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ABSTRACT

“Cloud-based” Internet services rely on the availability and

reliability of managed data centers. Recent events indicate

that data centers tend to create centralized points of failure,

and providing resilience to large-scale faults remains a sig-

nificant challenge for both providers and users of cloud in-

frastructures. Running data centers also incurs high hard-

ware and network costs, particularly for storage-intensive

applications such as data synchronization and backup. In

this paper, we show how to improve data availability while

reducing costs in storage clouds, by augmenting centralized

clouds with an efficient client-side storage system. We in-

troduce AmazingStore, a low-cost cloud storage system that

provides high data availability while protecting against cor-

related failures. We describe our initial experiences with an

already deployed prototype and outline opportunities in this

modified cloud model.

1. INTRODUCTION

Always available and highly durable storage is one of the

driving applications of the cloud computing model. The

ability to store or backup files onto highly reliable data cen-

ters promises to greatly simplify data management at the

edge, a growing challenge for users with rapidly increasing

number of files. Users of these popular services can use them

as online storage services (e.g. Amazon’s S3 and Microsoft’s

SkyDrive and LiveMesh), or purely for online backup (e.g.

Symantec’s SwapDrive and EMC’s Mozy).

There are two primary challenges facing cloud-based ser-

vices, especially the storage services. First, cloud infrastruc-

tures are generally centralized for manageability and econ-

omy. Therefore, they are vulnerable to central point of fail-

ures caused by fires, power outages, natural disasters, etc. In

fact, a quick scan of recent news shows that in the first half

of 2009 alone, cloud computing providers such as Google,

Amazon, and Rackspace have been hit by several major out-

ages attributed to numerous causes, including network hard-

ware failure [12], fires [6], network management [7], power
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failure [13], and other undisclosed causes. Clearly, cloud

providers have not embraced replication across distributed

data centers for fault-tolerance, perhaps due to challenges of

performance and data consistency [15]. A second challenge

lies in the cost. For cloud storage providers, highly available

storage means more storage arrays and power backups, es-

calating the cost of network bandwidth, data center cooling,

and well-trained IT management personnel [14].

In this paper, we take the first step to address these chal-

lenges by proposing Cloudlets, an alternative model for build-

ing available, reliable and economically efficient cloud-based

storage services. In this model, we augment the centralized

cloud-based storage service with a P2P storage service built

using storage resources at its users. Each peer provides a

cloudlet of storage for a number of object replicas in the

system. Data access requests are forwarded to replicas on

cloudlets whenever possible. Our objective is to improve

the cloud’s resilience to correlated failures while decreasing

storage and bandwidth costs. Our key insight is that since

the on/off availability dynamics of cloudlets are independent

from failures at data centers, the peer-based storage layer

complements the central cloud and maintains data availabil-

ity during data center outages. In addition, available data

replicas on peers can divert traffic away from the data cen-

ter, thereby reducing its workload.

We instantiate the Cloudlets architecture in AmazingStore,

a highly available, reliable, general purpose storage system.

While purely peer-based storage systems have achieved lim-

ited success in the past [2], AmazingStore incorporates sev-

eral novel insights and lessons from prior systems that make

it well-suited to support today’s online storage demands. First

and foremost, since AmazingStore stores at least a “master”

replica of each data object in the data center, its peer-based

storage layer does not need to guarantee perfect availabil-

ity. Second, it incorporates the advantages of both central-

ized and P2P architecture, thus simplifying the data manage-

ment while protecting the service against single-point fail-

ures. Third, AmazingStore uses a group availability estima-

tor to carefully navigate the cost-availability tradeoff at its

peer level, by reducing replication costs as much as possible

while maintaining the desired level of data availability. Fi-

nally, AmazingStore leverages the fact that requests for data
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Figure 1: The Cloudlets architecture. Data is kept at a

central cloud, but is replicated on distributed cloudlets

for improved availability and durability.

access correlates positively with peer availability. Thus pe-

riods of high demand for data access is also the time when

the most peers (and the data replicas they host) are available

in the system. This means its peer level can effectively re-

duce the costs at the data center by allowing the number of

available replicas to fluctuate with the request load.

