling developers to very quickly and easily create tangibles 

that are controlled by mobile devices. 

2. RELATED RESEARCH 
Though our introduction focused on the difficulties of developing 

projects that span the mobile and tangible domains, several 

researchers have built compelling projects at this intersection.  

We take inspiration from this previous work, which both 

illustrates the potential of the area and illuminates the limitations 

of current development tools.    

Among the interesting mobile-tangible projects are systems that 

involve wearables, games, and environmental sensing. For 

example, WeWrite [20]—which employs mobile phones and the 

LilyPad Arduino [7]—enables users to send text messages to a T-

shirt that then displays them on a built-in LED display. Another 

wearable-based project, called united-pulse [19], uses electronic 

rings, heart rate monitors and smart phones to communicate heart 

rate across distance. The rings communicate with the phone and 

monitors to enable two people to feel each other’s pulses 

remotely. A less poetic, but perhaps more useful application, eye-

q consists of a small display mounted on the inside of a pair of 

glasses that delivers peripheral visual cues to its wearer about 

phone events [8]. Other applications include games that motivate 

their players to be physically active [9], and environmental sensor 

networks which rely on mobile and tangible nodes that 

communicate with one another (cf  MobSens [13]) .  

In the realm of toolkits, there are many systems that aim to make 

working with hardware easier.  In addition to Arduino [5], the 

best examples include Phidgets [10], D.Tools [11], Basic Stamps 

[6], and Lego Mindstorms [14].  Similarly, there are several tools 

that enable developers to write applications for mobile phones—

Apple’s iPhone development kit [4] being a particularly nice 

example.  However, Amarino is the first fully realized kit that 

brings these worlds together. 

3. APPROACH 
After surveying related work and reflecting on our own 

experiences, we identified three different kinds of expertise that 

are required to produce smart phone/microcontroller projects: 

 Developing smart phone applications 

 Implementing communication protocols 

 Building tangible devices   

Each of these tasks requires different skills including application 

programming, microcontroller programming, electrical 

engineering, industrial design, and networking.  Most developers, 

and especially novices, have experience in one or two of these 

domains, but rarely in all of them.  We realized that most of the 

work required to implement a particular project is application 

dependent and therefore difficult to simplify or eliminate.  

However, it was clear that we could develop a standardized 

communication protocol. We also observed that many projects, 

like eye-q [8], were using tangibles as ambient output devices for 

simple phone events and felt that this presented another 

compelling opportunity for standardization. Amarino was thus 

designed to eliminate smart phone development and 

communication protocol development from the work process as 

much as possible; our goal was to enable developers to focus their 

attention on building the tangible devices.   

To achieve our goals we chose to leverage two powerful existing 

technologies—the Arduino microcontroller platform and the 

Android mobile operating system. Both of these are mature 

systems with active user communities. Both are also open source 

and well documented—attributes that made them easy to access 

and customize for our purposes. 

We wanted our application to be as useful as possible and 

accessible to a broad audience.  In approaching this challenge, we 

were particularly inspired by the Arduino project, which has a 

large community following that includes both novice and expert 

developers.  The Arduino community has become a vibrant, 

creative and largely self-supporting entity with documentation, 

hardware extensions, software libraries, and curricula increasingly 

produced by community members. Motivated by this example, we 

identified three additional goals for our project. To facilitate 

adoption by a wide range of users and ongoing community 

development Amarino should be: 

 Easy to use (to support novice developers) 

 Extendible (to support expert developers) 

 Open source (to support community extension) 

Throughout our development process we were guided by these 

aims and philosophies, which we will highlight as we describe our 

system and user experiences. 



4. AMARINO 
As illustrated in Figure 2, Amarino is a system that allows 

Android based smart phones to communicate with Arduino 

microcontrollers.  It consists of two components: an Android 

application called “Amarino” and an Arduino library called 

“MeetAndroid”.  

 

Figure 2: Amarino 

Amarino, the Android application, sends event data from phones 

to Arduinos.  It consists of a graphical user interface that allows 

users to: select built-in phone events to send to specific Arduinos; 

create collections of events that are associated with specific 

Arduinos; monitor data being sent from the phone; and manage 

Bluetooth connections.  In its more advanced mode, Amarino can 

also receive data and pass it along to other Android applications. 

On the Arduino side, the MeetAndroid library enables developers 

to associate Arduino functions with Android events and extract 

data attached to events.  For projects that require two-way 

communication, MeetAndroid also provides functions to send 

data from microcontrollers to phones.   

