
Amazon Redshift and the Case for Simpler

Data Warehouses

Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak,

Stefano Stefani, Vidhya Srinivasan

Amazon Web Services

Abstract
Amazon Redshift is a fast, fully managed, petabyte-scale data
warehouse solution that makes it simple and cost-effective to
efficiently analyze large volumes of data using existing business
intelligence tools. Since launching in February 2013, it has been
Amazon Web Service’s (AWS) fastest growing service, with
many thousands of customers and many petabytes of data under
management.

Amazon Redshift’s pace of adoption has been a surprise to many
participants in the data warehousing community. While Amazon
Redshift was priced disruptively at launch, available for as little as
$1000/TB/year, there are many open-source data warehousing
technologies and many commercial data warehousing engines that
provide free editions for development or under some usage limit.
While Amazon Redshift provides a modern MPP, columnar,
scale-out architecture, so too do many other data warehousing
engines. And, while Amazon Redshift is available in the AWS
cloud, one can build data warehouses using EC2 instances and the
database engine of one’s choice with either local or network-
attached storage.

In this paper, we discuss an oft-overlooked differentiating
characteristic of Amazon Redshift – simplicity. Our goal with
Amazon Redshift was not to compete with other data warehousing
engines, but to compete with non-consumption. We believe the
vast majority of data is collected but not analyzed. We believe,
while most database vendors target larger enterprises, there is
little correlation in today’s economy between data set size and
company size. And, we believe the models used to procure and
consume analytics technology need to support experimentation
and evaluation. Amazon Redshift was designed to bring data
warehousing to a mass market by making it easy to buy, easy to
tune and easy to manage while also being fast and cost-effective.

1. Introduction
Many companies augment their transaction-processing database
systems with data warehouses for reporting and analysis. Analysts
estimate the data warehouse market segment at 1/3 of the overall
relational database market segment ($14B vs. $45B for software
licenses and support), with an 8-11% compound annual growth
rate (CAGR)1. While this is a strong growth rate for a large,
mature market, over the past ten years, analysts also estimate data
storage at a typical enterprise growing at 30-40% CAGR. Over

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author. Copyright is held by the owner/author(s).
SIGMOD '15, May 31–June 4, 2015, Melbourne, Victoria, Australia
ACM 978-1-4503-2758-9/15/05.
http://dx.doi.org/10.1145/2723372.2742795

the past 12-18 months, new market research has begun to show an
increase to 50-60%, with data doubling in size every 20 months.

Figure 1: Data Analysis Gap in the Enterprise [10]

This implies most data in an enterprise is “dark data”2: data that is
collected but not easily analyzed. We see this as unfortunate. If
our customers didn’t see this data as having value, they would not
retain it. Many companies are trying to become increasingly data-
driven. And yet, not only is most data already dark, the overall
data landscape is only getting darker. Storing this data in NoSQL
stores and/or Hadoop is one way to bridge the gap for certain use
cases. However it doesn’t address all scenarios.

In our discussions with customers, we found the “analysis gap”
between data being collected and data available for analysis as
due to four major causes.

1. Cost – Most commercial database solutions capable of
analyzing data at scale require significant up-front expense.
This is hard to justify for large datasets with unclear value.

2. Complexity – Database provisioning, maintenance, backup,
and tuning are complex tasks requiring specialized skills.
They require IT involvement and cannot easily be performed
by line of business data scientists or analysts.

3. Performance – It is difficult to grow a data warehouse
without negatively impacting query performance. Once built,
IT teams sometimes discourage augmenting data or adding
queries as a way of protecting current reporting SLAs.

4. Rigidity – Most databases work best on highly structured
relational data. But a large and increasing percentage of data
consists of machine-generated logs that mutate over time,
audio and video, not readily accessible to relational analysis.

We see each of the above issues only increasing with data set size.
To take one large-scale customer example, the Amazon Retail
team collects about 5 billion web log records daily (2TB/day,

1 Forecast data combined from IDC, Gartner, and 451 Research.
2 http://www.gartner.com/it-glossary/dark-data

1990 2000 2010 2020Enterprise Data Data in Warehouse

1917

growing 67% YoY). It is very valuable to combine this data with
transactional data stored in their relational and NoSQL systems.
Using an existing scale-out commercial data warehouse, they
were able to analyze 1 week of data per hour and maintain a cap
of 15 months of log, using the largest configuration available.
Using much larger Hadoop clusters, they were able to analyze up
to 1 month of data per hour, though these clusters were very
expensive to administer.