We integrate these insights into the first prototype of Amaz-

ingStore, which has been open to users since April 3rd, 2009.

As of early October 2009, AmazingStore has a growing pop-

ulation of over 7100 registered users and 705GB allocated

storage. Given a requirement of two nines availability, Amaz-

ingStore’s cloudlet peers are able to improve overall data

availability from 93.22% to 99.13% and divert over 90%

request traffic away from the cloudlet servers, while reduc-

ing cloudlet replication traffic to a fixed maximum of 2KB/s.

Moreover, cloudlet peers provide high data durability (an av-

erage of 0.07% files lost per month on the peer side), hence

the replication costs required for maintaining high data dura-

bility can be further reduced.

In the remainder of this paper, we describe in detail the

Cloudlets architecture, as well as the design and motivation

behind the AmazingStore prototype. We present preliminary

measurement results from our deployment of AmazingStore

in Section 4 and discuss opportunities for future exploration

in Section 5. Finally, we conclude the paper in Section 6.

2. CLOUDLET MODEL

At a high level, cloudlet includes both a centralized cloud

of servers in a data cluster (“cloudlet servers”), and distributed

“cloudlet peers” at the network edge, as shown in Figure 1.

Cloudlet servers serve two purposes, to provide a highly

available copy of every object, and to monitor and man-

age replicas stored on cloudlet peers. In contrast, cloudlet

peers are instances of the cloudlet clients running on user

machines. Each peer allocates a fixed amount of local disk

space for replica storage, maintains periodic heartbeats with

cloudlet servers, and creates or deletes object replicas ac-

cording to the servers’ instructions.

This model exploits the different nature of faults in data

center and P2P systems. In a storage system where each
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Figure 2: The AmazingStore design. Objects are orga-

nized into groups, each of which has a master node (lo-

catable by searching for the group ID in the DHT) which

monitors all replicas of objects in the group, and resolves

client queries.

object is replicated in both a “small” data center and a P2P

storage layer, neither has to be perfect. When an object’s

P2P replicas are all offline, it will be available in the data

center; on the rare occasion when the data center is offline,

the P2P replicas are still available. The probability that fail-

ures coincide on both sides is low enough to guarantee high

availability. And of course, this hybrid model has the po-

tential to lower the cost for providers by turning each of its

users into part of the cloud.

Notice that Cloudlet is orthogonal to peer-assisted content

distribution applications (including content distribution [4],

file sharing [16] and Video-on-Demand [5]) due to different

design issues. Specifically, Cloudlet pertains to the reliabil-

ity aspect of storage and must exhibit high availability and

data persistence characteristics. Efficient replication/repair

strategies are the most important design decisions when de-

ploying a peer-assisted storage system. However, Cloudlet

can also adopt P2P file-sharing technology (e.g., BitTorrent

protocol or DHT-based file sharing approach) to speedup the

downloading of popular files.

3. AMAZINGSTORE

In this section, we briefly describe the design rationale

behind AmazingStore, showing how to turn cloudlet model

into a practical system.

3.1 System Architecture

To form a highly available architecture, all nodes (servers

and peers) are organized in a structured P2P overlay (DHT).

Objects are organized into object “groups”. Each group has

its own group ID and a “master node” that manages replicas

of all objects within the group. The group ID (GID) maps to

its “master” node on a cloudlet server, as shown in Figure 2.

A group master maintains pointers to all nodes with repli-

cas of objects in the group, and monitors their liveness using

heartbeats. A client seeking to read an object has its two-

part ID. It first locates the object’s group master using DHT

routing on its GID, then queries the master with the object’s

Object ID (OID). If a replica on a cloudlet peer is available,

the master directs the client to that peer. Otherwise, the mas-

ter returns a reference to a server replica. In this way, the
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system congregates the master roles to the cloudlet servers,

enabling insensitivity to peer dynamics.