The remainder of this section will discuss Amarino and 

MeetAndroid in detail. 

4.1 Android Interface 
When a user starts the Amarino application, he is welcomed by a 

main screen like the one shown in Figure 3.  This screen is the 

control center for managing all of the events, connections, and 

data flows being handled by Amarino. As can be seen in the 

image, it is broken into four quadrants:   

 Bluetooth Manager 

 Monitoring 

 Settings 

 Event Manager 

Each of the four quadrants corresponds to one of Amarino’s core 

functionalities. (In addition to these four areas there is a 

connect/disconnect button in the middle of the screen whose 

functionality we will describe shortly.)   

 

 

 

 

 

 

Figure 3: 

Main screen 

 

4.1.1 Bluetooth Manager 
Clicking on the Bluetooth Manager quadrant opens up a window 

(Figure 4) that enables the user to manage Bluetooth devices—

which, for our purposes, usually correspond to Arduinos. Within 

this module, users can discover nearby Bluetooth devices and pair 

with them. This is a process that must be undertaken once for 

each Bluetooth enabled Arduino before any communication can 

happen between it and the phone.   

 

 

 

 

 

Figure 4: 

Bluetooth 

Manager 

 

Since Bluetooth is a peer-to-peer communication protocol, 

Amarino only communicates with one Bluetooth device (one 

Arduino) at a time.  From now on we will refer to the Arduino 

that is currently paired with the phone as the active Arduino.  

Amarino also remembers which device it was most recently 

connected to, and clicking the connect/disconnect button on the 

main screen (Figure 3) will cause the application to connect to or 

disconnect from this device.  

4.1.2 Monitoring 
Clicking on the monitoring quadrant opens a window (Figure 5) 

that displays the streams of data being sent and received by 

Amarino.  This window also allows users to send arbitrary 

characters to the active Arduino. 



 

 

 

 

 

 

Figure 5: 

Monitoring 

 

4.1.3 Settings 
The settings window allows the user to customize the toolkit’s 

behavior. Here users can change the rate at which event data is 

sent and choose whether phone to Arduino Bluetooth connections 

should be permanent (for high data flow applications) or 

intermittent (for occasional event sending). 

4.1.4 Event Manager 
The Event Manager, shown in Figure 6, is the central component 

of the Amarino interface.  It allows users to create collections of 

events that they wish to send to particular Arduinos.  A collection 

is a set of events with a user-defined name that is associated with 

a specific Bluetooth device (Arduino).  The active collection is 

the collection associated with the last active device or the 

collection that is explicitly set to be the active collection. 

   

Figure 6: Left: the Event Manager showing the active 

collection “home”.  Right: the Create Collection window  

To create a new collection of events, the user clicks on the Create 

Collection button at which point she is prompted to enter a name 

for her collection and an address of a Bluetooth device, as shown 

in the right hand image of Figure 7.  Once the user creates the 

new collection, it becomes the active collection and she can use 

the Add Event button to choose events for it.  

When a user opens the Event Manager, she is presented with a 

window like the one shown in the left side of Figure 6, which 

shows information about the currently active collection including 

its name—in this case, home—and the list of events in the 

collection—which in this case includes Magnetic Field Sensor 

and Battery Level.  To add an event to the home collection, the 

user clicks the Add Event button, which brings up a list of all 

available Android events.  All of the events that are included in 

the Amarino distribution are shown in Table 1. 

Table 1: List of all built-in events in Amarino 

 

Other buttons within the Event Manager include the Delete 

Collection button, which deletes the current collection, and the 

Change Collection button, which allows the user to choose which 

collection is active. 

Users can also create custom events using the Custom Events 

button.  We will describe this functionality in more detail in 

Section 4.4.  Once created, custom events can be added to 

collections in the same way as preinstalled events. 

Event data that is sent from Amarino is structured so that it can be 

easily identified and parsed by Arduinos. Each event type is 

associated with a single alphanumeric character that uniquely 

identifies the event.  For example, the Battery Level event is 

associated with the character ‘J’.  Event data packages contain the 

identifier character followed by the relevant event data.  A 

Battery Level event, for example, would consist of the character 

‘J’ followed by a number from 0-100 that indicates the phone’s 

current battery level. 