By augmenting their existing systems with a petabyte-scale
Amazon Redshift cluster, the Amazon Enterprise Data Warehouse
team was able to perform their daily load (5B rows) in 10
minutes, load a month of backfill data (150B rows) in 9.75 hours,
take a backup in 30 minutes and restore it to a new cluster in 48
hours. Most interestingly, they were able to now run queries that
joined 2 trillion rows of click traffic with 6 billion rows of product
ids in less than 14 minutes, an operation that didn’t complete in
over a week on their existing systems.

Some of the above results emerge from Amazon Redshift’s use of,
by now, familiar data warehousing techniques, including
columnar layout, per-column compression, co-locating compute
and data, co-locating joins, compilation to machine code and
scale-out MPP processing. While these techniques have not fully
made their way into the largest data warehousing vendors,
Amazon Redshift’s approach is very close to that taken by other
columnar MPP data warehousing engines.

Beyond these techniques used to scale out query processing and to
reduce CPU, disk IOs, network traffic, Amazon Redshift had a
number of additional design goals:

1. Minimize cost of experimentation – It is difficult to
understand whether data is worth analyzing without
performing at least a few experiments. Amazon Redshift
provides a free trial allowing customers to evaluate the
service for 60 days using up to 160GB of compressed SSD
data at no charge. For subsequent experiments, they can spin
up a cluster with no commitments for $0.25/hour/node. This
is inclusive of hardware, software, maintenance and
management.

2. Minimize time to first report – We measure the time it takes
our customers to go from deciding to create a cluster to
seeing the results of their first query. As seen in Figure 2, this
can be as little as 15 minutes, even to provision a multi-PB
cluster.

3. Minimize administration – Amazon Redshift tries to reduce
the undifferentiated heavy lifting of creating and operating a
data warehouse. We automate backup, restore, provisioning,
patching, failure detection and repair. Advanced operations
like encryption, cluster resizing and disaster recovery require
only a few clicks to enable.

4. Minimize scaling concerns - Many data warehousing engines
provide parallelization of loads and queries. We additionally
try to parallelize administrative operations like cluster
creation, patching, backup, restore and cluster resize. Pricing
is also linear or sub-linear with data set growth.

5. Minimize tuning – We avoid knobs and apply techniques to
make the ones we do provide “dusty” with disuse. For most
users the default setting for these knobs as determined by the
system would be sufficient. However, advanced users can
choose to change it as needed. For example, we
automatically pick compression types based on data

sampling. We also avoid the use of indexing or projections,
instead favoring multi-dimensional z-curves.

Figure 2: Common admin operation execution time by size

Amazon Redshift also obtains a number of advantages by
operating as a managed service in the AWS cloud.

First and foremost, we are able to leverage the pricing and scale of
Amazon EC2 for our instances, the durability and throughput of
Amazon S3 for backup, and the security of Amazon VPC, to
name just a few. This enables our customers to benefit from the
innovation and price reductions delivered across a much larger
team than ours alone.

Second, by making deployments and patching automatic and
painless for our customers, we are able to deploy software at a
high frequency. We have averaged the addition of one feature per
week, over the past two years. Reducing the cost of deployment
and the rapid feedback mechanisms available in running a service
allows us to run a more agile OODA3 loop compared to on-
premise providers, ensuring we quickly provide the features our
customers care most about.

Finally, since we manage a fleet of thousands of Amazon Redshift
clusters, we benefit from automating capabilities that would not
make economic sense for any individual on-premise DBA. An
operation requiring one minute of per-node overhead is worth
many days of investment for us to remove. Removing the root
cause of a defect that causes an individual cluster to fail and
restart once per thousand days is well worth our investment to
reduce paging. As we scale, we have to continually improve the
reliability, availability and automation across our fleet to manage
operations, which makes failures increasingly uncommon for our
customers.

In this paper, we discuss Amazon Redshift’s system architecture,
simplicity as a guiding principle, and lessons we’ve learned over
the past two years operating the service.

