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Abstract 
Amazon Redshift is a fast, fully managed, petabyte-scale data 
warehouse solution that makes it simple and cost-effective to 
efficiently analyze large volumes of data using existing business 
intelligence tools. Since launching in February 2013, it has been 
Amazon Web Service’s (AWS) fastest growing service, with 
many thousands of customers and many petabytes of data under 
management.  

Amazon Redshift’s pace of adoption has been a surprise to many 
participants in the data warehousing community. While Amazon 
Redshift was priced disruptively at launch, available for as little as 
$1000/TB/year, there are many open-source data warehousing 
technologies and many commercial data warehousing engines that 
provide free editions for development or under some usage limit. 
While Amazon Redshift provides a modern MPP, columnar, 
scale-out architecture, so too do many other data warehousing 
engines. And, while Amazon Redshift is available in the AWS 
cloud, one can build data warehouses using EC2 instances and the 
database engine of one’s choice with either local or network-
attached storage.  

In this paper, we discuss an oft-overlooked differentiating 
characteristic of Amazon Redshift – simplicity. Our goal with 
Amazon Redshift was not to compete with other data warehousing 
engines, but to compete with non-consumption. We believe the 
vast majority of data is collected but not analyzed. We believe, 
while most database vendors target larger enterprises, there is 
little correlation in today’s economy between data set size and 
company size. And, we believe the models used to procure and 
consume analytics technology need to support experimentation 
and evaluation. Amazon Redshift was designed to bring data 
warehousing to a mass market by making it easy to buy, easy to 
tune and easy to manage while also being fast and cost-effective. 

1. Introduction 
Many companies augment their transaction-processing database 
systems with data warehouses for reporting and analysis. Analysts 
estimate the data warehouse market segment at 1/3 of the overall 
relational database market segment ($14B vs. $45B for software 
licenses and support), with an 8-11% compound annual growth 
rate (CAGR)1. While this is a strong growth rate for a large, 
mature market, over the past ten years, analysts also estimate data 
storage at a typical enterprise growing at 30-40% CAGR. Over 
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the past 12-18 months, new market research has begun to show an 
increase to 50-60%, with data doubling in size every 20 months.  

 

Figure 1: Data Analysis Gap in the Enterprise [10] 

This implies most data in an enterprise is “dark data”2: data that is 
collected but not easily analyzed. We see this as unfortunate. If 
our customers didn’t see this data as having value, they would not 
retain it. Many companies are trying to become increasingly data-
driven. And yet, not only is most data already dark, the overall 
data landscape is only getting darker. Storing this data in NoSQL 
stores and/or Hadoop is one way to bridge the gap for certain use 
cases. However it doesn’t address all scenarios. 

In our discussions with customers, we found the “analysis gap” 
between data being collected and data available for analysis as 
due to four major causes.  

1. Cost – Most commercial database solutions capable of 
analyzing data at scale require significant up-front expense. 
This is hard to justify for large datasets with unclear value. 

2. Complexity – Database provisioning, maintenance, backup, 
and tuning are complex tasks requiring specialized skills. 
They require IT involvement and cannot easily be performed 
by line of business data scientists or analysts. 

3. Performance – It is difficult to grow a data warehouse 
without negatively impacting query performance. Once built, 
IT teams sometimes discourage augmenting data or adding 
queries as a way of protecting current reporting SLAs. 

4. Rigidity – Most databases work best on highly structured 
relational data. But a large and increasing percentage of data 
consists of machine-generated logs that mutate over time, 
audio and video, not readily accessible to relational analysis. 

We see each of the above issues only increasing with data set size. 
To take one large-scale customer example, the Amazon Retail 
team collects about 5 billion web log records daily (2TB/day, 
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growing 67% YoY). It is very valuable to combine this data with 
transactional data stored in their relational and NoSQL systems. 
Using an existing scale-out commercial data warehouse, they 
were able to analyze 1 week of data per hour and maintain a cap 
of 15 months of log, using the largest configuration available. 
Using much larger Hadoop clusters, they were able to analyze up 
to 1 month of data per hour, though these clusters were very 
expensive to administer. 