4.2 Architecture 

Amarino’s architecture, shown in Figure 7, has five components: 

a Graphical User Interface (GUI), Background Service, Bluetooth 

Handler, IntentEventMapper and Database. The Background 

Service is at the heart of Amarino.  It listens for sensor and phone 

state information, generates events, sends events, and maintains 

Bluetooth connections. The Bluetooth Handler implements low-

level access to the Bluetooth functions of the operating system. 

The IntentEventMapper converts Android “intents” to Amarino 

events.  Finally, the database stores all of the collection, event, 

and Bluetooth device history and the GUI makes all of this 

functionality accessible to the user. 



 

Figure 7: Architecture of the Android application 

4.3 MeetAndroid Library 
The second major component of the Amarino toolkit is the 

Arduino library, MeetAndroid. This library provides a set of 

functions for receiving Amarino events and sending data from 

Arduinos to Amarino. 

To receive data from Amarino, an Arduino programmer first uses 

the registerFunction() library component to “register” functions in 

his Arduino code.  This determines which functions will be used 

to parse specific Amarino events.  To employ event data in an 

Arduino program, the meetAndroid.receive() function is used to 

check for incoming event data.  This data is then examined and 

passed to the appropriate registered function. To parse event data, 

the MeetAndroid library provides additional helper functions that 

can be employed in the user-written registered functions.  For 

example, the meetAndroid.getInt() function retrieves an integer 

value from an event package.  A listing of all MeetAndroid 

functions is shown in Table 2.   

The library also provides send() functions that allow the user to 

send data to Amarino.  

Table 2: The MeetAndroid library 

 

The final important component of the library is a series of 

example Arduino programs that demonstrate different Amarino 

functionality.  These examples include programs that illustrate 

how to parse and use Android phone events (like ringing and 

hang-up events) and sensor events (like compass and 

accelerometer readings) as well as programs that employ all of the 

helper functions shown in Table 2 and programs that show how 

data can be sent from Arduinos to Android phones.   

4.4 Using Amarino to Create Custom 

Android Applications 
Though the primary purpose of Amarino is to enable users to 

prototype complete systems without doing any smart phone 

programming, Amarino also provides assistance for Android 

development.  On the Android side, the Amarino application can 

be run as a background service that listens for events generated by 

any Android application and passes them on to Arduinos.   

To make use of this functionality, a user would develop a custom 

Android application that broadcasts event information to the 

Android operating system via Android intents.  Amarino can then 

listen for this information; within the Amarino application, the 

user would use the Custom Event Manager to create an event that 

corresponds to the intent by supplying an event name, a 

description, the name of the intent and information about the data 

attached to the intent.  Once the custom event has been created, it 

is handled like a standard event, both within Amarino and by the 

MeetAndroid library—it will appear in Amarino’s event list and 

users can add it to any collections of events that will be sent to 

Arduinos.  Figure 8 shows a flow diagram that outlines the steps 

in this process. 

 

Figure 8: Sending data from a custom Android  

application to Arduino via Amarino 

In addition to receiving intents from Android applications and 

turning them into events to send to Arduino, Amarino can also do 

the inverse: receive data from Arduinos and broadcast this 

information to other Android applications via intents.  To 

accomplish this task, a user would first create a custom Android 

application for receiving/visualizing the Arduino data.  Then she 

would create an Amarino collection with the same name as this 

application.  Once Amarino is activated as a background service, 

the connection to the Arduino is established, and the custom 

application is run, Amarino passes along all received Arduino 

data as intents to the custom Android application. 



Amarino also provides a transparent way for custom Android 

applications to connect to Arduinos. To initiate a connection, the 

third-party Android application has to send a specific intent: 

sendBroadcast (new Intent(“amarino.CONNECT”); This will 

immediately start Amarino as a background process and Amarino 

will begin trying to connect to the device associated with its 

current active collection. The same mechanism can be used to 

disconnect the phone from the Arduino upon quitting the custom 

application. 

In Section 5 we will discuss examples that demonstrate the full 

range of functionality that Amarino facilitates. 

4.5 Documentation 
To introduce users to our toolkit we also developed a set of 

tutorials and references to accompany it.  All of this information 

is published on the Amarino website.  The website includes a 

section that explains how to download and install Amarino, a 

section that details all of the functionality of the Amarino Android 

application, and a selection of in-depth tutorials that walk users 

through specific application scenarios.  In particular, there is a 

tutorial that describes how to build the RGB LED lamp we 

described in the introduction and a tutorial that details how to 

develop an Android application that plots sensor data received 

from Arduinos on phone screens.  The website also includes links 

to all of the source code for the project. 