For fault-tolerance, each master has a backup node with

which it periodically synchronizes all metadata (references

to replicas). The master and backup both have system-chosen

nodeIDs based on the groups they manage. The backup’s ID

is assigned so that if the master fails, DHT routing maps any

requests for the group directly to the backup. In the worst-

case scenario, e.g., the centralized cloud goes down due to

correlated failures, both nodes fail, and a cloudlet peer P

whose nodeID is next closest to GID receives both requests

for the group and heartbeats from nodes with object replicas.

Within one heartbeat period, P will receive data on the lo-

cation of all replicas for the group, and can service any read

requests like the original master. When the cloudlet server

returns, peers can automatically switch back to the original

master by periodically looking up the GID.

3.2 Availability Maintenance

To efficiently achieve the desired level of data availability,

we must carefully determine the degree of redundancy used

to tolerate availability transients and how quickly the system

reacts to peer departures, a significant challenge in highly

dynamic environment like AmazingStore.

Recall that in cloudlet, each object is replicated on both

cloudlet servers and peers. Let µS and µP represent mean

server availability and peer availability respectively. Given a

target level of availability A (where A represents the proba-

bility a file can be accessed at any time), we can calculate the

number of required replicas in the peer layer, c, as follows:

A = 1 − (1 − µS)(1 − µP )c (1)

Notice that replicas placed at cloudlet servers would suffer

correlated failures, so we use 1−µS as a conservative predic-

tion of unavailability experienced in the server layer. Since

peers’s online behaviors are independent [1], we predict un-

availability experienced in the peer level as (1−µP )c. Solv-

ing for c,

c =
log(1 − A) − log(1 − µS)

log(1 − µP )
(2)

However, maintaining the c replicas over longer periods

is the real challenge, which is complicated by the fact that

peer failures can be either transient or permanent. Notice an

object with sufficient replicas (e.g. ≥ c) can tolerate some

transient failures without sacrificing data availability. Thus,

it is preferable to accurately distinguish failures, and only

pay the cost of object recreation under permanent failures.

Carbonite [3] tried to address this challenge by reintegrating

returning replicas, but the approach is ineffective in dynamic

environments with low peer availability.

Having recognized that permanent failure detection is dif-

ficult on a per-peer basis, we improve detection accuracy by

making replica liveness detections across groups of replicas

(e.g. all peers hosting replicas of the same object), balancing

false positives for some peers against false negatives for oth-

ers. In particular, we uses a probabilistic method to estimate

the number of alive replicas (e.g. replicas residing on on-

line peers or peers experiencing transient failures). The first

step of this method is to obtain the failure probability F (d)
that a peer has permanently failed given an observed fail-

ure of d time units, which can be extracted from historical

traces of peer failure events (details can be found in [17]).

Next, we aggregate failure probabilities across peers in the

replica group and apply the maximum a posteriori (MAP)

estimation rule to derive an estimate. For instance, let x be

the number of remaining replicas at the time of estimation.

Given F (di) (1 ≤ i ≤ n) for peers in the group, we can

compute the probability of x = k using the following ap-

proximation (with accuracy/complexity tradeoff):

P (x = k) =

{

0 k < nup
(

n−nup

k−nup

)

F
n−k

(1 − F )k−nup nup ≤ k ≤ n

(3)

where nup is the number of available peers and F is the av-

erage failure probability of n − nup unavailable peers in the

replica group. We pick the m that maximizes P (x = m),
e.g., P (X = m) = max{P (x = k) | k = 0, 1, 2, . . . , n},

and use m as the estimated number of remaining replicas.

Since this estimate is the most likely one that occurs in re-

ality, it provides the highest prediction rate (the probability

that the estimate correctly matches the reality).