By augmenting their existing systems with a petabyte-scale 
Amazon Redshift cluster, the Amazon Enterprise Data Warehouse 
team was able to perform their daily load (5B rows) in 10 
minutes, load a month of backfill data (150B rows) in 9.75 hours, 
take a backup in 30 minutes and restore it to a new cluster in 48 
hours. Most interestingly, they were able to now run queries that 
joined 2 trillion rows of click traffic with 6 billion rows of product 
ids in less than 14 minutes, an operation that didn’t complete in 
over a week on their existing systems. 

Some of the above results emerge from Amazon Redshift’s use of, 
by now, familiar data warehousing techniques, including 
columnar layout, per-column compression, co-locating compute 
and data, co-locating joins, compilation to machine code and 
scale-out MPP processing. While these techniques have not fully 
made their way into the largest data warehousing vendors, 
Amazon Redshift’s approach is very close to that taken by other 
columnar MPP data warehousing engines. 

Beyond these techniques used to scale out query processing and to 
reduce CPU, disk IOs, network traffic, Amazon Redshift had a 
number of additional design goals: 

1. Minimize cost of experimentation – It is difficult to 
understand whether data is worth analyzing without 
performing at least a few experiments. Amazon Redshift 
provides a free trial allowing customers to evaluate the 
service for 60 days using up to 160GB of compressed SSD 
data at no charge. For subsequent experiments, they can spin 
up a cluster with no commitments for $0.25/hour/node. This 
is inclusive of hardware, software, maintenance and 
management. 

2. Minimize time to first report – We measure the time it takes 
our customers to go from deciding to create a cluster to 
seeing the results of their first query. As seen in Figure 2, this 
can be as little as 15 minutes, even to provision a multi-PB 
cluster.  

3. Minimize administration – Amazon Redshift tries to reduce 
the undifferentiated heavy lifting of creating and operating a 
data warehouse. We automate backup, restore, provisioning, 
patching, failure detection and repair. Advanced operations 
like encryption, cluster resizing and disaster recovery require 
only a few clicks to enable. 

4. Minimize scaling concerns - Many data warehousing engines 
provide parallelization of loads and queries. We additionally 
try to parallelize administrative operations like cluster 
creation, patching, backup, restore and cluster resize. Pricing 
is also linear or sub-linear with data set growth.  

5. Minimize tuning – We avoid knobs and apply techniques to 
make the ones we do provide “dusty” with disuse. For most 
users the default setting for these knobs as determined by the 
system would be sufficient. However, advanced users can 
choose to change it as needed. For example, we 
automatically pick compression types based on data 

sampling. We also avoid the use of indexing or projections, 
instead favoring multi-dimensional z-curves.  

 

Figure 2: Common admin operation execution time by size 

Amazon Redshift also obtains a number of advantages by 
operating as a managed service in the AWS cloud.  

First and foremost, we are able to leverage the pricing and scale of 
Amazon EC2 for our instances, the durability and throughput of 
Amazon S3 for backup, and the security of Amazon VPC, to 
name just a few. This enables our customers to benefit from the 
innovation and price reductions delivered across a much larger 
team than ours alone. 

Second, by making deployments and patching automatic and 
painless for our customers, we are able to deploy software at a 
high frequency. We have averaged the addition of one feature per 
week, over the past two years. Reducing the cost of deployment 
and the rapid feedback mechanisms available in running a service 
allows us to run a more agile OODA3 loop compared to on-
premise providers, ensuring we quickly provide the features our 
customers care most about. 

Finally, since we manage a fleet of thousands of Amazon Redshift 
clusters, we benefit from automating capabilities that would not 
make economic sense for any individual on-premise DBA. An 
operation requiring one minute of per-node overhead is worth 
many days of investment for us to remove. Removing the root 
cause of a defect that causes an individual cluster to fail and 
restart once per thousand days is well worth our investment to 
reduce paging. As we scale, we have to continually improve the 
reliability, availability and automation across our fleet to manage 
operations, which makes failures increasingly uncommon for our 
customers. 