5. AMARINO EXAMPLES 
We have constructed a number of examples that rely on Amarino 

at our lab.  We will describe three of them in this section.  First, 

we will return to the multicolor lamp application from the 

introduction and discuss extensions of that project.  Then we will 

discuss two examples that involve wearables: CallMyShirt, which 

highlights phone to Arduino communication and Workout, which 

highlights Arduino to phone communication. 

5.1 Multicolor lamp 
The multicolor lamp example we introduced earlier consists of a 

tricolor LED that is controlled by an Arduino.  In the physical 

lamp, the Arduino, the LED, and a battery are mounted inside a 

custom lampshade we constructed from plywood and textile 

composites.  As we described earlier, the lamp is controlled by 

rotating a phone. In the earlier example, we described how a user 

could control the color of the lamp via Amarino.  In this scenario, 

though the user is able to control the lamp with a phone, there is 

no information on the phone that indicates how this control works 

or communicates the current state of the lamp. 

We developed an extension to this basic example that consists of 

a special Android application that enriches the interaction.  It 

provides feedback about the current state of the lamp and a subtle 

indication of how the compass interface works via a round color 

wheel like the one shown on the left in Figure 9.  To indicate 

color, the current color of the lamp is darkened—in Figure 9, the 

lamp is an orange-ish red—and the circular color layout provides 

an intuitive indication of what will happen when the phone is 

rotated clockwise or counter clockwise.  The lamp’s current color 

and brightness are also written in text at the bottom of the 

interface window. 

Developing a custom Android application also allowed us to add 

more complex interactions to our interface.  For example, we 

added functionality that allows a user to tap the screen to freeze 

the lamp at a particular color.  If a user tapped the screen on the 

left of Figure 9, the lamp would freeze red and the user could then 

move her phone around without affecting the color.  A second tap 

would unfreeze the color.  An extended finger press to the color 

screen opens up a new window, like the one shown on the right in 

Figure 9 that allows the user to control the brightness of the lamp 

instead of its color, again via phone rotation.  Though we could 

have theoretically implemented the same interactions with 

Amarino, the chain of interactions would be very difficult to 

follow without the graphical queues on the phone. 

   

Figure 9: Multicolor lamp, custom Android interface. 

To develop this example, we created custom events that were sent 

from our custom application to Amarino—which runs as a 

background service companion to our app—and then on to the 

Arduino.  Within Amarino we defined two custom events, one for 

changing light intensity and one for changing color.  On the 

Arduino side, we wrote and registered functions to respond to 

these events. 

5.2 CallMyShirt 
Our second example, CallMyShirt, uses Amarino to communicate 

phone events to a wearable device. This example provides another 

case study that involves no mobile phone application 

development.  The wearable, shown in Figure 11 is a shirt with 10 

luminescent pads on its front. 

 

Figure 10: CallMyShirt 



These individually controllable pads are used to display 

information about the phone’s current state. When the phone is 

ringing, all of the pads blink on and off.  If a call is accepted, the 

lights rotate in a circle until the user hangs up.  When the phone is 

idle, the shirt generates random patterns. The shirt can also be 

used as an ambient display for phone battery state.  In this mode, 

each pad corresponds to 10% of the current battery capacity.  

The shirt was constructed from a LilyPad microcontroller and 10 

LilyPad LEDs that were sewn into the shirt with conductive 

thread.  The microcontroller is connected to a Bluetooth shield, 

which facilitates communication with the phone.  

 

Figure 11: The inside of CallMyShirt with conductive traces 

(top left), all LEDs light up (bottom left), testing all functions 

before sewing remain parts on the shirt (middle) and the 

corresponding event collection (right) 

This example highlights a very important feature of Amarino that 

we have not yet mentioned.  The wearer of this shirt would likely 

want to use other Android applications or would want to put the 

phone in his pocket while the shirt was “running”.  Amarino 

supports this style of interaction.  Once Amarino establishes a 

connection to an Arduino, a user can close the Amarino 

application.  The connection is maintained and events are sent 

through Amarino’s background process until the Arduino 

connection is lost or some specific action is taken. This enables 

Amarino to operate without interfering with regular phone 

operation. 

5.3 Workout 
Our final example, “Workout”, was developed to help exercisers 

keep track of their routines. 

   
Figure 12: Left: the Armband. Right: the Workout interface. 

 

It uses a motion sensing wearable and an Android application that 

allows wearers to visualize and analyze their activity level.  Our 

wearable is a knitted armband, shown on the left in Figure 11 that 

contains an embedded stretch sensor. The sensor was constructed 

from a piezo resistive yarn knit into the fabric of the armband.  