Periodically (e.g. every hour), the system uses the esti-

mator to determine whether data recovery is necessary to

reach the desired replica target. The system would create

new replicas only when the estimated replica number m falls

below the target c: If m < c, then the replication layer gen-

erates c − m new replicas randomly among online peers in

the system, otherwise, no action are necessary.

4. PRELIMINARY MEASUREMENTS

A first full prototype of AmazingStore was released for

public use on April 3rd, 2009. As of early October 2009,

more than 7100 users had registered accounts. The daily

peak of simultaneous online users is 780, and is increasing

on a daily basis. By default, each user allocates 1GB stor-

age and 2KB/s replication bandwidth (a resource unit de-

fined in the system). In total, the number of files currently

stored in the system is above 28600 and continuously rising

(not including files such as popular movies that users share

each other with file-sharing approach). The total amount of

storage currently occupied in the system is roughly 705GB.

While the AmazingStore is still growing, we present some

initial measurements that show that the system is success-

fully meeting our expectations.

4.1 Guaranteed System Availability

We first examine the data availability gained on the cloudlet

server side. Overall, the system experiences a high data

availability of 93.22% (in terms of the fraction of available
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Figure 3: The fraction of available objects over a fail-

ure period (May 25-29, 2009), with the details on both

server and peer sides. The ticks on the x-axis correspond

to midnight on the days that are labeled.
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Figure 4: The performance of our replica count estima-

tor over a 20-day period (May 11-30, 2009).

time) in this layer. As expected, the correlated server fail-

ures result in unavailability. We illustrate the longest one

(an 8-hour power failure from 9:00 am to 5:00 pm on May

25, 2009) in Figure 3. Clearly, we see that one cannot further

improve availability by distributing data across more servers

due to correlated failures.

On the other hand, our analysis reveals that the average

peer is only online 27% of each day. Given two nines avail-

ability requirement, the peer layer maintains c = 6 repli-

cas (derived based on equation (2)) and provides an aver-

age availability of 83.76%. In addition, Figure 3 shows data

availability in the peer level exhibits a strong diurnal pat-

tern. As we will show in Section 4.2, this actually improves

the offloading efficiency and user experience in that periods

of high data availability (9 a.m. to 12 p.m.) is also those of

high demand for data access on a daily basis.

We finally see whether the overall data availability (also

defined as system availability) meets the target two nines

availability. By adding a P2P layer, our analysis shows that

the system availability jumps from 93.22% to 99.13% (mea-

sured over the whole deployment period). Figure 3 illus-

trates the availability compensation of the P2P layer. Notice

that the system availability is only slightly better than the

target, which implies the system incurs very little extra repli-

cation cost over long periods. In fact, with a target replica

06/09 06/11 06/13 06/15 06/17 06/19 06/21
0

0.2

0.4

0.6

0.8

1

Date

F
ra

c
ti
o

n
 o

f 
re

q
u

e
s
t 

s
e

rv
e

d

Served on the peer side

Served on the server side

Figure 5: The fraction of request load on both sides over

a two-week period (June 19-22, 2009).
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Figure 6: Correlation between peer availability and read

requests for data, computed on a daily basis.

count 6, AmazingStore achieves an average of 6.1 replicas

per object.

To show how the system achieves a good cost-availability

tradeoff on a long-term basis, we also take frequent snap-

shots during a 3 week period of our deployment (May 11-30,

2009), and look at whether the estimator is accurately pre-

dicting the number of alive replicas for each object. At each

snapshot, we compute the ratio of data objects for which the

estimator was accurate, underestimated, or overestimated the

actual replica count. The result in Figure 4 shows that our

estimator is highly accurate. As a result, the system is very

efficient in repairing failures, and only creates new replicas

when replicas are truly lost.

4.2 Low-cost Storage Service

AmazingStore offloads a majority of bandwidth cost by

forwarding the requests to the cloudlet peers. Overall, 90.38%

of user requests were handled by replicas stored on cloudlet

peers, diverting 90.57% traffic load from centralized servers.