In this paper, we discuss Amazon Redshift’s system architecture, 
simplicity as a guiding principle, and lessons we’ve learned over 
the past two years operating the service.   

2. System Architecture 
The Amazon Redshift architecture consists of a data plane, the 
database engine providing data storage and SQL execution, a 
control plane, providing the workflows to monitor and manage 
the database, and other AWS services we depend on to support 
data plane and control plane execution. We summarize each 
below.  
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2.1 Data Plane 
The Amazon Redshift engine is a SQL-compliant, massively-
parallel, query processing and database management system 
designed to support analytics workload. We consider analytic 
workloads those that regularly ingest incremental sets of data that 
can be large in size and run queries that join, scan, filter and 
aggregate data that can comprise a significant fraction of the total 
stored data. The initial version of the engine was derived from a 
code base licensed from ParAccel. Data storage and compute is 
distributed across one or more nodes, which provides near-linear 
scalability for maintaining & querying datasets from 100s of 
gigabytes on up to petabyte scale. An Amazon Redshift cluster is 
comprised of a leader node and one or more compute nodes. We 
also support a single-node design where leader and compute work 
is shared on a single node.  

 

Figure 3: Amazon Redshift system architecture 

The leader node accepts connections from client programs, 
parses requests, generates & compiles query plans for execution 
on the compute nodes, performs final aggregation of results when 
required, and coordinates serialization and state of transactions. 
The compute node(s) perform the heavy lifting inherent in both 
query processing and data manipulation against local data. 

Data stored within each Amazon Redshift table is automatically 
distributed both across compute nodes, to enable scale out of large 
data sets, and within a compute node, to reduce contention across 
processing cores. A compute node is partitioned into slices; one 
slice for each core of the node's multi-core processor. Each slice is 
allocated a portion of the node's memory and disk space, where it 
processes a portion of the workload assigned to the node. The user 
can specify whether data is distributed in a round robin fashion, 
hashed according to a distribution key, or duplicated on all slices. 
Using distribution keys allows join processing on that key to be 
co-located on individual slices, reducing IO, CPU and network 
contention and avoiding the redistribution of intermediate results 
during query execution. Within each slice, data storage is column-
oriented. Each column within each slice is encoded in a chain of 
one or more fixed size data blocks. The linkage between the 
columns of an individual row is derived by calculating the logical 
offset within each column chain. This linkage is stored as meta-
data.  

Data blocks are replicated both within the database instance and 
within Amazon Simple Storage Service (S3). Each data block is 
synchronously written to both its primary slice as well as to at 
least one secondary on a separate node. Cohorting is used to limit 
the number of slices impacted by an individual disk or node 
failure. Here, we attempt to balance the resource impact of re-
replication against the increased probability of correlated failures 

as disk and node counts increase. Data blocks are also 
asynchronously and automatically backed up to Amazon S3, 
which is designed to provide 99.9999999% durability by storing 
multiple copies across multiple data centers. The primary, 
secondary and Amazon S3 copies of the data block are each 
available for read, making media failures transparent. Loss of 
durability requires multiple faults to occur in the time window 
from the first fault to re-replication or backup to Amazon S3. 
Customers can also choose to have their backups occur to 
Amazon S3 in a second region for further protection against 
disasters.  

Query processing within Amazon Redshift begins with query plan 
generation and compilation to C++ and machine code at the leader 
node. The use of query compilation adds a fixed overhead per 
query that we feel is generally amortized by the tighter execution 
at compute nodes vs. the overhead of execution in a general-
purpose set of executor functions. The executable and plan 
parameters are sent to each compute node participating in the 
query. At the compute nodes, the executable is run with the plan 
parameters and the intermediate results are sent back to the leader 
node for final aggregation. Each slice in the compute node may 
run multiple operations such as scanning, filtering, processing 
joins, etc., in parallel. 