When placed over an elbow, the armband can reliably detect 

when the elbow is bent. A LilyPad Arduino—again sewn into the 

band with conductive thread—reads sensor data from the band 

and relays it to a phone via Bluetooth. 

The Android Workout application plots the raw sensor data it 

receives, extracts a number-of-arm-bends count from this data, 

and displays this count to the wearer. A snapshot of this 

application in action is shown on the right in Figure 11. In this 

example, Amarino is used to receive data from the arm band and 

pass it along to the workout application.   

It is worth (anecdotally) noting that we produced this complete 

prototype, both the wearable and the application, in a few hours.  

Amarino (and Arduino) allowed us to develop and demonstrate 

our Workout proof of concept much more quickly than we would 

have been able to without it. 

6. EVALUATION 
To evaluate our toolkit, we hosted a one day workshop for a 

group of 13 engineering and design students, 10 male and 3 

female.  All were in their 20s or 30s.  Our group included 

undergraduate, masters, and PhD students. All students had some 

previous programming experience. 12 had previous Arduino 

programming experience and 5 had previous Android 

programming experience.  

Each student was given an Android phone, an Arduino board, and 

access to a range of electronic components like LEDs and motors. 

The workshop began with a short introduction to Arduino and 

Android.  Then the participants were asked to go independently 

through one of our online tutorials.  This tutorial explains how to 

install all of the necessary software and establish the connection 

between the phone and the Arduino. The end result of this tutorial 

is an Amarino collection that sends a time tick event every 5 

seconds and an Arduino-connected LED that blinks in response to 

this event.   

All students were able to complete the online tutorial successfully 

within 45 minutes. As a second challenge, the students were asked 

to experiment with Amarino’s inbuilt events. Most students 

successfully used the compass or accelerometer events to change 

the intensity of an LED.  

The third challenge was to write a simple Android application. 

We guided the students through developing an Android interface 

with a single button that was used to switch an Arduino-connected 

LED on and off.  

After completing this exercise, students were allowed to build 

their own applications. Two students produced particularly 

interesting prototypes in this session. One student wrote a 

program that activated the phone’s vibration motor whenever a 

light sensor attached to the Arduino was covered with the hand.   

The most compelling example however was from a student who 

used the Android’s built-in speech recognition engine to build a 

voice-activated light.  This student wrote an Android application 

that sent out an event message whenever a user said the word 



“light”. His Arduino was programmed to toggle an LED each 

time it received this message.   

To evaluate the effectiveness of our toolkit and workshop, we 

conducted a short survey.  In this survey all respondents rated the 

kit easy to use and the documentation helpful though several 

asked for additional tutorials and examples. We have since 

incorporated many of these suggestions into our documentation.  

All respondents also said that they were planning to use the kit in 

own projects.  Though it is nearly impossible to draw any specific 

conclusions from this preliminary data, for us the experience 

verified the kits basic utility and usability and provided us with 

promising avenues for future development. 

7. CONCLUSION AND FUTURE WORK 
We developed Amarino to empower developers to work easily 

with more of the artifacts in our environments—from phones to 

furniture to clothing.  We focused on keeping our tools easy to 

use so that they would be accessible to novices but also easily 

extendible so that they would be useful for experts.  

In our future work, we would like to provide users with access to 

higher level events, like gestures [15][14] and spoken words for 

example.  We would like to add support for communication via 

wireless LAN—this functionality could be particularly useful in 

the home environment.  We would also like to investigate a 

location detection feature that would automatically activate 

particular event collections based on current location.  Finally, we 

want to construct more prototypes to explore the seamless 

integration of smart phones into our personal environment. 

8. ACKNOWLEDGMENTS 
Thanks to Martin Hitz, David Mellis, Hannah Perner-Wilson,  

Emily Lovell, and all of our workshop participants for their 

contributions and conversation.  This work was funded in part by 

the MIT Media Lab consortium. 

9. REFERENCES 
[1] Ambient Orb. http://www.ambientdevices.com/ 

[2] Amft, O. and Lukowicz, P. 2009. From Backpacks to Smart 

phones: Past, Present, and Future of Wearable 

Computers, IEEE Pervasive Computing, vol. 8, no. 3, pp. 8-

13, July-September, 2009. 