2. System Architecture
The Amazon Redshift architecture consists of a data plane, the
database engine providing data storage and SQL execution, a
control plane, providing the workflows to monitor and manage
the database, and other AWS services we depend on to support
data plane and control plane execution. We summarize each
below.

3 http://en.wikipedia.org/wiki/OODA_loop

0 4 8 12 16 20 24 28 32

128

Nodes

16

Nodes

 2
Nodes

Duration (Minutes)

Time to Deploy and Manage a Cluster

Time spent
on clicks

Deploy Connect Backup Restore Resize

(2 to 16 nodes)

1918

2.1 Data Plane
The Amazon Redshift engine is a SQL-compliant, massively-
parallel, query processing and database management system
designed to support analytics workload. We consider analytic
workloads those that regularly ingest incremental sets of data that
can be large in size and run queries that join, scan, filter and
aggregate data that can comprise a significant fraction of the total
stored data. The initial version of the engine was derived from a
code base licensed from ParAccel. Data storage and compute is
distributed across one or more nodes, which provides near-linear
scalability for maintaining & querying datasets from 100s of
gigabytes on up to petabyte scale. An Amazon Redshift cluster is
comprised of a leader node and one or more compute nodes. We
also support a single-node design where leader and compute work
is shared on a single node.

Figure 3: Amazon Redshift system architecture

The leader node accepts connections from client programs,
parses requests, generates & compiles query plans for execution
on the compute nodes, performs final aggregation of results when
required, and coordinates serialization and state of transactions.
The compute node(s) perform the heavy lifting inherent in both
query processing and data manipulation against local data.

Data stored within each Amazon Redshift table is automatically
distributed both across compute nodes, to enable scale out of large
data sets, and within a compute node, to reduce contention across
processing cores. A compute node is partitioned into slices; one
slice for each core of the node's multi-core processor. Each slice is
allocated a portion of the node's memory and disk space, where it
processes a portion of the workload assigned to the node. The user
can specify whether data is distributed in a round robin fashion,
hashed according to a distribution key, or duplicated on all slices.
Using distribution keys allows join processing on that key to be
co-located on individual slices, reducing IO, CPU and network
contention and avoiding the redistribution of intermediate results
during query execution. Within each slice, data storage is column-
oriented. Each column within each slice is encoded in a chain of
one or more fixed size data blocks. The linkage between the
columns of an individual row is derived by calculating the logical
offset within each column chain. This linkage is stored as meta-
data.

Data blocks are replicated both within the database instance and
within Amazon Simple Storage Service (S3). Each data block is
synchronously written to both its primary slice as well as to at
least one secondary on a separate node. Cohorting is used to limit
the number of slices impacted by an individual disk or node
failure. Here, we attempt to balance the resource impact of re-
replication against the increased probability of correlated failures

as disk and node counts increase. Data blocks are also
asynchronously and automatically backed up to Amazon S3,
which is designed to provide 99.9999999% durability by storing
multiple copies across multiple data centers. The primary,
secondary and Amazon S3 copies of the data block are each
available for read, making media failures transparent. Loss of
durability requires multiple faults to occur in the time window
from the first fault to re-replication or backup to Amazon S3.
Customers can also choose to have their backups occur to
Amazon S3 in a second region for further protection against
disasters.

Query processing within Amazon Redshift begins with query plan
generation and compilation to C++ and machine code at the leader
node. The use of query compilation adds a fixed overhead per
query that we feel is generally amortized by the tighter execution
at compute nodes vs. the overhead of execution in a general-
purpose set of executor functions. The executable and plan
parameters are sent to each compute node participating in the
query. At the compute nodes, the executable is run with the plan
parameters and the intermediate results are sent back to the leader
node for final aggregation. Each slice in the compute node may
run multiple operations such as scanning, filtering, processing
joins, etc., in parallel.

Data loading is a special case of query processing, using a
modified version of the PostgreSQL COPY command. The
Amazon Redshift version of COPY provides direct access to load
data from Amazon S3, Amazon DynamoDB, Amazon EMR, or
over an arbitrary SSH connection. COPY is parallelized across
slices, with each slice reading data in parallel, distributing as
needed, and sorting locally. By default, compression scheme and
optimizer statistics are updated with load. While customers can
override these, they represent some of the dustier knobs still
remaining in the system. COPY also directly supports ingestion of
JSON data as well as data that is encrypted and/or compressed.