Data loading is a special case of query processing, using a 
modified version of the PostgreSQL COPY command. The 
Amazon Redshift version of COPY provides direct access to load 
data from Amazon S3, Amazon DynamoDB, Amazon EMR, or 
over an arbitrary SSH connection. COPY is parallelized across 
slices, with each slice reading data in parallel, distributing as 
needed, and sorting locally. By default, compression scheme and 
optimizer statistics are updated with load. While customers can 
override these, they represent some of the dustier knobs still 
remaining in the system. COPY also directly supports ingestion of 
JSON data as well as data that is encrypted and/or compressed.  

2.2 Control Plane 
In addition to the database engine software itself, each Amazon 
Redshift node has host manager software that helps with 
deploying new database engine bits, aggregating events and 
metrics, generating instance-level events, archiving and rotating 
logs, and monitoring the host, database and log files for errors. 
The host manager also has limited capability to perform actions, 
for example, restarting a database process on failure.  

Most control plane actions are coordinated off-instance by a 
separate Amazon Redshift control plane fleet. These nodes are 
responsible for fleet-wide monitoring and alarming as well as 
initiating maintenance tasks based on telemetry from instance host 
managers or actions requested by end-customers through the 
console or API. Example tasks would include node replacements, 
cluster resize, backup, restore, provisioning, patching, etc.  

2.3 Dependent AWS Services 
In addition to the core Amazon Redshift software itself, we 
leverage multiple AWS services, most significantly Amazon 
Elastic Compute Cloud (EC2) for instances, Amazon S3 for 
backup, Amazon Simple Workflow (SWF) for control plane 
actions, Amazon CloudWatch for customer instance metrics, 
Amazon Simple Notification Service (SNS) for customer alarms, 
Amazon VPC for network isolation, Amazon Route53 for DNS 
lookup, AWS CloudTrail for audit logging, and AWS Key 
Management Service and AWS CloudHSM for key management.  
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We additionally leverage a number of internal AWS services for 
additional capabilities including deployment, short-term 
credentials, log harvesting, load balancing, metering, etc. 

The use of these services has significantly accelerated Amazon 
Redshift development, both as we have avoided the need to build 
robust, fault-tolerant and secure components where available in 
other AWS services, as well as providing us with access to an 
ongoing innovation stream by our sister development teams. For 
example, Amazon EC2 has significantly enhanced intrusion 
detection, network QoS, packets per second, server health 
monitoring, and IO queue management over the past two years – 
all capabilities we have absorbed with no changes to our engine.  

The overall Amazon Redshift system architecture can be seen as 
the integration of traditional parallel, distributed relational 
database architecture with service-oriented architecture for 
management. Our greatest differentiation occurs when we are able 
to leverage these together.  

For example, many database providers provide backup integration 
to cold storage. However, they are rarely able to expect the 
availability of any specific provider. By operating in the AWS 
cloud, Amazon Redshift is able to rely upon the specific 
characteristics of Amazon S3 availability, durability and access 
APIs. This has allowed us to entirely automate backup, making it 
continuous, incremental and automatic, and removing the need for 
customer attention. More significantly, we are able to include 
Amazon S3 backups as part of our data availability and durability 
design, by doing block-level backups and “page-faulting” in 
blocks when unavailable on local storage. This also allowed us to 
implement a streaming restore capability, allowing the database to 
be opened for SQL operations after metadata and catalog 
restoration, but while blocks were still being brought down in 
background. Since the average working set for a data warehouse 
is a small fraction of the total data stored, this allows performant 
queries to be obtained in a small fraction of the time required for a 
full restore. A meaningful percentage of Amazon Redshift 
customers delete their clusters every Friday and restore from 
backup each Monday.  