[3] Android. http://www.android.com/ 

[4] Apple. iPhone SDK. http://developer.apple.com/iphone/ 

[5] Arduino. http://www.arduino.cc 

[6] Basic Stamp. http://www.parallax.com/Sharlin, E., Watson, 

B., Kitamura, Y., Kishino, F., and Itoh, Y. 2004. On tangible 

user interfaces, humans and spatiality. Personal Ubiquitous 

Comput. 8, 5 (Sep. 2004), 338-346.  

[7] Buechley, L., Eisenberg, M., Catchen, J. and Crockett, A. 

2008. The LilyPad Arduino: Using Computational Textiles 

to Investigate Engagement, Aesthetics, and Diversity in 

Computer Science Education. In Proceedings of the SIGCHI 

conference on Human factors in computing systems (CHI), 

(Florence, Italy, April 2008), pp. 423-432. 

[8] Costanza, E., Inverso, S. A., Pavlov, E., Allen, R., and Maes, 

P. 2006. eye-q: eyeglass peripheral display for subtle 

intimate notifications. In Proceedings of the 8th Conference 

on Human-Computer interaction with Mobile Devices and 

Services (Helsinki, Finland, September 12 - 15, 2006). 

MobileHCI '06, vol. 159. ACM, New York, NY, 211-218. 

[9] Fujiki, Y., Kazakos, K., Puri, C., Buddharaju, P., Pavlidis, I., 

and Levine, J. 2008. NEAT-o-Games: blending physical 

activity and fun in the daily routine. Comput. Entertain. 6, 2 

(Jul. 2008), 1-22.  

[10] Greenberg, S. & Fitchett, C., 2001. Phidgets: easy 

development of physical interfaces through physical widgets. 

In Proceedings of the ACM symposium on User interface 

software and technology (UIST). pp. 209–218. 

[11] Hartmann, B. et al., 2006. Reflective physical prototyping 

through integrated design, test, and analysis. In Proceedings 

of the ACM symposium on user interface software and 

technology (UIST). pp. 299–308. 

[12] Ishii, H. and Ullmer, B. 1997. Tangible bits: towards 

seamless interfaces between people, bits and atoms. In 

Proceedings of the SIGCHI Conference on Human Factors 

in Computing Systems (Atlanta, Georgia, United States, 

March 22 - 27, 1997). S. Pemberton, Ed. CHI '97. ACM, 

New York, NY, 234-241.  

[13] Kanjo, E., Bacon, J., Roberts, D., and Landshoff, P. 2009. 

MobSens: Making Smart Phones Smarter. IEEE Pervasive 

Computing 8, 4 (Oct. 2009), 50-57.  

[14] Lego Mindstorms. http://mindstorms.lego.com/ 

[15] Liu, J., Wang, Z., Zhong, L., Wickramasuriya J., and 

Vasudevan, V. 2009. uWave: Accelerometer-based 

personalized gesture recognition and its applications, 

Pervasive Computing and Communications, 2009. PerCom 

2009. IEEE International Conference on , vol., no., pp.1-9, 9-

13 March 2009 

[16] Shaer, O. and Jacob, R. J. 2009. A specification paradigm for 

the design and implementation of tangible user interfaces. 

ACM Trans. Comput.-Hum. Interact. 16, 4 (Nov. 2009), 1-

39. 

[17] Shaer, O., Leland, N., Calvillo-Gamez, E. H., and Jacob, R. 

J. 2004. The TAC paradigm: specifying tangible user 

interfaces. Personal Ubiquitous Comput. 8, 5 (Sep. 2004), 

359-369.  

[18] Weiser, M, The computer for the twenty-first century. Sci. 

Am, Sept. 1991, 94-104. 

[19] Werner, J., Wettach, R., and Hornecker, E. 2008. United-

pulse: feeling your partner's pulse. In Proceedings of the 

10th international Conference on Human Computer 

interaction with Mobile Devices and Services (Amsterdam, 

The Netherlands, September 02 - 05, 2008). MobileHCI '08. 

ACM, New York, NY, 535-538. 

[20] Winkler, T., Ide, M., Wolters, C., and Herczeg, M. 2009. 

WeWrite: 'on-the-fly' interactive writing on electronic 

textiles with mobile phones. In Proceedings of the 8th 

international Conference on interaction Design and Children 

(Como, Italy, June 03 - 05, 2009). IDC '09. ACM, New 

York, NY, 226-229. (Cambridge, United Kingdom, February 

16 - 18, 2009). TEI '09. ACM, New York, NY, 323-330. 