For the remaining requests, no cloudlet peer replicas were

available, and the clients read the data from the centralized

servers. Figure 5 shows the fractions of request served on

both sides per day over a 2-week period (June 19-22, 2009),

in which the requests were highly concentrated (on average

305 requests arrived per day).

A key reason for the high offloading efficiency of the P2P
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component is that requests and peer availability have a strong

positive correlation. We measure the frequency of data ac-

cess requests and peer online times on a daily basis, and plot

both as CDFs averaged over different time-slices through-

out each 24 hour period. As shown in Figure 6, there is a

clear correlation between accesses and peer availability, with

a correlation coefficient 0.78.

Recall that a centralized cloud still has to maintain mul-

tiple replicas (e.g., 3) for high data durability, even though

availability cannot be effectively improved due to correlated

failures. Thus, the addition of the P2P layer can further re-

duce the storage overhead of the centralized cloud. Over a

half year of deployment, the observed data loss rate in the

P2P component of AmazingStore is only 0.07% per month

on average, corresponding to a MTTF (Mean Time To Fail-

ure) of about 1.05 × 106 hours, which falls within the range

of MTTFs claimed by today’s highest quality disks [11].

Thus, by taking the P2P layer as a durable disk, the number

of replicas maintained in the server layer can be reduced.

5. OPPORTUNITIES & APPLICATIONS

In addition to the above fundamental advantages, the Cloud-

lets architecture hints to promising directions for further ex-

ploration, as well as novel applications deployable on a real

platform like AmazingStore. We describe some here.

Network- and Bandwidth-aware Cloudlet Selection. Cur-

rent replica replacement in AmazingStore is random. By uti-

lizing knowledge of the network through network measure-

ments or an information plane [10], we can optimize applica-

tions for different objectives, including resilience to network

failures, improved performance through local Cloudlets, and

the ability to handle flash crowds and network hotspots.

Socially-aware Cloudlet Management. Integrating social

links into the Cloudlets provides another potential dimen-

sion for optimization. Prior work has proposed using social

links to improve online backup [9]. In our context, using so-

cial links can be used to localize data requests within certain

communities and improve user privacy.

Lyra: a Distributed Online Social Network. There are a

number of disadvantages to centralized social networks such

as Facebook and MySpace, including loss of data ownership

and lack of data privacy [8]. On the other hand, it is very

difficult for“pure” distributed social networks to guarantee

data availability, which is critical for friends to browse and

share content on social networks. As an alternative solution,

we are building a distributed social network, Lyra, on the

Cloudlet architecture. The Lyra system encrypts all private

data at the cloud server, and makes private data only acces-

sible after decryption. Key distribution bypasses the cloud

server, ensuring that no third party has access to private data.

Lyra also uses network coordinates to detect locality in data

accesses, and biases Cloudlet selection to optimize perfor-

mance for frequent readers. The Cloudlets infrastructure

simplifies data consistency in Lyra: all writes are encrypted

and sent to the master replica on the cloudlet server before

propagating out to cloudlets.

6. CONCLUSIONS

Empirical evidence has shown us that centralized cloud

infrastructure are vulnerable to massive failures. In this pa-

per, we propose an alternative architecture for cloud-based

infrastructures that retains the simplicity of management in

cloud systems while gaining the failure resiliency available

in P2P systems. We advocate that servers in the data cen-

ter and peers at the network edge complement each other,

resulting in highly available and durable systems with lower

costs than traditional cloud-based designs. We describe a de-

ployed prototype of AmazingStore, an online storage system

adopting the Cloudlets hybrid architecture. While Amazing-

Store is not yet a mature system, initial results show that

its cloudlet peers can improve system resilience by comple-

menting the centralized storage servers. We believe that the

properties demonstrated by Cloudlets open up new opportu-

nities for improving storage services and enabling new dis-

tributed applications in the cloud infrastructures. The latest

version of AmazingStore is available for download at our

website at http://en.amazingstore.org/.
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