3. The Case for Simplicity 
We believe the success of SQL-based databases came in large part 
from the significant simplifications they brought to application 
development through the use of declarative query processing and 
a coherent model of concurrent execution. The introduction of 
data warehousing and later columnar layouts extended this by 
simplifying schema design and reducing the expense of join 
processing. And while customers will always demand more 
powerful capabilities (e.g., consider the rise in popularity of the 
MapReduce paradigm), our approach to this customer pull is to 
balance it with the belief that additional power generally requires 
additional education and understanding. As one of our customers 
put it, ‘I want a relationship with my data, not my database.’ 

3.1 Simplifying the Purchase Decision Process 
‘Time to first report’ is a key metric for our team. We see the 
clock starting at the point a customer first looks at our website to 
evaluate our service and stopping when they are first able to issue 
a query and obtain a result from their database instance. We take a 
retail mindset to this, understanding one of our customers looking 
for data management technology on AWS is the same person 
looking for a laptop or CD on Amazon.com. Many of the same 
techniques in ecommerce applications apply. For example, one 
might look at click trails through web pages and evaluate where 
abandonment occurs.  

These may not feel like software development concerns, but we 
have found that they impact product decisions. It helped us to 
have launched using the standard PostgreSQL ODBC/JDBC 
drivers, providing confidence that our customers existing tools 
ecosystem would largely work. Our linear pricing model (with 
discounts for commitment) has informed how we scale out to 
support larger databases. Reducing the up-front steps required to 
create and configure a database has reduced abandonment.  

Looking at the specific process of cluster creation, our analogue to 
“package delivery”, we’ve limited the information required to 
number and type of nodes, basic network configuration and 
administrative account information. We are working to reduce this 
further. At launch time, cluster creation times averaged 15 
minutes, which we viewed as a significant benefit compared to 
on-premise database provisioning times. Some months later, we 
introduced support for preconfigured Amazon Redshift nodes 
available for faster creations and supporting standbys for node 
failure replacements. These reduced provisioning time to 3 
minutes, and meaningfully reduced abandonment.  

We have found reducing the cost of an error to be as important as 
improving delivery time. Our customers can more readily 
experiment if they can easily “return” or “exchange” their 
database. Customers creating their first database cluster will 
automatically get enough free hours for their first two months to 
continually run a database supporting 160GB of compressed SSD 
data. Beyond this level, the use of hourly pricing enables 
experimentation and trial of the service by reducing commitment. 
While pricing may seem orthogonal to product design, a service 
involves hardware capital expense and operations personnel and 
software design can meaningfully impact both. 

For example, at any time, customers can resize their clusters up or 
down or to a different instance type, removing the need for up-
front capacity and performance estimation. Underneath the 
covers, we provision a new cluster, put the original cluster in 
read-only mode, and run a parallel node-to-node copy from source 
cluster to target. The source cluster is available for reads until the 
operation completes, at which time, we move the SQL endpoint 
and decommission the source.  

3.2 Simplifying Database Administration 
Most Amazon Redshift customers do not have a designated DBA 
to administer their database. This reduces their costs and enables 
them to allocate resources towards higher value work with their 
data. Our service manages much of the undifferentiated heavy 
lifting involved in database administration, including 
provisioning, patching, monitoring, repair, backup and restore.  

We believe database administration operations should be as 
declarative as queries, with the database determining 
parallelization and distribution. Amazon Redshift operations are 
data-parallel within the cluster, as well cluster-parallel for fleet-
wide actions such as patching and monitoring. For example, the 
time required to backup an entire cluster is proportional to the 
data changed on a single node. System backups are taken 
automatically and are automatically aged out. User backups 
leverage the blocks already backed up in system backups and are 
kept until explicitly deleted. Disruptions to cloud infrastructure 
get wide publicity so some customers ask for disaster recovery by 
storing backups in a second region. In Amazon Redshift, that only 
requires setting a checkbox and specifying the region. Within the 
system, we will initiate backing up data blocks to both the local 
and the remote region. Disaster recovery backups have the same 
streaming restore capabilities as local backups, allowing 
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customers to start issuing queries within minutes of starting a 
cluster in the remote region.  