2.2 Control Plane
In addition to the database engine software itself, each Amazon
Redshift node has host manager software that helps with
deploying new database engine bits, aggregating events and
metrics, generating instance-level events, archiving and rotating
logs, and monitoring the host, database and log files for errors.
The host manager also has limited capability to perform actions,
for example, restarting a database process on failure.

Most control plane actions are coordinated off-instance by a
separate Amazon Redshift control plane fleet. These nodes are
responsible for fleet-wide monitoring and alarming as well as
initiating maintenance tasks based on telemetry from instance host
managers or actions requested by end-customers through the
console or API. Example tasks would include node replacements,
cluster resize, backup, restore, provisioning, patching, etc.

2.3 Dependent AWS Services
In addition to the core Amazon Redshift software itself, we
leverage multiple AWS services, most significantly Amazon
Elastic Compute Cloud (EC2) for instances, Amazon S3 for
backup, Amazon Simple Workflow (SWF) for control plane
actions, Amazon CloudWatch for customer instance metrics,
Amazon Simple Notification Service (SNS) for customer alarms,
Amazon VPC for network isolation, Amazon Route53 for DNS
lookup, AWS CloudTrail for audit logging, and AWS Key
Management Service and AWS CloudHSM for key management.

1919

We additionally leverage a number of internal AWS services for
additional capabilities including deployment, short-term
credentials, log harvesting, load balancing, metering, etc.

The use of these services has significantly accelerated Amazon
Redshift development, both as we have avoided the need to build
robust, fault-tolerant and secure components where available in
other AWS services, as well as providing us with access to an
ongoing innovation stream by our sister development teams. For
example, Amazon EC2 has significantly enhanced intrusion
detection, network QoS, packets per second, server health
monitoring, and IO queue management over the past two years –
all capabilities we have absorbed with no changes to our engine.

The overall Amazon Redshift system architecture can be seen as
the integration of traditional parallel, distributed relational
database architecture with service-oriented architecture for
management. Our greatest differentiation occurs when we are able
to leverage these together.

For example, many database providers provide backup integration
to cold storage. However, they are rarely able to expect the
availability of any specific provider. By operating in the AWS
cloud, Amazon Redshift is able to rely upon the specific
characteristics of Amazon S3 availability, durability and access
APIs. This has allowed us to entirely automate backup, making it
continuous, incremental and automatic, and removing the need for
customer attention. More significantly, we are able to include
Amazon S3 backups as part of our data availability and durability
design, by doing block-level backups and “page-faulting” in
blocks when unavailable on local storage. This also allowed us to
implement a streaming restore capability, allowing the database to
be opened for SQL operations after metadata and catalog
restoration, but while blocks were still being brought down in
background. Since the average working set for a data warehouse
is a small fraction of the total data stored, this allows performant
queries to be obtained in a small fraction of the time required for a
full restore. A meaningful percentage of Amazon Redshift
customers delete their clusters every Friday and restore from
backup each Monday.

3. The Case for Simplicity
We believe the success of SQL-based databases came in large part
from the significant simplifications they brought to application
development through the use of declarative query processing and
a coherent model of concurrent execution. The introduction of
data warehousing and later columnar layouts extended this by
simplifying schema design and reducing the expense of join
processing. And while customers will always demand more
powerful capabilities (e.g., consider the rise in popularity of the
MapReduce paradigm), our approach to this customer pull is to
balance it with the belief that additional power generally requires
additional education and understanding. As one of our customers
put it, ‘I want a relationship with my data, not my database.’

3.1 Simplifying the Purchase Decision Process
‘Time to first report’ is a key metric for our team. We see the
clock starting at the point a customer first looks at our website to
evaluate our service and stopping when they are first able to issue
a query and obtain a result from their database instance. We take a
retail mindset to this, understanding one of our customers looking
for data management technology on AWS is the same person
looking for a laptop or CD on Amazon.com. Many of the same
techniques in ecommerce applications apply. For example, one
might look at click trails through web pages and evaluate where
abandonment occurs.

These may not feel like software development concerns, but we
have found that they impact product decisions. It helped us to
have launched using the standard PostgreSQL ODBC/JDBC
drivers, providing confidence that our customers existing tools
ecosystem would largely work. Our linear pricing model (with
discounts for commitment) has informed how we scale out to
support larger databases. Reducing the up-front steps required to
create and configure a database has reduced abandonment.

Looking at the specific process of cluster creation, our analogue to
“package delivery”, we’ve limited the information required to
number and type of nodes, basic network configuration and
administrative account information. We are working to reduce this
further. At launch time, cluster creation times averaged 15
minutes, which we viewed as a significant benefit compared to
on-premise database provisioning times. Some months later, we
introduced support for preconfigured Amazon Redshift nodes
available for faster creations and supporting standbys for node
failure replacements. These reduced provisioning time to 3
minutes, and meaningfully reduced abandonment.

We have found reducing the cost of an error to be as important as
improving delivery time. Our customers can more readily
experiment if they can easily “return” or “exchange” their
database. Customers creating their first database cluster will
automatically get enough free hours for their first two months to
continually run a database supporting 160GB of compressed SSD
data. Beyond this level, the use of hourly pricing enables
experimentation and trial of the service by reducing commitment.
While pricing may seem orthogonal to product design, a service
involves hardware capital expense and operations personnel and
software design can meaningfully impact both.

For example, at any time, customers can resize their clusters up or
down or to a different instance type, removing the need for up-
front capacity and performance estimation. Underneath the
covers, we provision a new cluster, put the original cluster in
read-only mode, and run a parallel node-to-node copy from source
cluster to target. The source cluster is available for reads until the
operation completes, at which time, we move the SQL endpoint
and decommission the source.

3.2 Simplifying Database Administration
Most Amazon Redshift customers do not have a designated DBA
to administer their database. This reduces their costs and enables
them to allocate resources towards higher value work with their
data. Our service manages much of the undifferentiated heavy
lifting involved in database administration, including
provisioning, patching, monitoring, repair, backup and restore.

We believe database administration operations should be as
declarative as queries, with the database determining
parallelization and distribution. Amazon Redshift operations are
data-parallel within the cluster, as well cluster-parallel for fleet-
wide actions such as patching and monitoring. For example, the
time required to backup an entire cluster is proportional to the
data changed on a single node. System backups are taken
automatically and are automatically aged out. User backups
leverage the blocks already backed up in system backups and are
kept until explicitly deleted. Disruptions to cloud infrastructure
get wide publicity so some customers ask for disaster recovery by
storing backups in a second region. In Amazon Redshift, that only
requires setting a checkbox and specifying the region. Within the
system, we will initiate backing up data blocks to both the local
and the remote region. Disaster recovery backups have the same
streaming restore capabilities as local backups, allowing

1920

customers to start issuing queries within minutes of starting a
cluster in the remote region.

Encryption is similarly straightforward. Enabling encryption
requires setting a checkbox in our console and, optionally,
specifying a key provider such as a hardware security module
(HSM). Under the covers, we generate block-specific encryption
keys (to avoid injection attacks from one block to another), wrap
these with cluster-specific keys (to avoid injection attacks from
one cluster to another), and further wrap these with a master key,
stored by us off-network or via the customer-specified HSM. All
user data, including backups, is encrypted. Key rotation is
straightforward as it only involves re-encrypting block keys or
cluster keys, not the entire database. Repudiation is equally
straightforward, as it only involves losing access to the customer’s
key or re-encrypting all remaining valid cluster keys with a new
master. We also benefit from security features in the core AWS
platform. For example, we use Amazon VPC to provide network
isolation of the compute nodes providing cluster storage, isolating
them from general-purpose access from the leader node, which is
accessible from the customer’s VPC.

Future work will remove the need for user-initiated table
administration operations, making them closer to backup in
operation. The database should be able to determine when data
access performance is degrading and take action to correct itself
when load is otherwise light.

3.3 Simplifying Database Tuning
Amazon Redshift has few tuning knobs in comparison to other
database engines. We view this as a plus, removing burden from
our customers in favor of putting responsibility on ourselves. The
main things set by a customer are instance type and number of
nodes for the database cluster, and sort and distribution model
used for individual tables.

While customers can set other parameters, such as column
compression type, we strive to make such knobs dusty with
disuse, by simply setting them accurately ourselves. The database
generally has as much or more information as available to the
customer to set these well, including query patterns, data
distribution and cost of compression.