Encryption is similarly straightforward. Enabling encryption 
requires setting a checkbox in our console and, optionally, 
specifying a key provider such as a hardware security module 
(HSM). Under the covers, we generate block-specific encryption 
keys (to avoid injection attacks from one block to another), wrap 
these with cluster-specific keys (to avoid injection attacks from 
one cluster to another), and further wrap these with a master key, 
stored by us off-network or via the customer-specified HSM. All 
user data, including backups, is encrypted. Key rotation is 
straightforward as it only involves re-encrypting block keys or 
cluster keys, not the entire database. Repudiation is equally 
straightforward, as it only involves losing access to the customer’s 
key or re-encrypting all remaining valid cluster keys with a new 
master. We also benefit from security features in the core AWS 
platform. For example, we use Amazon VPC to provide network 
isolation of the compute nodes providing cluster storage, isolating 
them from general-purpose access from the leader node, which is 
accessible from the customer’s VPC.  

Future work will remove the need for user-initiated table 
administration operations, making them closer to backup in 
operation. The database should be able to determine when data 
access performance is degrading and take action to correct itself 
when load is otherwise light. 

3.3 Simplifying Database Tuning 
Amazon Redshift has few tuning knobs in comparison to other 
database engines. We view this as a plus, removing burden from 
our customers in favor of putting responsibility on ourselves. The 
main things set by a customer are instance type and number of 
nodes for the database cluster, and sort and distribution model 
used for individual tables.  

While customers can set other parameters, such as column 
compression type, we strive to make such knobs dusty with 
disuse, by simply setting them accurately ourselves. The database 
generally has as much or more information as available to the 
customer to set these well, including query patterns, data 
distribution and cost of compression.  

We are striving to make other settings, such as sort column and 
distribution key equally dusty. One technique we are applying is 
to reduce the cost of a suboptimal decision. For example, a 
missing projection can result in a full table scan while an 
additional one can greatly impact load time. By comparison, a 
multidimensional index [JAO] using z-curves degrades more 
gracefully with excess participation and still provides utility if 
leading columns are not specified. Similarly, z-curves can reduce 
the span of nodes involved in a join, rather than making them 
entirely local or fully distributed.  

Similarly, relaxation of how we map data and query computation 
to nodes and slices would allow a more elastic system, which 
could grow and shrink as load required.  

4.  Customer Use Cases 
Below, we touch on some of the ways customers are using 
Amazon Redshift. What connects many of these and other cases is 
SQL. The ability to declaratively state one’s intent and have it 
automatically converted into an optimized execution plan that is 
resilient to changes in access patterns and data distribution is a 
very significant benefit compared to other data-intensive 
computing techniques. This is only yet more important when 
computation needs to be distributed and parallelized across many 
nodes, and resources distributed across many concurrent queries. 

A common theme across these use cases for forward work is data 
movement and transformation, which today seems to lack the 
simplicity and power of in-database processing using declarative 
SQL. A standardized declarative model for data structure 
identification and transformation would be valuable.  

Enterprise data warehousing: Many customers utilize Amazon 
Redshift for what we consider to be the traditional enterprise data 
warehousing use case. They populate data from a set of source 
relational databases, ingest at an hourly or nightly cadence, and 
access data through BI tools. These customers have appreciated 
the simplicity and transparency of the procurement process, the 
ability to evaluate the service at minimal cost, and the ability to 
use their existing ecosystem of BI and ETL tools. They are 
generally struggling with the maintenance overhead for their 
existing systems and see the value of managed systems that take 
care of undifferentiated heavy lifting. 

When migrating from other systems, we find that our customers 
like their existing databases, but do not always have great 
relationships with their database vendors. They often come to us 
when faced with a decision point on their existing system, either 
being forced to upgrade hardware for a managed system, coming 
to the end of a term license and about to enter a protracted 
negotiation cycle, or reaching the scaling limit on one engine and 
being forced to migrate to a second from the same vendor with 
somewhat different SQL semantics and maintenance. These have 
guided us towards reducing “sharp edges” in our own service, by 
making scaling linear and straightforward, increasing 
compatibility with PostgreSQL and growing the tools ecosystem 
we support.  