We are striving to make other settings, such as sort column and
distribution key equally dusty. One technique we are applying is
to reduce the cost of a suboptimal decision. For example, a
missing projection can result in a full table scan while an
additional one can greatly impact load time. By comparison, a
multidimensional index [JAO] using z-curves degrades more
gracefully with excess participation and still provides utility if
leading columns are not specified. Similarly, z-curves can reduce
the span of nodes involved in a join, rather than making them
entirely local or fully distributed.

Similarly, relaxation of how we map data and query computation
to nodes and slices would allow a more elastic system, which
could grow and shrink as load required.

4. Customer Use Cases
Below, we touch on some of the ways customers are using
Amazon Redshift. What connects many of these and other cases is
SQL. The ability to declaratively state one’s intent and have it
automatically converted into an optimized execution plan that is
resilient to changes in access patterns and data distribution is a
very significant benefit compared to other data-intensive
computing techniques. This is only yet more important when
computation needs to be distributed and parallelized across many
nodes, and resources distributed across many concurrent queries.

A common theme across these use cases for forward work is data
movement and transformation, which today seems to lack the
simplicity and power of in-database processing using declarative
SQL. A standardized declarative model for data structure
identification and transformation would be valuable.

Enterprise data warehousing: Many customers utilize Amazon
Redshift for what we consider to be the traditional enterprise data
warehousing use case. They populate data from a set of source
relational databases, ingest at an hourly or nightly cadence, and
access data through BI tools. These customers have appreciated
the simplicity and transparency of the procurement process, the
ability to evaluate the service at minimal cost, and the ability to
use their existing ecosystem of BI and ETL tools. They are
generally struggling with the maintenance overhead for their
existing systems and see the value of managed systems that take
care of undifferentiated heavy lifting.

When migrating from other systems, we find that our customers
like their existing databases, but do not always have great
relationships with their database vendors. They often come to us
when faced with a decision point on their existing system, either
being forced to upgrade hardware for a managed system, coming
to the end of a term license and about to enter a protracted
negotiation cycle, or reaching the scaling limit on one engine and
being forced to migrate to a second from the same vendor with
somewhat different SQL semantics and maintenance. These have
guided us towards reducing “sharp edges” in our own service, by
making scaling linear and straightforward, increasing
compatibility with PostgreSQL and growing the tools ecosystem
we support.

Semi-structured “Big Data” analysis: Many customers also use
Amazon Redshift for the integrated analysis of log and transaction
data. We see a number of customers migrating away from HIVE
on Hadoop and obtain much better performance at a much lower
cost. They are also able to make their systems directly available to
business analysts in their organizations using SQL or BI tools,
rather than burdening their engineers and data scientists with the
responsibility to generate these reports. For these customers,
simplicity is a key driver, as they generally are not staffed with
DBAs to manage and maintain their systems. We see this use case
as where the bulk of “dark data” resides, and see many
opportunities to further simplify their lives. For example, we
could support transient data warehouses on a source ‘data lake’ or
automatically ‘relationalizing’ source semi-structured data into
tables for efficient query execution.

Data Transformation: An increasing number of Amazon
Redshift customers use the service as part of a data processing
pipeline, taking large amounts of raw data, dropping it into the
data warehouse to run large SQL jobs that generate output tables
that they can then use in their online business. An example would
be in ad-tech, where many billion ad impressions may be distilled
into lookup tables that informs an ad exchange online service. We
have also seen customers begin to directly integrate Amazon
Redshift into their customer facing screens under analytic reports
and graphs. We see these customers moving towards SQL for the
benefits of being able to straightforwardly and declaratively
indicate intent and have the underlying system perform the
parallel query decomposition. We see a similar trend in the SQL
on Hadoop community, with SQL being used to reduce the labor
involved in writing Map Reduce jobs. Speed and expressibility are
key attributes here, for example, guiding our work on approximate
functions. In time, we would like to build distributed approximate
equivalents for all non-linear exact operations within our engine.

1921

“Small Data” - A large number of Amazon Redshift customers
have never previously used a data warehouse, instead directly
running their reports against their source transaction systems.
Amazon Redshift’s cost structure and removal of overhead
administration has enabled these customers to create data
warehouses and obtain the benefits of improved performance,
OLTP system offload, and retention of history. These customers
are used to a short time lag to source data changes, so automated
change data capture and automatic schema creation and
maintenance are important capabilities.

5. Lessons Learned
Amazon Redshift has grown rapidly since it became generally
available in February 2013. While our guiding principles have
served us well over the past two years, we now manage many
thousands of database instances and below offer some lessons we
have learned from operating databases at scale.

Design escalators, not elevators: Failures are common when
operating large fleets with many service dependencies. A key
lesson for us has been to design systems that degrade on failures
rather than losing outright availability. These are a common
design pattern when working with hardware failures, for example,
replicating data blocks to mask issues with disks. They are less
common when working with software or service dependencies,
though still necessary when operating in a dynamic environment.
Amazon overall (including AWS) had 50 million code
deployments over the past 12 months. Inevitably, at this scale, a
small number of regressions will occur and cause issues until
reverted. It is helpful to make one’s own service resilient to an
underlying service outage. For example, we support the ability to
preconfigure nodes in each data center, allowing us to continue to
provision and replace nodes for a period of time if there is an
Amazon EC2 provisioning interruption. One can locally increase
replication to withstand an Amazon S3 or network interruption.
We are adding similar mitigation strategies for other external
dependencies that can fail independently from the database itself.

Continuous delivery should be to the customer: Many
engineering organizations now use continuous build and
automated test pipelines to a releasable staging environment.
However, few actually push the release itself at a frequent pace.
While customers would prefer small patches to large ones for the
same reasons engineering organizations prefer to build and test
continuously, patching is an onerous process. This often leads to
special-case, one-off patches per customer that are limited in
scope – while necessary, they make patching yet more fragile.

Figure 4: Cumulative features deployed over time

Amazon Redshift is set up to automatically patch customer
clusters on a weekly basis in a 30-minute window specified by the

customer. Patches are reversible and will automatically be
reversed if we see an increase in errors or latency in our telemetry.
At any point, a customer will only be on one of two patch
versions, greatly improving our ability to reproduce and diagnose
issues. We typically push new database engine software, including
both features and bug fixes, every two weeks. We have found
reducing this pace, for example to every four weeks, meaningfully
increased the probability of a failed patch.

Use Pareto analysis to schedule work: In a rapidly growing
service, operational load can easily overwhelm development
capacity. We page ourselves on each database failure,
understanding that, even if not a widespread concern, each issue is
meaningful to the customer experiencing it. In Figure 5, Sev 2
refers to a severity 2 alarm that causes an engineer to get paged.
This means operational load roughly correlates to business
success. Within Amazon Redshift, we collect error logs across our
fleet and monitor tickets to understand top ten causes of error,
with the aim of extinguishing one of the top ten causes of error
each week.

Figure 5: Tickets per cluster over time

Pareto analysis is equally useful in understanding customer
functional requirements. However, it is more difficult to collect.
We manage this by simply conducting over 1000 direct one-to-
one conversations with customers each year. This provides a clear
sample of customer needs and service gaps, providing us with
actionable telemetry towards scheduling feature development. In
future, we would like to add automated collection of usage
statistics by feature, query plan shapes, etc. across our fleet.

6. Related Work
While Amazon Redshift, when launched, was the first widely
available data warehouse-as-a-service, its core database
technology (parser, optimizer, engine, storage organization, MPP
architecture) was derived from technology licensed from
ParAccel. ParAccel belongs to a group of column-oriented DBMS
products that appeared from the middle through the end of the
2000s: Vertica, Ingres VectorWise, Infobright, Kickfire, and
many others [1]. These systems had several similarities in their
design philosophy and list of features, with many of them
influenced by two pioneering modern column-store systems: C-
Store [8] and MonetDB/X100 [3].

Redshift’s compression techniques are similar to those used by
Vertica, and their performance tradeoffs are well understood [2].
Redshift foregoes traditional indexes (or projections in C-
Store/Vertica) and instead focuses on sequential scan speed
through compiled code execution and column-block skipping
based on value-ranges stored in memory. Infobright’s Knowledge
Grid and Netezza’s Zone Maps also rely on block skipping which
as a technique was first discussed in [5]. Code compilation
techniques in query execution have received renewed attention in

1922

academia [6][9] and are also used in other systems such as
Microsoft’s Hekaton [4].