Semi-structured “Big Data” analysis: Many customers also use 
Amazon Redshift for the integrated analysis of log and transaction 
data. We see a number of customers migrating away from HIVE 
on Hadoop and obtain much better performance at a much lower 
cost. They are also able to make their systems directly available to 
business analysts in their organizations using SQL or BI tools, 
rather than burdening their engineers and data scientists with the 
responsibility to generate these reports. For these customers, 
simplicity is a key driver, as they generally are not staffed with 
DBAs to manage and maintain their systems. We see this use case 
as where the bulk of “dark data” resides, and see many 
opportunities to further simplify their lives. For example, we 
could support transient data warehouses on a source ‘data lake’ or 
automatically ‘relationalizing’ source semi-structured data into 
tables for efficient query execution.  

Data Transformation: An increasing number of Amazon 
Redshift customers use the service as part of a data processing 
pipeline, taking large amounts of raw data, dropping it into the 
data warehouse to run large SQL jobs that generate output tables 
that they can then use in their online business. An example would 
be in ad-tech, where many billion ad impressions may be distilled 
into lookup tables that informs an ad exchange online service. We 
have also seen customers begin to directly integrate Amazon 
Redshift into their customer facing screens under analytic reports 
and graphs. We see these customers moving towards SQL for the 
benefits of being able to straightforwardly and declaratively 
indicate intent and have the underlying system perform the 
parallel query decomposition. We see a similar trend in the SQL 
on Hadoop community, with SQL being used to reduce the labor 
involved in writing Map Reduce jobs. Speed and expressibility are 
key attributes here, for example, guiding our work on approximate 
functions. In time, we would like to build distributed approximate 
equivalents for all non-linear exact operations within our engine.  
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“Small Data” - A large number of Amazon Redshift customers 
have never previously used a data warehouse, instead directly 
running their reports against their source transaction systems. 
Amazon Redshift’s cost structure and removal of overhead 
administration has enabled these customers to create data 
warehouses and obtain the benefits of improved performance, 
OLTP system offload, and retention of history. These customers 
are used to a short time lag to source data changes, so automated 
change data capture and automatic schema creation and 
maintenance are important capabilities.  

5. Lessons Learned 
Amazon Redshift has grown rapidly since it became generally 
available in February 2013. While our guiding principles have 
served us well over the past two years, we now manage many 
thousands of database instances and below offer some lessons we 
have learned from operating databases at scale.  

Design escalators, not elevators: Failures are common when 
operating large fleets with many service dependencies. A key 
lesson for us has been to design systems that degrade on failures 
rather than losing outright availability. These are a common 
design pattern when working with hardware failures, for example, 
replicating data blocks to mask issues with disks. They are less 
common when working with software or service dependencies, 
though still necessary when operating in a dynamic environment. 
Amazon overall (including AWS) had 50 million code 
deployments over the past 12 months. Inevitably, at this scale, a 
small number of regressions will occur and cause issues until 
reverted. It is helpful to make one’s own service resilient to an 
underlying service outage. For example, we support the ability to 
preconfigure nodes in each data center, allowing us to continue to 
provision and replace nodes for a period of time if there is an 
Amazon EC2 provisioning interruption. One can locally increase 
replication to withstand an Amazon S3 or network interruption. 
We are adding similar mitigation strategies for other external 
dependencies that can fail independently from the database itself.  

Continuous delivery should be to the customer: Many 
engineering organizations now use continuous build and 
automated test pipelines to a releasable staging environment. 
However, few actually push the release itself at a frequent pace. 
While customers would prefer small patches to large ones for the 
same reasons engineering organizations prefer to build and test 
continuously, patching is an onerous process. This often leads to 
special-case, one-off patches per customer that are limited in 
scope – while necessary, they make patching yet more fragile.  