7. Conclusion
Amazon Redshift’s price, performance, and simplicity extend the
use cases for data warehousing beyond traditional enterprise data
warehousing, into big data and software-as-service applications
with embedded analytics. Unlike traditional data warehouse
systems, which often require large upfront payments and months
of vendor negotiations, hardware procurement and deployments,
Amazon Redshift clusters can be provisioned in minutes, enabling
customers to get started with no commitments and scale up to a
petabyte scale cluster. Redshift also offers automated patching,
provisioning, scaling, securing, backup, restore, and a
comprehensive set of security features such as encryption at rest,
in transit, HSM integration and audit logging.

By dramatically lowering the cost and effort associated with
deploying data warehousing systems without compromising on
features and performance, Amazon Redshift is not only changing
how traditional enterprises think about data warehousing but also
making data warehousing technology available to segments that
had not previously considered it. This is evident in Redshift’s
customer base, which ranges from enterprises like NTT
DOCOMO and Amazon.com with multi-petabyte systems, to
high-scale startups like Pinterest and Flipboard with hundreds of
terabytes, to small startups with hundreds of gigabytes in their
data warehouses.

8. Acknowledgements
We first would like to acknowledge the contributions of each
engineer on the Amazon Redshift team, who worked hard to
deliver the first version, and continue to drive a fast pace of
innovation while maintaining operational excellence of the service
for our customers. We would also like to thank Raju Gulabani for
his guidance through the launch of Amazon Redshift and its
subsequent operation.

Amazon Redshift has lineage in the database engine work done by
the ParAccel team, now at Actian, which in turn benefited from
work from the PostgreSQL community. Their work was a very
significant accelerant in the delivery of Amazon Redshift.

We also thank Christopher Olston and Sihem Amer-Yahia for
shepherding this paper and all the reviewers for their valuable
comments.

9. References
[1] Abadi D, Boncz P, Harizopoulos S, Idreos S, Madden S. The

Design and Implementation of Modern Column-Oriented
Database Systems. Foundations and Trends in Databases.
2013;5(3):197-280.

[2] Daniel J. Abadi, Samuel R. Madden, and Miguel Ferreira.
Integrating compression and execution in column-oriented
database systems. In Proceedings of the ACM SIGMOD
Conference on Management of Data, pages 671–682, 2006.

[3] Peter Boncz, Marcin Zukowski, and Niels Nes.
MonetDB/X100: Hyper- pipelining query execution. In
Proceedings of the biennial Conference on Innovative Data
Systems Research (CIDR), 2005.

[4] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke
Larson, Pravin Mittal, Ryan Stonecipher, Nitin Verma, Mike
Zwilling. Hekaton: SQL server's memory-optimized OLTP
engine. SIGMOD Conference 2013: 1243-1254.

[5] Guido Moerkotte. Small Materialized Aggregates: A Light
Weight Index Structure for Data Warehousing. VLDB '98
Proceedings of the 24rd International Conference on Very
Large Data Bases. Pages 476-487.

[6] Thomas Neumann. Efficiently Compiling Efficient Query
Plans for Modern Hardware. PVLDB 2011, Seattle, USA.

[7] J. A. Orenstein and T. H. Merrett. A class of data structures
for associative searching. In Proc. PODS, pages 181–190,
1984.

[8] Michael Stonebraker, Daniel J. Abadi, Adam Batkin,
Xuedong Chen, Mitch Cherniack, Miguel Ferreira, Edmond
Lau, Amerson Lin, Samuel R. Madden, Elizabeth J. O’Neil,
Patrick E. O’Neil, Alexan- der Rasin, Nga Tran, and Stan B.
Zdonik. C-Store: A Column-Oriented DBMS. In Proceedings
of the International Conference on Very Large Data Bases
(VLDB), pages 553–564, 2005.

[9] J. Sompolski, M. Zukowski, and P. A. Boncz. Vectorization
vs. compilation in query execution. In DaMoN, pages 33–40,
2011.

[10] Gartner : User Survey Analysis: Key Trends Shaping the
Future of Data Center Infrastructure Through 2011
IDC: Worldwide Business Analytics Software 2012–2016

Forecast and 2011 Vendor Shares.

1923