 

Figure 4: Cumulative features deployed over time 

Amazon Redshift is set up to automatically patch customer 
clusters on a weekly basis in a 30-minute window specified by the 

customer. Patches are reversible and will automatically be 
reversed if we see an increase in errors or latency in our telemetry. 
At any point, a customer will only be on one of two patch 
versions, greatly improving our ability to reproduce and diagnose 
issues. We typically push new database engine software, including 
both features and bug fixes, every two weeks. We have found 
reducing this pace, for example to every four weeks, meaningfully 
increased the probability of a failed patch.  

Use Pareto analysis to schedule work: In a rapidly growing 
service, operational load can easily overwhelm development 
capacity. We page ourselves on each database failure, 
understanding that, even if not a widespread concern, each issue is 
meaningful to the customer experiencing it. In Figure 5, Sev 2 
refers to a severity 2 alarm that causes an engineer to get paged. 
This means operational load roughly correlates to business 
success. Within Amazon Redshift, we collect error logs across our 
fleet and monitor tickets to understand top ten causes of error, 
with the aim of extinguishing one of the top ten causes of error 
each week.  

 
Figure 5: Tickets per cluster over time 

Pareto analysis is equally useful in understanding customer 
functional requirements. However, it is more difficult to collect. 
We manage this by simply conducting over 1000 direct one-to-
one conversations with customers each year. This provides a clear 
sample of customer needs and service gaps, providing us with 
actionable telemetry towards scheduling feature development. In 
future, we would like to add automated collection of usage 
statistics by feature, query plan shapes, etc. across our fleet.  

6. Related Work 
While Amazon Redshift, when launched, was the first widely 
available data warehouse-as-a-service, its core database 
technology (parser, optimizer, engine, storage organization, MPP 
architecture) was derived from technology licensed from 
ParAccel. ParAccel belongs to a group of column-oriented DBMS 
products that appeared from the middle through the end of the 
2000s: Vertica, Ingres VectorWise, Infobright, Kickfire, and 
many others [1]. These systems had several similarities in their 
design philosophy and list of features, with many of them 
influenced by two pioneering modern column-store systems: C-
Store [8] and MonetDB/X100 [3]. 

Redshift’s compression techniques are similar to those used by 
Vertica, and their performance tradeoffs are well understood [2]. 
Redshift foregoes traditional indexes (or projections in C-
Store/Vertica) and instead focuses on sequential scan speed 
through compiled code execution and column-block skipping 
based on value-ranges stored in memory. Infobright’s Knowledge 
Grid and Netezza’s Zone Maps also rely on block skipping which 
as a technique was first discussed in [5]. Code compilation 
techniques in query execution have received renewed attention in 
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academia [6][9] and are also used in other systems such as 
Microsoft’s Hekaton [4]. 

7. Conclusion 
Amazon Redshift’s price, performance, and simplicity extend the 
use cases for data warehousing beyond traditional enterprise data 
warehousing, into big data and software-as-service applications 
with embedded analytics. Unlike traditional data warehouse 
systems, which often require large upfront payments and months 
of vendor negotiations, hardware procurement and deployments, 
Amazon Redshift clusters can be provisioned in minutes, enabling 
customers to get started with no commitments and scale up to a 
petabyte scale cluster. Redshift also offers automated patching, 
provisioning, scaling, securing, backup, restore, and a 
comprehensive set of security features such as encryption at rest, 
in transit, HSM integration and audit logging.  

By dramatically lowering the cost and effort associated with 
deploying data warehousing systems without compromising on 
features and performance, Amazon Redshift is not only changing 
how traditional enterprises think about data warehousing but also 
making data warehousing technology available to segments that 
had not previously considered it. This is evident in Redshift’s 
customer base, which ranges from enterprises like NTT 
DOCOMO and Amazon.com with multi-petabyte systems, to 
high-scale startups like Pinterest and Flipboard with hundreds of 
terabytes, to small startups with hundreds of gigabytes in their 
data warehouses. 
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